This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/api2_2x/Object.c

4859 lines
149 KiB
C

/*
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
*
* The Object module provides generic access to Objects of various types via
* the Python interface.
*
*
* Contributor(s): Michel Selten, Willian Germano, Jacques Guignot,
* Joseph Gilbert, Stephen Swaney, Bala Gi, Campbell Barton, Johnny Matthews,
* Ken Hughes, Alex Mole, Jean-Michel Soler
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
struct SpaceIpo;
struct rctf;
#include "Object.h" /*This must come first */
#include "DNA_object_types.h"
#include "DNA_view3d_types.h"
#include "DNA_object_force.h"
#include "DNA_userdef_types.h"
#include "DNA_oops_types.h"
#include "BKE_action.h"
#include "BKE_anim.h" /* used for dupli-objects */
#include "BKE_depsgraph.h"
#include "BKE_effect.h"
#include "BKE_font.h"
#include "BKE_property.h"
#include "BKE_mball.h"
#include "BKE_softbody.h"
#include "BKE_utildefines.h"
#include "BKE_armature.h"
#include "BKE_lattice.h"
#include "BKE_mesh.h"
#include "BKE_library.h"
#include "BKE_object.h"
#include "BKE_curve.h"
#include "BKE_global.h"
#include "BKE_main.h"
#include "BKE_scene.h"
#include "BKE_nla.h"
#include "BSE_editipo.h"
#include "BSE_edit.h"
#include "BIF_space.h"
#include "BIF_editview.h"
#include "BIF_drawscene.h"
#include "BIF_meshtools.h"
#include "BIF_editarmature.h"
#include "BIF_editaction.h"
#include "BIF_editnla.h"
#include "BLI_arithb.h"
#include "BLI_blenlib.h"
#include "BDR_editobject.h"
#include "BDR_editcurve.h"
#include "MEM_guardedalloc.h"
#include "mydevice.h"
#include "blendef.h"
#include "Scene.h"
#include "Mathutils.h"
#include "Mesh.h"
#include "NMesh.h"
#include "Curve.h"
#include "Ipo.h"
#include "Armature.h"
#include "Pose.h"
#include "Camera.h"
#include "Lamp.h"
#include "Lattice.h"
#include "Text.h"
#include "Text3d.h"
#include "Metaball.h"
#include "Draw.h"
#include "NLA.h"
#include "logic.h"
#include "Effect.h"
#include "Pose.h"
#include "Group.h"
#include "gen_utils.h"
#include "BIF_editkey.h"
/* Defines for insertIpoKey */
#define IPOKEY_LOC 0
#define IPOKEY_ROT 1
#define IPOKEY_SIZE 2
#define IPOKEY_LOCROT 3
#define IPOKEY_LOCROTSIZE 4
#define IPOKEY_PI_STRENGTH 5
#define IPOKEY_PI_FALLOFF 6
#define IPOKEY_PI_MAXDIST 7 /*Not Ready Yet*/
#define IPOKEY_PI_SURFACEDAMP 8
#define IPOKEY_PI_RANDOMDAMP 9
#define IPOKEY_PI_PERM 10
#define PFIELD_FORCE 1
#define PFIELD_VORTEX 2
#define PFIELD_MAGNET 3
#define PFIELD_WIND 4
/*****************************************************************************/
/* Python API function prototypes for the Blender module. */
/*****************************************************************************/
static PyObject *M_Object_New( PyObject * self, PyObject * args );
PyObject *M_Object_Get( PyObject * self, PyObject * args );
static PyObject *M_Object_GetSelected( PyObject * self );
static PyObject *M_Object_Duplicate( PyObject * self, PyObject * args, PyObject *kwd);
/* HELPER FUNCTION FOR PARENTING */
static PyObject *internal_makeParent(Object *parent, PyObject *py_child, int partype, int noninverse, int fast, int v1, int v2, int v3);
/*****************************************************************************/
/* The following string definitions are used for documentation strings. */
/* In Python these will be written to the console when doing a */
/* Blender.Object.__doc__ */
/*****************************************************************************/
char M_Object_doc[] = "The Blender Object module\n\n\
This module provides access to **Object Data** in Blender.\n";
char M_Object_New_doc[] =
"(type) - Add a new object of type 'type' in the current scene";
char M_Object_Get_doc[] =
"(name) - return the object with the name 'name', returns None if not\
found.\n\
If 'name' is not specified, it returns a list of all objects in the\n\
current scene.";
char M_Object_GetSelected_doc[] =
"() - Returns a list of selected Objects in the active layer(s)\n\
The active object is the first in the list, if visible";
char M_Object_Duplicate_doc[] =
"(linked) - Duplicate all selected, visible objects in the current scene";
/*****************************************************************************/
/* Python method structure definition for Blender.Object module: */
/*****************************************************************************/
struct PyMethodDef M_Object_methods[] = {
{"New", ( PyCFunction ) M_Object_New, METH_VARARGS,
M_Object_New_doc},
{"Get", ( PyCFunction ) M_Object_Get, METH_VARARGS,
M_Object_Get_doc},
{"GetSelected", ( PyCFunction ) M_Object_GetSelected, METH_NOARGS,
M_Object_GetSelected_doc},
{"Duplicate", ( PyCFunction ) M_Object_Duplicate, METH_VARARGS | METH_KEYWORDS,
M_Object_Duplicate_doc},
{NULL, NULL, 0, NULL}
};
/*****************************************************************************/
/* Python BPy_Object methods declarations: */
/*****************************************************************************/
int setupSB(Object* ob); /*Make sure Softbody Pointer is initialized */
int setupPI(Object* ob);
static PyObject *Object_buildParts( BPy_Object * self );
static PyObject *Object_clearIpo( BPy_Object * self );
static PyObject *Object_clrParent( BPy_Object * self, PyObject * args );
static PyObject *Object_clearTrack( BPy_Object * self, PyObject * args );
static PyObject *Object_getData(BPy_Object *self, PyObject *args, PyObject *kwd);
static PyObject *Object_getDeltaLocation( BPy_Object * self );
static PyObject *Object_getDrawMode( BPy_Object * self );
static PyObject *Object_getDrawType( BPy_Object * self );
static PyObject *Object_getEuler( BPy_Object * self );
static PyObject *Object_getInverseMatrix( BPy_Object * self );
static PyObject *Object_getIpo( BPy_Object * self );
static PyObject *Object_getLocation( BPy_Object * self );
static PyObject *Object_getMaterials( BPy_Object * self, PyObject * args );
static PyObject *Object_getMatrix( BPy_Object * self, PyObject * args );
static PyObject *Object_getName( BPy_Object * self );
static PyObject *Object_getParent( BPy_Object * self );
static PyObject *Object_getParentBoneName( BPy_Object * self );
static PyObject *Object_getSize( BPy_Object * self );
static PyObject *Object_getTimeOffset( BPy_Object * self );
static PyObject *Object_getTracked( BPy_Object * self );
static PyObject *Object_getType( BPy_Object * self );
static PyObject *Object_getBoundBox( BPy_Object * self );
static PyObject *Object_getAction( BPy_Object * self );
static PyObject *Object_getPose( BPy_Object * self );
static PyObject *Object_isSelected( BPy_Object * self );
static PyObject *Object_makeDisplayList( BPy_Object * self );
static PyObject *Object_link( BPy_Object * self, PyObject * args );
static PyObject *Object_makeParent( BPy_Object * self, PyObject * args );
static PyObject *Object_join( BPy_Object * self, PyObject * args );
static PyObject *Object_makeParentDeform( BPy_Object * self, PyObject * args );
static PyObject *Object_makeParentVertex( BPy_Object * self, PyObject * args );
static PyObject *Object_materialUsage( void );
static PyObject *Object_getDupliVerts ( BPy_Object * self ); /* */
static PyObject *Object_getDupliFrames ( BPy_Object * self );
static PyObject *Object_getDupliGroup ( BPy_Object * self );
static PyObject *Object_getDupliRot ( BPy_Object * self );
static PyObject *Object_getDupliNoSpeed ( BPy_Object * self );
static PyObject *Object_getDupliObjects ( BPy_Object * self);
static PyObject *Object_getEffects( BPy_Object * self );
static PyObject *Object_setDeltaLocation( BPy_Object * self, PyObject * args );
static PyObject *Object_setDrawMode( BPy_Object * self, PyObject * args );
static PyObject *Object_setDrawType( BPy_Object * self, PyObject * args );
static PyObject *Object_setEuler( BPy_Object * self, PyObject * args );
static PyObject *Object_setMatrix( BPy_Object * self, PyObject * args );
static PyObject *Object_setIpo( BPy_Object * self, PyObject * args );
static PyObject *Object_insertIpoKey( BPy_Object * self, PyObject * args );
static PyObject *Object_insertPoseKey( BPy_Object * self, PyObject * args );
static PyObject *Object_insertCurrentPoseKey( BPy_Object * self, PyObject * args );
static PyObject *Object_insertMatrixKey( BPy_Object * self, PyObject * args );
static PyObject *Object_bake_to_action( BPy_Object * self, PyObject * args );
static PyObject *Object_setConstraintInfluenceForBone( BPy_Object * self, PyObject * args );
static PyObject *Object_setLocation( BPy_Object * self, PyObject * args );
static PyObject *Object_setMaterials( BPy_Object * self, PyObject * args );
static PyObject *Object_setName( BPy_Object * self, PyObject * args );
static PyObject *Object_setSize( BPy_Object * self, PyObject * args );
static PyObject *Object_setTimeOffset( BPy_Object * self, PyObject * args );
static PyObject *Object_makeTrack( BPy_Object * self, PyObject * args );
static PyObject *Object_shareFrom( BPy_Object * self, PyObject * args );
static PyObject *Object_Select( BPy_Object * self, PyObject * args );
static PyObject *Object_getAllProperties( BPy_Object * self );
static PyObject *Object_addProperty( BPy_Object * self, PyObject * args );
static PyObject *Object_removeProperty( BPy_Object * self, PyObject * args );
static PyObject *Object_getProperty( BPy_Object * self, PyObject * args );
static PyObject *Object_removeAllProperties( BPy_Object * self );
static PyObject *Object_copyAllPropertiesTo( BPy_Object * self,
PyObject * args );
static PyObject *Object_getScriptLinks( BPy_Object * self, PyObject * args );
static PyObject *Object_addScriptLink( BPy_Object * self, PyObject * args );
static PyObject *Object_clearScriptLinks( BPy_Object * self, PyObject *args );
static PyObject *Object_setDupliVerts ( BPy_Object * self, PyObject * args ); /* removed from API, used by enableDupliVerts */
static PyObject *Object_setDupliFrames ( BPy_Object * self, PyObject * args ); /* removed from API, used by enableDupliFrames */
static PyObject *Object_setDupliGroup ( BPy_Object * self, PyObject * args ); /* removed from API, used by enableDupliGroups */
static PyObject *Object_setDupliRot ( BPy_Object * self , PyObject * args); /* removed from API, used by enableDupliRot */
static PyObject *Object_setDupliNoSpeed ( BPy_Object * self , PyObject * args); /* removed from API, used by enableDupliNoSpeed */
static PyObject *Object_getPIStrength( BPy_Object * self );
static PyObject *Object_setPIStrength( BPy_Object * self, PyObject * args );
static PyObject *Object_getPIFalloff( BPy_Object * self );
static PyObject *Object_setPIFalloff( BPy_Object * self, PyObject * args );
static PyObject *Object_getPIMaxDist( BPy_Object * self );
static PyObject *Object_setPIMaxDist( BPy_Object * self, PyObject * args );
static PyObject *Object_getPIUseMaxDist( BPy_Object * self );
static PyObject *Object_setPIUseMaxDist( BPy_Object * self, PyObject * args );
static PyObject *Object_getPIType( BPy_Object * self );
static PyObject *Object_setPIType( BPy_Object * self, PyObject * args );
static PyObject *Object_getPIPerm( BPy_Object * self );
static PyObject *Object_setPIPerm( BPy_Object * self, PyObject * args );
static PyObject *Object_getPIRandomDamp( BPy_Object * self );
static PyObject *Object_setPIRandomDamp( BPy_Object * self, PyObject * args );
static PyObject *Object_getPISurfaceDamp( BPy_Object * self );
static PyObject *Object_setPISurfaceDamp( BPy_Object * self, PyObject * args );
static PyObject *Object_getPIDeflection( BPy_Object * self );
static PyObject *Object_setPIDeflection( BPy_Object * self, PyObject * args );
static PyObject *Object_isSB( BPy_Object * self );
static PyObject *Object_getSBMass( BPy_Object * self );
static PyObject *Object_setSBMass( BPy_Object * self, PyObject * args );
static PyObject *Object_getSBGravity( BPy_Object * self );
static PyObject *Object_setSBGravity( BPy_Object * self, PyObject * args );
static PyObject *Object_getSBFriction( BPy_Object * self );
static PyObject *Object_setSBFriction( BPy_Object * self, PyObject * args );
static PyObject *Object_getSBErrorLimit( BPy_Object * self );
static PyObject *Object_setSBErrorLimit( BPy_Object * self, PyObject * args );
static PyObject *Object_getSBGoalSpring( BPy_Object * self );
static PyObject *Object_setSBGoalSpring( BPy_Object * self, PyObject * args );
static PyObject *Object_getSBGoalFriction( BPy_Object * self );
static PyObject *Object_setSBGoalFriction( BPy_Object * self, PyObject * args );
static PyObject *Object_getSBMinGoal( BPy_Object * self );
static PyObject *Object_setSBMinGoal( BPy_Object * self, PyObject * args );
static PyObject *Object_getSBMaxGoal( BPy_Object * self );
static PyObject *Object_setSBMaxGoal( BPy_Object * self, PyObject * args );
static PyObject *Object_getSBInnerSpring( BPy_Object * self );
static PyObject *Object_setSBInnerSpring( BPy_Object * self, PyObject * args );
static PyObject *Object_getSBInnerSpringFriction( BPy_Object * self );
static PyObject *Object_setSBInnerSpringFriction( BPy_Object * self, PyObject * args );
static PyObject *Object_getSBDefaultGoal( BPy_Object * self );
static PyObject *Object_setSBDefaultGoal( BPy_Object * self, PyObject * args );
static PyObject *Object_getSBUseGoal( BPy_Object * self );
static PyObject *Object_setSBUseGoal( BPy_Object * self, PyObject * args );
static PyObject *Object_getSBUseEdges( BPy_Object * self );
static PyObject *Object_setSBUseEdges( BPy_Object * self, PyObject * args );
static PyObject *Object_getSBStiffQuads( BPy_Object * self );
static PyObject *Object_setSBStiffQuads( BPy_Object * self, PyObject * args );
static PyObject *Object_insertShapeKey(BPy_Object * self);
static PyObject *Object_copyNLA( BPy_Object * self, PyObject * args );
static PyObject *Object_convertActionToStrip( BPy_Object * self );
/*****************************************************************************/
/* Python BPy_Object methods table: */
/*****************************************************************************/
static PyMethodDef BPy_Object_methods[] = {
/* name, method, flags, doc */
{"buildParts", ( PyCFunction ) Object_buildParts, METH_NOARGS,
"Recalcs particle system (if any) "},
{"getIpo", ( PyCFunction ) Object_getIpo, METH_NOARGS,
"Returns the ipo of this object (if any) "},
{"clrParent", ( PyCFunction ) Object_clrParent, METH_VARARGS,
"Clears parent object. Optionally specify:\n\
mode\n\tnonzero: Keep object transform\nfast\n\t>0: Don't update scene \
hierarchy (faster)"},
{"clearTrack", ( PyCFunction ) Object_clearTrack, METH_VARARGS,
"Make this object not track another anymore. Optionally specify:\n\
mode\n\t2: Keep object transform\nfast\n\t>0: Don't update scene \
hierarchy (faster)"},
{"getData", ( PyCFunction ) Object_getData, METH_VARARGS | METH_KEYWORDS,
"(name_only = 0, mesh = 0) - Returns the datablock object containing the object's \
data, e.g. Mesh.\n\
If 'name_only' is nonzero or True, only the name of the datablock is returned"},
{"getDeltaLocation", ( PyCFunction ) Object_getDeltaLocation,
METH_NOARGS,
"Returns the object's delta location (x, y, z)"},
{"getDrawMode", ( PyCFunction ) Object_getDrawMode, METH_NOARGS,
"Returns the object draw modes"},
{"getDrawType", ( PyCFunction ) Object_getDrawType, METH_NOARGS,
"Returns the object draw type"},
{"getAction", ( PyCFunction ) Object_getAction, METH_NOARGS,
"Returns the active action for this object"},
{"getPose", ( PyCFunction ) Object_getPose, METH_NOARGS,
"() - returns the pose from an object if it exists, else None"},
{"isSelected", ( PyCFunction ) Object_isSelected, METH_NOARGS,
"Return a 1 or 0 depending on whether the object is selected"},
{"getEuler", ( PyCFunction ) Object_getEuler, METH_NOARGS,
"Returns the object's rotation as Euler rotation vector\n\
(rotX, rotY, rotZ)"},
{"getInverseMatrix", ( PyCFunction ) Object_getInverseMatrix,
METH_NOARGS,
"Returns the object's inverse matrix"},
{"getLocation", ( PyCFunction ) Object_getLocation, METH_NOARGS,
"Returns the object's location (x, y, z)"},
{"getMaterials", ( PyCFunction ) Object_getMaterials, METH_VARARGS,
"(i = 0) - Returns list of materials assigned to the object.\n\
if i is nonzero, empty slots are not ignored: they are returned as None's."},
{"getMatrix", ( PyCFunction ) Object_getMatrix, METH_VARARGS,
"(str = 'worldspace') - Returns the object matrix.\n\
(str = 'worldspace') - the wanted matrix: worldspace (default), localspace\n\
or old_worldspace.\n\
\n\
'old_worldspace' was the only behavior before Blender 2.34. With it the\n\
matrix is not updated for changes made by the script itself\n\
(like obj.LocX = 10) until a redraw happens, either called by the script or\n\
automatic when the script finishes."},
{"getName", ( PyCFunction ) Object_getName, METH_NOARGS,
"Returns the name of the object"},
{"getParent", ( PyCFunction ) Object_getParent, METH_NOARGS,
"Returns the object's parent object"},
{"getParentBoneName", ( PyCFunction ) Object_getParentBoneName, METH_NOARGS,
"Returns None, or the 'sub-name' of the parent (eg. Bone name)"},
{"getSize", ( PyCFunction ) Object_getSize, METH_NOARGS,
"Returns the object's size (x, y, z)"},
{"getTimeOffset", ( PyCFunction ) Object_getTimeOffset, METH_NOARGS,
"Returns the object's time offset"},
{"getTracked", ( PyCFunction ) Object_getTracked, METH_NOARGS,
"Returns the object's tracked object"},
{"getType", ( PyCFunction ) Object_getType, METH_NOARGS,
"Returns type of string of Object"},
/* Particle Interaction */
{"getPIStrength", ( PyCFunction ) Object_getPIStrength, METH_NOARGS,
"Returns Particle Interaction Strength"},
{"setPIStrength", ( PyCFunction ) Object_setPIStrength, METH_VARARGS,
"Sets Particle Interaction Strength"},
{"getPIFalloff", ( PyCFunction ) Object_getPIFalloff, METH_NOARGS,
"Returns Particle Interaction Falloff"},
{"setPIFalloff", ( PyCFunction ) Object_setPIFalloff, METH_VARARGS,
"Sets Particle Interaction Falloff"},
{"getPIMaxDist", ( PyCFunction ) Object_getPIMaxDist, METH_NOARGS,
"Returns Particle Interaction Max Distance"},
{"setPIMaxDist", ( PyCFunction ) Object_setPIMaxDist, METH_VARARGS,
"Sets Particle Interaction Max Distance"},
{"getPIUseMaxDist", ( PyCFunction ) Object_getPIUseMaxDist, METH_NOARGS,
"Returns bool for Use Max Distace in Particle Interaction "},
{"setPIUseMaxDist", ( PyCFunction ) Object_setPIUseMaxDist, METH_VARARGS,
"Sets if Max Distance should be used in Particle Interaction"},
{"getPIType", ( PyCFunction ) Object_getPIType, METH_NOARGS,
"Returns Particle Interaction Type"},
{"setPIType", ( PyCFunction ) Object_setPIType, METH_VARARGS,
"sets Particle Interaction Type"},
{"getPIPerm", ( PyCFunction ) Object_getPIPerm, METH_NOARGS,
"Returns Particle Interaction Permiability"},
{"setPIPerm", ( PyCFunction ) Object_setPIPerm, METH_VARARGS,
"Sets Particle Interaction Permiability"},
{"getPISurfaceDamp", ( PyCFunction ) Object_getPISurfaceDamp, METH_NOARGS,
"Returns Particle Interaction Surface Damping"},
{"setPISurfaceDamp", ( PyCFunction ) Object_setPISurfaceDamp, METH_VARARGS,
"Sets Particle Interaction Surface Damping"},
{"getPIRandomDamp", ( PyCFunction ) Object_getPIRandomDamp, METH_NOARGS,
"Returns Particle Interaction Random Damping"},
{"setPIRandomDamp", ( PyCFunction ) Object_setPIRandomDamp, METH_VARARGS,
"Sets Particle Interaction Random Damping"},
{"getPIDeflection", ( PyCFunction ) Object_getPIDeflection, METH_NOARGS,
"Returns Particle Interaction Deflection"},
{"setPIDeflection", ( PyCFunction ) Object_setPIDeflection, METH_VARARGS,
"Sets Particle Interaction Deflection"},
/* Softbody */
{"isSB", ( PyCFunction ) Object_isSB, METH_NOARGS,
"True if object is a soft body"},
{"getSBMass", ( PyCFunction ) Object_getSBMass, METH_NOARGS,
"Returns SB Mass"},
{"setSBMass", ( PyCFunction ) Object_setSBMass, METH_VARARGS,
"Sets SB Mass"},
{"getSBGravity", ( PyCFunction ) Object_getSBGravity, METH_NOARGS,
"Returns SB Gravity"},
{"setSBGravity", ( PyCFunction ) Object_setSBGravity, METH_VARARGS,
"Sets SB Gravity"},
{"getSBFriction", ( PyCFunction ) Object_getSBFriction, METH_NOARGS,
"Returns SB Friction"},
{"setSBFriction", ( PyCFunction ) Object_setSBFriction, METH_VARARGS,
"Sets SB Friction"},
{"getSBErrorLimit", ( PyCFunction ) Object_getSBErrorLimit, METH_NOARGS,
"Returns SB ErrorLimit"},
{"setSBErrorLimit", ( PyCFunction ) Object_setSBErrorLimit, METH_VARARGS,
"Sets SB ErrorLimit"},
{"getSBGoalSpring", ( PyCFunction ) Object_getSBGoalSpring, METH_NOARGS,
"Returns SB GoalSpring"},
{"setSBGoalSpring", ( PyCFunction ) Object_setSBGoalSpring, METH_VARARGS,
"Sets SB GoalSpring"},
{"getSBGoalFriction", ( PyCFunction ) Object_getSBGoalFriction, METH_NOARGS,
"Returns SB GoalFriction"},
{"setSBGoalFriction", ( PyCFunction ) Object_setSBGoalFriction, METH_VARARGS,
"Sets SB GoalFriction"},
{"getSBMinGoal", ( PyCFunction ) Object_getSBMinGoal, METH_NOARGS,
"Returns SB MinGoal"},
{"setSBMinGoal", ( PyCFunction ) Object_setSBMinGoal, METH_VARARGS,
"Sets SB MinGoal "},
{"getSBMaxGoal", ( PyCFunction ) Object_getSBMaxGoal, METH_NOARGS,
"Returns SB MaxGoal"},
{"setSBMaxGoal", ( PyCFunction ) Object_setSBMaxGoal, METH_VARARGS,
"Sets SB MaxGoal"},
{"getSBInnerSpring", ( PyCFunction ) Object_getSBInnerSpring, METH_NOARGS,
"Returns SB InnerSpring"},
{"setSBInnerSpring", ( PyCFunction ) Object_setSBInnerSpring, METH_VARARGS,
"Sets SB InnerSpring"},
{"getSBInnerSpringFriction", ( PyCFunction ) Object_getSBInnerSpringFriction, METH_NOARGS,
"Returns SB InnerSpringFriction"},
{"setSBInnerSpringFriction", ( PyCFunction ) Object_setSBInnerSpringFriction, METH_VARARGS,
"Sets SB InnerSpringFriction"},
{"getSBDefaultGoal", ( PyCFunction ) Object_getSBDefaultGoal, METH_NOARGS,
"Returns SB DefaultGoal"},
{"setSBDefaultGoal", ( PyCFunction ) Object_setSBDefaultGoal, METH_VARARGS,
"Sets SB DefaultGoal"},
{"getSBUseGoal", ( PyCFunction ) Object_getSBUseGoal, METH_NOARGS,
"Returns SB UseGoal"},
{"setSBUseGoal", ( PyCFunction ) Object_setSBUseGoal, METH_VARARGS,
"Sets SB UseGoal"},
{"getSBUseEdges", ( PyCFunction ) Object_getSBUseEdges, METH_NOARGS,
"Returns SB UseEdges"},
{"setSBUseEdges", ( PyCFunction ) Object_setSBUseEdges, METH_VARARGS,
"Sets SB UseEdges"},
{"getSBStiffQuads", ( PyCFunction ) Object_getSBStiffQuads, METH_NOARGS,
"Returns SB StiffQuads"},
{"setSBStiffQuads", ( PyCFunction ) Object_setSBStiffQuads, METH_VARARGS,
"Sets SB StiffQuads"},
{"getBoundBox", ( PyCFunction ) Object_getBoundBox, METH_NOARGS,
"Returns the object's bounding box"},
/*{"getDupliObjects", ( PyCFunction ) Object_getDupliObjects,
METH_NOARGS, "Returns of list of tuples for object duplicated (object, dupliMatrix)\n\
by dupliframe or dupliverst state "},*/
{"makeDisplayList", ( PyCFunction ) Object_makeDisplayList,
METH_NOARGS,
"Update this object's Display List. Some changes like turning \n\
'SubSurf' on for a mesh need this method (followed by a Redraw) to \n\
show the changes on the 3d window."},
{"link", ( PyCFunction ) Object_link, METH_VARARGS,
"Links Object with data provided in the argument. The data must \n\
match the Object's type, so you cannot link a Lamp to a Mesh type object."},
{"makeParent", ( PyCFunction ) Object_makeParent, METH_VARARGS,
"Makes the object the parent of the objects provided in the \n\
argument which must be a list of valid Objects. Optional extra arguments:\n\
mode:\n\t0: make parent with inverse\n\t1: without inverse\n\
fast:\n\t0: update scene hierarchy automatically\n\t\
don't update scene hierarchy (faster). In this case, you must\n\t\
explicitely update the Scene hierarchy."},
{"join", ( PyCFunction ) Object_join, METH_VARARGS,
"(object_list) - Joins the objects in object list of the same type, into this object."},
{"makeParentDeform", ( PyCFunction ) Object_makeParentDeform, METH_VARARGS,
"Makes the object the deformation parent of the objects provided in the \n\
argument which must be a list of valid Objects. Optional extra arguments:\n\
mode:\n\t0: make parent with inverse\n\t1: without inverse\n\
fast:\n\t0: update scene hierarchy automatically\n\t\
don't update scene hierarchy (faster). In this case, you must\n\t\
explicitely update the Scene hierarchy."},
{"makeParentVertex", ( PyCFunction ) Object_makeParentVertex, METH_VARARGS,
"Makes the object the vertex parent of the objects provided in the \n\
argument which must be a list of valid Objects. \n\
The second argument is a tuple of 1 or 3 positive integers which corresponds \
to the index of the vertex you are parenting to.\n\
Optional extra arguments:\n\
mode:\n\t0: make parent with inverse\n\t1: without inverse\n\
fast:\n\t0: update scene hierarchy automatically\n\t\
don't update scene hierarchy (faster). In this case, you must\n\t\
explicitely update the Scene hierarchy."},
{"materialUsage", ( PyCFunction ) Object_materialUsage, METH_NOARGS,
"Determines the way the material is used and returns status.\n\
Possible arguments (provide as strings):\n\
\tData: Materials assigned to the object's data are shown. (default)\n\
\tObject: Materials assigned to the object are shown."},
{"setDeltaLocation", ( PyCFunction ) Object_setDeltaLocation,
METH_VARARGS,
"Sets the object's delta location which must be a vector triple."},
{"setDrawMode", ( PyCFunction ) Object_setDrawMode, METH_VARARGS,
"Sets the object's drawing mode. The argument can be a sum of:\n\
2: axis\n4: texspace\n8: drawname\n16: drawimage\n32: drawwire"},
{"setDrawType", ( PyCFunction ) Object_setDrawType, METH_VARARGS,
"Sets the object's drawing type. The argument must be one of:\n\
1: Bounding box\n2: Wire\n3: Solid\n4: Shaded\n5: Textured"},
{"setEuler", ( PyCFunction ) Object_setEuler, METH_VARARGS,
"Set the object's rotation according to the specified Euler\n\
angles. The argument must be a vector triple"},
{"setMatrix", ( PyCFunction ) Object_setMatrix, METH_VARARGS,
"Set and apply a new matrix for the object"},
{"setLocation", ( PyCFunction ) Object_setLocation, METH_VARARGS,
"Set the object's location. The first argument must be a vector\n\
triple."},
{"setMaterials", ( PyCFunction ) Object_setMaterials, METH_VARARGS,
"Sets materials. The argument must be a list of valid material\n\
objects."},
{"setName", ( PyCFunction ) Object_setName, METH_VARARGS,
"Sets the name of the object"},
{"setSize", ( PyCFunction ) Object_setSize, METH_VARARGS,
"Set the object's size. The first argument must be a vector\n\
triple."},
{"setTimeOffset", ( PyCFunction ) Object_setTimeOffset, METH_VARARGS,
"Set the object's time offset."},
{"makeTrack", ( PyCFunction ) Object_makeTrack, METH_VARARGS,
"(trackedobj, fast = 0) - Make this object track another.\n\
(trackedobj) - the object that will be tracked.\n\
(fast = 0) - if 0: update the scene hierarchy automatically. If you\n\
set 'fast' to a nonzero value, don't forget to update the scene yourself\n\
(see scene.update())."},
{"shareFrom", ( PyCFunction ) Object_shareFrom, METH_VARARGS,
"Link data of self with object specified in the argument. This\n\
works only if self and the object specified are of the same type."},
{"select", ( PyCFunction ) Object_Select, METH_VARARGS,
"( 1 or 0 ) - Set the selected state of the object.\n\
1 is selected, 0 not selected "},
{"setIpo", ( PyCFunction ) Object_setIpo, METH_VARARGS,
"(Blender Ipo) - Sets the object's ipo"},
{"clearIpo", ( PyCFunction ) Object_clearIpo, METH_NOARGS,
"() - Unlink ipo from this object"},
{"insertIpoKey", ( PyCFunction ) Object_insertIpoKey, METH_VARARGS,
"( Object IPO type ) - Inserts a key into IPO"},
{"insertPoseKey", ( PyCFunction ) Object_insertPoseKey, METH_VARARGS,
"( Object Pose type ) - Inserts a key into Action"},
{"insertCurrentPoseKey", ( PyCFunction ) Object_insertCurrentPoseKey, METH_VARARGS,
"( Object Pose type ) - Inserts a key into Action based on current pose"},
{"insertMatrixKey", ( PyCFunction ) Object_insertMatrixKey, METH_VARARGS,
"( ) - Inserts a key into Action based on current/giventime object matrix"},
{"bake_to_action", ( PyCFunction ) Object_bake_to_action, METH_VARARGS,
"( ) - creates a new action with the information from object animations"},
{"setConstraintInfluenceForBone", ( PyCFunction ) Object_setConstraintInfluenceForBone, METH_VARARGS,
"( ) - sets a constraint influence for a certain bone in this (armature)object."},
{"copyNLA", ( PyCFunction ) Object_copyNLA, METH_VARARGS,
"( ) - copies all NLA strips from another object to this object."},
{"convertActionToStrip", ( PyCFunction ) Object_convertActionToStrip, METH_NOARGS,
"( ) - copies all NLA strips from another object to this object."},
{"getAllProperties", ( PyCFunction ) Object_getAllProperties, METH_NOARGS,
"() - Get all the properties from this object"},
{"addProperty", ( PyCFunction ) Object_addProperty, METH_VARARGS,
"() - Add a property to this object"},
{"removeProperty", ( PyCFunction ) Object_removeProperty, METH_VARARGS,
"() - Remove a property from this object"},
{"getProperty", ( PyCFunction ) Object_getProperty, METH_VARARGS,
"() - Get a property from this object by name"},
{"removeAllProperties", ( PyCFunction ) Object_removeAllProperties,
METH_NOARGS,
"() - removeAll a properties from this object"},
{"copyAllPropertiesTo", ( PyCFunction ) Object_copyAllPropertiesTo,
METH_VARARGS,
"() - copy all properties from this object to another object"},
{"getScriptLinks", ( PyCFunction ) Object_getScriptLinks, METH_VARARGS,
"(eventname) - Get a list of this object's scriptlinks (Text names) "
"of the given type\n"
"(eventname) - string: FrameChanged, Redraw or Render."},
{"addScriptLink", ( PyCFunction ) Object_addScriptLink, METH_VARARGS,
"(text, evt) - Add a new object scriptlink.\n"
"(text) - string: an existing Blender Text name;\n"
"(evt) string: FrameChanged, Redraw or Render."},
{"clearScriptLinks", ( PyCFunction ) Object_clearScriptLinks,
METH_VARARGS,
"() - Delete all scriptlinks from this object.\n"
"([s1<,s2,s3...>]) - Delete specified scriptlinks from this object."},
{"insertShapeKey", ( PyCFunction ) Object_insertShapeKey,
METH_NOARGS, "() - Insert a Shape Key in the current object"},
{NULL, NULL, 0, NULL}
};
/*****************************************************************************/
/* PythonTypeObject callback function prototypes */
/*****************************************************************************/
static void Object_dealloc( BPy_Object * obj );
static PyObject *Object_getAttr( BPy_Object * obj, char *name );
static int Object_setAttr( BPy_Object * obj, char *name, PyObject * v );
static PyObject *Object_repr( BPy_Object * obj );
static int Object_compare( BPy_Object * a, BPy_Object * b );
/*****************************************************************************/
/* Python TypeObject structure definition. */
/*****************************************************************************/
PyTypeObject Object_Type = {
PyObject_HEAD_INIT( NULL ) /* requred macro */
0, /* ob_size */
"Blender Object", /* tp_name */
sizeof( BPy_Object ), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
( destructor ) Object_dealloc, /* tp_dealloc */
0, /* tp_print */
( getattrfunc ) Object_getAttr, /* tp_getattr */
( setattrfunc ) Object_setAttr, /* tp_setattr */
( cmpfunc ) Object_compare, /* tp_compare */
( reprfunc ) Object_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_as_hash */
0, 0, 0, 0, 0, 0,
0, /* tp_doc */
0, 0, 0, 0, 0, 0,
BPy_Object_methods, /* tp_methods */
0, /* tp_members */
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
};
/*****************************************************************************/
/* Function: M_Object_New */
/* Python equivalent: Blender.Object.New */
/*****************************************************************************/
PyObject *M_Object_New( PyObject * self, PyObject * args )
{
struct Object *object;
int type;
char *str_type;
char *name = NULL;
if( !PyArg_ParseTuple( args, "s|s", &str_type, &name ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"string expected as argument" );
if( strcmp( str_type, "Armature" ) == 0 )
type = OB_ARMATURE;
else if( strcmp( str_type, "Camera" ) == 0 )
type = OB_CAMERA;
else if( strcmp( str_type, "Curve" ) == 0 )
type = OB_CURVE;
else if (strcmp (str_type, "Text") == 0)
type = OB_FONT;
else if( strcmp( str_type, "Lamp" ) == 0 )
type = OB_LAMP;
else if( strcmp( str_type, "Lattice" ) == 0 )
type = OB_LATTICE;
else if( strcmp( str_type, "Mball" ) == 0 )
type = OB_MBALL;
else if( strcmp( str_type, "Mesh" ) == 0 )
type = OB_MESH;
else if( strcmp( str_type, "Surf" ) == 0 )
type = OB_SURF;
/* else if (strcmp (str_type, "Wave") == 0) type = OB_WAVE; */
else if( strcmp( str_type, "Empty" ) == 0 )
type = OB_EMPTY;
else {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"Unknown type specified" ) );
}
/* Create a new object. */
if( name == NULL ) {
/* No name is specified, set the name to the type of the object. */
name = str_type;
}
object = alloc_libblock( &( G.main->object ), ID_OB, name );
object->flag = 0;
object->type = (short)type;
/* transforms */
QuatOne( object->quat );
QuatOne( object->dquat );
object->col[3] = 1.0; // alpha
object->size[0] = object->size[1] = object->size[2] = 1.0;
object->loc[0] = object->loc[1] = object->loc[2] = 0.0;
Mat4One( object->parentinv );
Mat4One( object->obmat );
object->dt = OB_SHADED; // drawtype
object->empty_drawsize= 1.0;
object->empty_drawtype= OB_ARROWS;
if( U.flag & USER_MAT_ON_OB ) {
object->colbits = -1;
}
switch ( object->type ) {
case OB_CAMERA: /* fall through. */
case OB_LAMP:
object->trackflag = OB_NEGZ;
object->upflag = OB_POSY;
break;
default:
object->trackflag = OB_POSY;
object->upflag = OB_POSZ;
}
object->ipoflag = OB_OFFS_OB + OB_OFFS_PARENT;
/* duplivert settings */
object->dupon = 1;
object->dupoff = 0;
object->dupsta = 1;
object->dupend = 100;
/* Gameengine defaults */
object->mass = 1.0;
object->inertia = 1.0;
object->formfactor = 0.4f;
object->damping = 0.04f;
object->rdamping = 0.1f;
object->anisotropicFriction[0] = 1.0;
object->anisotropicFriction[1] = 1.0;
object->anisotropicFriction[2] = 1.0;
object->gameflag = OB_PROP;
object->lay = 1; // Layer, by default visible
G.totobj++;
object->data = NULL;
/* user count be incremented in Object_CreatePyObject */
object->id.us = 0;
/* Create a Python object from it. */
return Object_CreatePyObject( object );
}
/*****************************************************************************/
/* Function: M_Object_Get */
/* Python equivalent: Blender.Object.Get */
/*****************************************************************************/
PyObject *M_Object_Get( PyObject * self, PyObject * args )
{
struct Object *object;
PyObject *blen_object;
char *name = NULL;
PyArg_ParseTuple( args, "|s", &name );
if( name != NULL ) {
object = GetObjectByName( name );
/* No object exists with the name specified in the argument name. */
if( !object ){
char buffer[128];
PyOS_snprintf( buffer, sizeof(buffer),
"object \"%s\" not found", name);
return EXPP_ReturnPyObjError( PyExc_ValueError,
buffer );
}
return Object_CreatePyObject( object );
} else {
/* No argument has been given. Return a list of all objects. */
PyObject *obj_list;
Link *link;
int index;
obj_list = PyList_New( BLI_countlist( &( G.main->object ) ) );
if( !obj_list )
return EXPP_ReturnPyObjError( PyExc_SystemError,
"List creation failed." );
link = G.main->object.first;
index = 0;
while( link ) {
object = ( Object * ) link;
blen_object = Object_CreatePyObject( object );
if( !blen_object ) {
Py_DECREF( obj_list );
Py_RETURN_NONE;
}
PyList_SetItem( obj_list, index, blen_object );
index++;
link = link->next;
}
return obj_list;
}
}
/*****************************************************************************/
/* Function: M_Object_GetSelected */
/* Python equivalent: Blender.Object.GetSelected */
/*****************************************************************************/
static PyObject *M_Object_GetSelected( PyObject * self )
{
PyObject *blen_object;
PyObject *list;
Base *base_iter;
list = PyList_New( 0 );
if( G.vd == NULL ) {
/* No 3d view has been initialized yet, simply return an empty list */
return list;
}
if( ( G.scene->basact ) &&
( ( G.scene->basact->flag & SELECT ) &&
( G.scene->basact->lay & G.vd->lay ) ) ) {
/* Active object is first in the list. */
blen_object = Object_CreatePyObject( G.scene->basact->object );
if( !blen_object ) {
Py_DECREF( list );
Py_RETURN_NONE;
}
PyList_Append( list, blen_object );
Py_DECREF( blen_object );
}
base_iter = G.scene->base.first;
while( base_iter ) {
if( ( ( base_iter->flag & SELECT ) &&
( base_iter->lay & G.vd->lay ) ) &&
( base_iter != G.scene->basact ) ) {
blen_object = Object_CreatePyObject( base_iter->object );
if( blen_object ) {
PyList_Append( list, blen_object );
Py_DECREF( blen_object );
}
}
base_iter = base_iter->next;
}
return list;
}
/*****************************************************************************/
/* Function: M_Object_Duplicate */
/* Python equivalent: Blender.Object.Duplicate */
/*****************************************************************************/
static PyObject *M_Object_Duplicate( PyObject * self, PyObject * args, PyObject *kwd )
{
int dupflag= 0; /* this a flag, passed to adduplicate() and used instead of U.dupflag sp python can set what is duplicated */
/* the following variables are bools, if set true they will modify the dupflag to pass to adduplicate() */
int mesh_dupe = 0;
int surface_dupe = 0;
int curve_dupe = 0;
int text_dupe = 0;
int metaball_dupe = 0;
int armature_dupe = 0;
int lamp_dupe = 0;
int material_dupe = 0;
int texture_dupe = 0;
int ipo_dupe = 0;
static char *kwlist[] = {"mesh", "surface", "curve",
"text", "metaball", "armature", "lamp", "material", "texture", "ipo", NULL};
if (!PyArg_ParseTupleAndKeywords(args, kwd, "|iiiiiiiiii", kwlist,
&mesh_dupe, &surface_dupe, &curve_dupe, &text_dupe, &metaball_dupe,
&armature_dupe, &lamp_dupe, &material_dupe, &texture_dupe, &ipo_dupe))
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected nothing or bool keywords 'mesh', 'surface', 'curve', 'text', 'metaball', 'armature', 'lamp' 'material', 'texture' and 'ipo' as arguments" );
/* USER_DUP_ACT for actions is not supported in the UI so dont support it here */
if (mesh_dupe) dupflag |= USER_DUP_MESH;
if (surface_dupe) dupflag |= USER_DUP_SURF;
if (curve_dupe) dupflag |= USER_DUP_CURVE;
if (text_dupe) dupflag |= USER_DUP_FONT;
if (metaball_dupe) dupflag |= USER_DUP_MBALL;
if (armature_dupe) dupflag |= USER_DUP_ARM;
if (lamp_dupe) dupflag |= USER_DUP_LAMP;
if (material_dupe) dupflag |= USER_DUP_MAT;
if (texture_dupe) dupflag |= USER_DUP_TEX;
if (ipo_dupe) dupflag |= USER_DUP_IPO;
adduplicate(2, dupflag); /* 2 is a mode with no transform and no redraw, Duplicate the current selection, context sensitive */
Py_RETURN_NONE;
}
/*****************************************************************************/
/* Function: initObject */
/*****************************************************************************/
PyObject *Object_Init( void )
{
PyObject *module, *dict;
Object_Type.ob_type = &PyType_Type;
module = Py_InitModule3( "Blender.Object", M_Object_methods,
M_Object_doc );
PyModule_AddIntConstant( module, "LOC", IPOKEY_LOC );
PyModule_AddIntConstant( module, "ROT", IPOKEY_ROT );
PyModule_AddIntConstant( module, "SIZE", IPOKEY_SIZE );
PyModule_AddIntConstant( module, "LOCROT", IPOKEY_LOCROT );
PyModule_AddIntConstant( module, "LOCROTSIZE", IPOKEY_LOCROTSIZE );
PyModule_AddIntConstant( module, "PI_STRENGTH", IPOKEY_PI_STRENGTH );
PyModule_AddIntConstant( module, "PI_FALLOFF", IPOKEY_PI_FALLOFF );
PyModule_AddIntConstant( module, "PI_SURFACEDAMP", IPOKEY_PI_SURFACEDAMP );
PyModule_AddIntConstant( module, "PI_RANDOMDAMP", IPOKEY_PI_RANDOMDAMP );
PyModule_AddIntConstant( module, "PI_PERM", IPOKEY_PI_PERM );
PyModule_AddIntConstant( module, "NONE",0 );
PyModule_AddIntConstant( module, "FORCE",PFIELD_FORCE );
PyModule_AddIntConstant( module, "VORTEX",PFIELD_VORTEX );
PyModule_AddIntConstant( module, "MAGNET",PFIELD_MAGNET );
PyModule_AddIntConstant( module, "WIND",PFIELD_WIND );
//Add SUBMODULES to the module
dict = PyModule_GetDict( module ); //borrowed
PyDict_SetItemString(dict, "Pose", Pose_Init()); //creates a *new* module
//PyDict_SetItemString(dict, "Constraint", Constraint_Init()); //creates a *new* module
return ( module );
}
/*****************************************************************************/
/* Python BPy_Object methods: */
/*****************************************************************************/
static PyObject *Object_buildParts( BPy_Object * self )
{
void build_particle_system( Object * ob );
struct Object *obj = self->object;
build_particle_system( obj );
Py_INCREF( Py_None );
return ( Py_None );
}
static PyObject *Object_clearIpo( BPy_Object * self )
{
Object *ob = self->object;
Ipo *ipo = ( Ipo * ) ob->ipo;
if( ipo ) {
ID *id = &ipo->id;
if( id->us > 0 )
id->us--;
ob->ipo = NULL;
return EXPP_incr_ret_True();
}
return EXPP_incr_ret_False(); /* no ipo found */
}
static PyObject *Object_clrParent( BPy_Object * self, PyObject * args )
{
int mode = 0;
int fast = 0;
if( !PyArg_ParseTuple( args, "|ii", &mode, &fast ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected one or two integers as arguments" ) );
}
/* Remove the link only, the object is still in the scene. */
self->object->parent = NULL;
if( mode == 2 ) {
/* Keep transform */
apply_obmat( self->object );
}
if( !fast ) {
DAG_scene_sort( G.scene );
}
Py_INCREF( Py_None );
return ( Py_None );
}
static PyObject *Object_clearTrack( BPy_Object * self, PyObject * args )
{
int mode = 0;
int fast = 0;
if( !PyArg_ParseTuple( args, "|ii", &mode, &fast ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected one or two integers as arguments" ) );
}
/* Remove the link only, the object is still in the scene. */
self->object->track = NULL;
if( mode ) {
/* Keep transform */
apply_obmat( self->object );
}
if( !fast ) {
DAG_scene_sort( G.scene );
}
Py_INCREF( Py_None );
return ( Py_None );
}
/* adds object data to a Blender object, if object->data = NULL */
int EXPP_add_obdata( struct Object *object )
{
if( object->data != NULL )
return -1;
switch ( object->type ) {
case OB_ARMATURE:
/* TODO: Do we need to add something to G? (see the OB_LAMP case) */
object->data = add_armature( );
break;
case OB_CAMERA:
/* TODO: Do we need to add something to G? (see the OB_LAMP case) */
object->data = add_camera( );
break;
case OB_CURVE:
object->data = add_curve( OB_CURVE );
G.totcurve++;
break;
case OB_LAMP:
object->data = add_lamp( );
G.totlamp++;
break;
case OB_MESH:
object->data = add_mesh( );
G.totmesh++;
break;
case OB_LATTICE:
object->data = ( void * ) add_lattice( );
object->dt = OB_WIRE;
break;
case OB_MBALL:
object->data = add_mball( );
break;
/* TODO the following types will be supported later,
be sure to update Scene_link when new types are supported
case OB_SURF:
object->data = add_curve(OB_SURF);
G.totcurve++;
break;
case OB_FONT:
object->data = add_curve(OB_FONT);
break;
case OB_WAVE:
object->data = add_wave();
break;
*/
default:
break;
}
if( !object->data )
return -1;
return 0;
}
static PyObject *Object_getData( BPy_Object *self, PyObject *args, PyObject *kwd )
{
PyObject *data_object;
Object *object = self->object;
int name_only = 0;
int mesh = 0; /* default mesh type = NMesh */
static char *kwlist[] = {"name_only", "mesh", NULL};
if (!PyArg_ParseTupleAndKeywords(args, kwd, "|ii", kwlist, &name_only, &mesh))
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected nothing or bool keyword 'name_only' as argument" );
/* if there's no obdata, try to create it */
if( object->data == NULL ) {
if( EXPP_add_obdata( object ) != 0 ) { /* couldn't create obdata */
Py_INCREF( Py_None );
return ( Py_None );
}
}
/* user wants only the name of the data object */
if (name_only) {
ID *id = object->data;
data_object = Py_BuildValue("s", id->name+2);
if (data_object) return data_object;
return EXPP_ReturnPyObjError (PyExc_MemoryError,
"could not create a string pyobject!");
}
/* user wants the data object wrapper */
data_object = NULL;
switch ( object->type ) {
case OB_ARMATURE:
data_object = PyArmature_FromArmature( object->data );
break;
case OB_CAMERA:
data_object = Camera_CreatePyObject( object->data );
break;
case OB_CURVE:
data_object = Curve_CreatePyObject( object->data );
break;
case ID_IM:
data_object = Image_CreatePyObject( object->data );
break;
case ID_IP:
data_object = Ipo_CreatePyObject( object->data );
break;
case OB_LAMP:
data_object = Lamp_CreatePyObject( object->data );
break;
case OB_LATTICE:
data_object = Lattice_CreatePyObject( object->data );
break;
case ID_MA:
break;
case OB_MESH:
if( !mesh ) /* get as NMesh (default) */
data_object = NMesh_CreatePyObject( object->data, object );
else /* else get as Mesh */
data_object = Mesh_CreatePyObject( object->data, object );
break;
case ID_OB:
data_object = Object_CreatePyObject( object->data );
break;
case ID_SCE:
break;
case ID_TXT:
data_object = Text_CreatePyObject( object->data );
break;
case OB_FONT:
data_object = Text3d_CreatePyObject( object->data );
break;
case ID_WO:
break;
default:
break;
}
if( data_object == NULL ) {
Py_INCREF( Py_None );
return ( Py_None );
} else {
return ( data_object );
}
}
static PyObject *Object_getDeltaLocation( BPy_Object * self )
{
PyObject *attr = Py_BuildValue( "fff",
self->object->dloc[0],
self->object->dloc[1],
self->object->dloc[2] );
if( attr )
return ( attr );
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object.dloc attributes" ) );
}
static PyObject *Object_getDrawMode( BPy_Object * self )
{
PyObject *attr = Py_BuildValue( "b", self->object->dtx );
if( attr )
return ( attr );
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object.drawMode attribute" ) );
}
static PyObject *Object_getAction( BPy_Object * self )
{
/*BPy_Action *py_action = NULL; */
if( !self->object->action ) {
Py_INCREF( Py_None );
return ( Py_None );
} else {
return Action_CreatePyObject( self->object->action );
}
}
#if 0
static PyObject *Object_getPose( BPy_Object * self )
{
/*BPy_Action *py_action = NULL; */
if( !self->object->pose ) {
Py_INCREF( Py_None );
return ( Py_None );
}
else
return Pose_CreatePyObject( self->object->pose );
}
#endif
static PyObject * Object_getPose(BPy_Object *self)
{
//if there is no pose will return PyNone
return PyPose_FromPose(self->object->pose, self->object->id.name+2);
}
static PyObject *Object_isSelected( BPy_Object * self )
{
Base *base;
base = FIRSTBASE;
while( base ) {
if( base->object == self->object ) {
if( base->flag & SELECT ) {
return EXPP_incr_ret_True();
} else {
return EXPP_incr_ret_False();
}
}
base = base->next;
}
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"Internal error: could not find objects selection state" ) );
}
static PyObject *Object_getDrawType( BPy_Object * self )
{
PyObject *attr = Py_BuildValue( "b", self->object->dt );
if( attr )
return ( attr );
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object.drawType attribute" ) );
}
static PyObject *Object_getEuler( BPy_Object * self )
{
float eul[3];
eul[0] = self->object->rot[0];
eul[1] = self->object->rot[1];
eul[2] = self->object->rot[2];
return ( PyObject * ) newEulerObject( eul, Py_NEW );
}
static PyObject *Object_getInverseMatrix( BPy_Object * self )
{
MatrixObject *inverse =
( MatrixObject * ) newMatrixObject( NULL, 4, 4, Py_NEW);
Mat4Invert( (float ( * )[4])*inverse->matrix, self->object->obmat );
return ( ( PyObject * ) inverse );
}
static PyObject *Object_getIpo( BPy_Object * self )
{
struct Ipo *ipo = self->object->ipo;
if( !ipo ) {
Py_INCREF( Py_None );
return Py_None;
}
return Ipo_CreatePyObject( ipo );
}
static PyObject *Object_getLocation( BPy_Object * self )
{
PyObject *attr = Py_BuildValue( "fff",
self->object->loc[0],
self->object->loc[1],
self->object->loc[2] );
if( attr )
return ( attr );
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object.loc attributes" ) );
}
static PyObject *Object_getMaterials( BPy_Object * self, PyObject * args )
{
int all = 0;
if( !PyArg_ParseTuple( args, "|i", &all ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected an int or nothing" ) );
}
return ( EXPP_PyList_fromMaterialList( self->object->mat,
self->object->totcol, all ) );
}
static PyObject *Object_getMatrix( BPy_Object * self, PyObject * args )
{
float matrix[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
char *space = "worldspace"; /* default to world */
if( !PyArg_ParseTuple( args, "|s", &space ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected a string or nothing" ) );
}
if( BLI_streq( space, "worldspace" ) ) { /* Worldspace matrix */
disable_where_script( 1 );
where_is_object( self->object );
disable_where_script( 0 );
} else if( BLI_streq( space, "localspace" ) ) { /* Localspace matrix */
object_to_mat4( self->object, (float (*)[4])matrix );
return newMatrixObject(matrix,4,4,Py_NEW);
} else if( BLI_streq( space, "old_worldspace" ) ) {
/* old behavior, prior to 2.34, check this method's doc string: */
} else {
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"wrong parameter, expected nothing or either 'worldspace' (default),\n\
'localspace' or 'old_worldspace'" ) );
}
return newMatrixObject((float*)self->object->obmat,4,4,Py_WRAP);
}
static PyObject *Object_getName( BPy_Object * self )
{
PyObject *attr = Py_BuildValue( "s", self->object->id.name + 2 );
if( attr )
return ( attr );
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get the name of the Object" ) );
}
static PyObject *Object_getParent( BPy_Object * self )
{
PyObject *attr;
if( self->object->parent == NULL )
return EXPP_incr_ret( Py_None );
attr = Object_CreatePyObject( self->object->parent );
if( attr ) {
return ( attr );
}
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object.parent attribute" ) );
}
static PyObject *Object_getParentBoneName( BPy_Object * self )
{
PyObject *attr;
if( self->object->parent == NULL )
return EXPP_incr_ret( Py_None );
if( self->object->parsubstr[0] == '\0' )
return EXPP_incr_ret( Py_None );
attr = Py_BuildValue( "s", self->object->parsubstr );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"Failed to get parent bone name" ) );
}
static PyObject *Object_getSize( BPy_Object * self )
{
PyObject *attr = Py_BuildValue( "fff",
self->object->size[0],
self->object->size[1],
self->object->size[2] );
if( attr )
return ( attr );
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object.size attributes" ) );
}
static PyObject *Object_getTimeOffset( BPy_Object * self )
{
PyObject *attr = Py_BuildValue( "f", self->object->sf );
if( attr )
return ( attr );
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object.sf attributes" ) );
}
static PyObject *Object_getTracked( BPy_Object * self )
{
PyObject *attr;
if( self->object->track == NULL )
return EXPP_incr_ret( Py_None );
attr = Object_CreatePyObject( self->object->track );
if( attr ) {
return ( attr );
}
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object.track attribute" ) );
}
static PyObject *Object_getType( BPy_Object * self )
{
switch ( self->object->type ) {
case OB_ARMATURE:
return ( Py_BuildValue( "s", "Armature" ) );
case OB_CAMERA:
return ( Py_BuildValue( "s", "Camera" ) );
case OB_CURVE:
return ( Py_BuildValue( "s", "Curve" ) );
case OB_EMPTY:
return ( Py_BuildValue( "s", "Empty" ) );
case OB_FONT:
return ( Py_BuildValue( "s", "Text" ) );
case OB_LAMP:
return ( Py_BuildValue( "s", "Lamp" ) );
case OB_LATTICE:
return ( Py_BuildValue( "s", "Lattice" ) );
case OB_MBALL:
return ( Py_BuildValue( "s", "MBall" ) );
case OB_MESH:
return ( Py_BuildValue( "s", "Mesh" ) );
case OB_SURF:
return ( Py_BuildValue( "s", "Surf" ) );
case OB_WAVE:
return ( Py_BuildValue( "s", "Wave" ) );
default:
return ( Py_BuildValue( "s", "unknown" ) );
}
}
static PyObject *Object_getBoundBox( BPy_Object * self )
{
int i;
float *vec = NULL;
PyObject *vector, *bbox;
if( !self->object->data )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"This object isn't linked to any object data (mesh, curve, etc) yet" );
if( !self->object->bb ) { /* if no ob bbox, we look in obdata */
Mesh *me;
Curve *curve;
switch ( self->object->type ) {
case OB_MESH:
me = self->object->data;
vec = (float*) mesh_get_bb(me)->vec;
break;
case OB_CURVE:
case OB_FONT:
case OB_SURF:
curve = self->object->data;
if( !curve->bb )
tex_space_curve( curve );
vec = ( float * ) curve->bb->vec;
break;
default:
Py_INCREF( Py_None );
return Py_None;
}
{ /* transform our obdata bbox by the obmat.
the obmat is 4x4 homogeneous coords matrix.
each bbox coord is xyz, so we make it homogenous
by padding it with w=1.0 and doing the matrix mult.
afterwards we divide by w to get back to xyz.
*/
/* printmatrix4( "obmat", self->object->obmat); */
float tmpvec[4]; /* tmp vector for homogenous coords math */
int i;
float *from;
bbox = PyList_New( 8 );
if( !bbox )
return EXPP_ReturnPyObjError
( PyExc_MemoryError,
"couldn't create pylist" );
for( i = 0, from = vec; i < 8; i++, from += 3 ) {
memcpy( tmpvec, from, 3 * sizeof( float ) );
tmpvec[3] = 1.0f; /* set w coord */
Mat4MulVec4fl( self->object->obmat, tmpvec );
/* divide x,y,z by w */
tmpvec[0] /= tmpvec[3];
tmpvec[1] /= tmpvec[3];
tmpvec[2] /= tmpvec[3];
#if 0
{ /* debug print stuff */
int i;
printf( "\nobj bbox transformed\n" );
for( i = 0; i < 4; ++i )
printf( "%f ", tmpvec[i] );
printf( "\n" );
}
#endif
/* because our bounding box is calculated and
does not have its own memory,
we must create vectors that allocate space */
vector = newVectorObject( NULL, 3, Py_NEW);
memcpy( ( ( VectorObject * ) vector )->vec,
tmpvec, 3 * sizeof( float ) );
PyList_SET_ITEM( bbox, i, vector );
}
}
} else { /* the ob bbox exists */
vec = ( float * ) self->object->bb->vec;
if( !vec )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't retrieve bounding box data" );
bbox = PyList_New( 8 );
if( !bbox )
return EXPP_ReturnPyObjError( PyExc_MemoryError,
"couldn't create pylist" );
/* create vectors referencing object bounding box coords */
for( i = 0; i < 8; i++ ) {
vector = newVectorObject( vec, 3, Py_WRAP );
PyList_SET_ITEM( bbox, i, vector );
vec += 3;
}
}
return bbox;
}
static PyObject *Object_makeDisplayList( BPy_Object * self )
{
Object *ob = self->object;
if( ob->type == OB_FONT )
text_to_curve( ob, 0 );
DAG_object_flush_update(G.scene, ob, OB_RECALC_DATA);
Py_INCREF( Py_None );
return Py_None;
}
static PyObject *Object_link( BPy_Object * self, PyObject * args )
{
PyObject *py_data;
ID *id;
ID *oldid;
int obj_id;
void *data = NULL;
if( !PyArg_ParseTuple( args, "O", &py_data ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected an object as argument" ) );
}
if( ArmatureObject_Check( py_data ) )
data = ( void * ) PyArmature_AsArmature((BPy_Armature*)py_data);
else if( Camera_CheckPyObject( py_data ) )
data = ( void * ) Camera_FromPyObject( py_data );
else if( Lamp_CheckPyObject( py_data ) )
data = ( void * ) Lamp_FromPyObject( py_data );
else if( Curve_CheckPyObject( py_data ) )
data = ( void * ) Curve_FromPyObject( py_data );
else if( NMesh_CheckPyObject( py_data ) ) {
data = ( void * ) NMesh_FromPyObject( py_data, self->object );
if( !data ) /* NULL means there is already an error */
return NULL;
} else if( Mesh_CheckPyObject( py_data ) )
data = ( void * ) Mesh_FromPyObject( py_data, self->object );
else if( Lattice_CheckPyObject( py_data ) )
data = ( void * ) Lattice_FromPyObject( py_data );
else if( Metaball_CheckPyObject( py_data ) )
data = ( void * ) Metaball_FromPyObject( py_data );
else if( Text3d_CheckPyObject( py_data ) )
data = ( void * ) Text3d_FromPyObject( py_data );
/* have we set data to something good? */
if( !data ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"link argument type is not supported " ) );
}
oldid = ( ID * ) self->object->data;
id = ( ID * ) data;
obj_id = MAKE_ID2( id->name[0], id->name[1] );
switch ( obj_id ) {
case ID_AR:
if( self->object->type != OB_ARMATURE ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"The 'link' object is incompatible with the base object" ) );
}
break;
case ID_CA:
if( self->object->type != OB_CAMERA ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"The 'link' object is incompatible with the base object" ) );
}
break;
case ID_LA:
if( self->object->type != OB_LAMP ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"The 'link' object is incompatible with the base object" ) );
}
break;
case ID_ME:
if( self->object->type != OB_MESH ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"The 'link' object is incompatible with the base object" ) );
}
break;
case ID_CU:
if( self->object->type != OB_CURVE && self->object->type != OB_FONT ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"The 'link' object is incompatible with the base object" ) );
}
break;
case ID_LT:
if( self->object->type != OB_LATTICE ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"The 'link' object is incompatible with the base object" ) );
}
break;
case ID_MB:
if( self->object->type != OB_MBALL ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"The 'link' object is incompatible with the base object" ) );
}
break;
default:
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"Linking this object type is not supported" ) );
}
self->object->data = data;
/* creates the curve for the text object */
if (self->object->type == OB_FONT)
text_to_curve(self->object, 0);
id_us_plus( id );
if( oldid ) {
if( oldid->us > 0 ) {
oldid->us--;
} else {
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"old object reference count below 0" );
}
}
/* make sure data and object materials are consistent */
test_object_materials( id );
return EXPP_incr_ret( Py_None );
}
static PyObject *Object_makeParentVertex( BPy_Object * self, PyObject * args )
{
PyObject *list;
PyObject *vlist;
PyObject *py_child;
PyObject *ret_val;
Object *parent;
int noninverse = 0;
int fast = 0;
int partype;
int v1, v2=0, v3=0;
int i, vlen;
/* Check if the arguments passed to makeParent are valid. */
if( !PyArg_ParseTuple( args, "OO|ii", &list, &vlist, &noninverse, &fast ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected a list of objects, a tuple of integers and one or two integers as arguments" ) );
}
if( !PySequence_Check( list ) ) {
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a list of objects" ) );
}
if (!PyTuple_Check( vlist ))
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a tuple of integers" ) );
vlen = PyTuple_Size( vlist );
switch (vlen) {
case 1:
if( !PyArg_ParseTuple( vlist, "i", &v1 ) )
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a tuple of 1 or 3 integers" ) );
if ( v1 < 0 )
return ( EXPP_ReturnPyObjError( PyExc_ValueError,
"indices must be strictly positive" ) );
partype = PARVERT1;
break;
case 3:
if( !PyArg_ParseTuple( vlist, "iii", &v1, &v2, &v3 ) )
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a tuple of 1 or 3 integers" ) );
if ( v1 < 0 || v2 < 0 || v3 < 0)
return ( EXPP_ReturnPyObjError( PyExc_ValueError,
"indices must be strictly positive" ) );
partype = PARVERT3;
break;
default:
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a tuple of 1 or 3 integers" ) );
}
parent = ( Object * ) self->object;
if (!ELEM3(parent->type, OB_MESH, OB_CURVE, OB_SURF))
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"Parent Vertex only applies to curve, mesh or surface objects" ) );
if (parent->id.us == 0)
return EXPP_ReturnPyObjError (PyExc_RuntimeError,
"object must be linked to a scene before it can become a parent");
/* Check if the PyObject passed in list is a Blender object. */
for( i = 0; i < PySequence_Length( list ); i++ ) {
py_child = PySequence_GetItem( list, i );
ret_val = internal_makeParent(parent, py_child, partype, noninverse, fast, v1, v2, v3);
Py_DECREF (py_child);
if (ret_val)
Py_DECREF(ret_val);
else {
if (!fast) /* need to sort when interupting in the middle of the list */
DAG_scene_sort( G.scene );
return NULL; /* error has been set already */
}
}
if (!fast) /* otherwise, only sort at the end */
DAG_scene_sort( G.scene );
return EXPP_incr_ret( Py_None );
}
static PyObject *Object_makeParentDeform( BPy_Object * self, PyObject * args )
{
PyObject *list;
PyObject *py_child;
PyObject *ret_val;
Object *parent;
int noninverse = 0;
int fast = 0;
int i;
/* Check if the arguments passed to makeParent are valid. */
if( !PyArg_ParseTuple( args, "O|ii", &list, &noninverse, &fast ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected a list of objects and one or two integers as arguments" ) );
}
if( !PySequence_Check( list ) ) {
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a list of objects" ) );
}
parent = ( Object * ) self->object;
if (parent->type != OB_CURVE && parent->type != OB_ARMATURE)
return ( EXPP_ReturnPyObjError( PyExc_ValueError,
"Parent Deform only applies to curve or armature objects" ) );
if (parent->id.us == 0)
return EXPP_ReturnPyObjError (PyExc_RuntimeError,
"object must be linked to a scene before it can become a parent");
/* Check if the PyObject passed in list is a Blender object. */
for( i = 0; i < PySequence_Length( list ); i++ ) {
py_child = PySequence_GetItem( list, i );
ret_val = internal_makeParent(parent, py_child, PARSKEL, noninverse, fast, 0, 0, 0);
Py_DECREF (py_child);
if (ret_val)
Py_DECREF(ret_val);
else {
if (!fast) /* need to sort when interupting in the middle of the list */
DAG_scene_sort( G.scene );
return NULL; /* error has been set already */
}
}
if (!fast) /* otherwise, only sort at the end */
DAG_scene_sort( G.scene );
return EXPP_incr_ret( Py_None );
}
static PyObject *Object_makeParent( BPy_Object * self, PyObject * args )
{
PyObject *list;
PyObject *py_child;
PyObject *ret_val;
Object *parent;
int noninverse = 0;
int fast = 0;
int i;
/* Check if the arguments passed to makeParent are valid. */
if( !PyArg_ParseTuple( args, "O|ii", &list, &noninverse, &fast ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected a list of objects and one or two integers as arguments" ) );
}
if( !PySequence_Check( list ) ) {
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a list of objects" ) );
}
parent = ( Object * ) self->object;
if (parent->id.us == 0)
return EXPP_ReturnPyObjError (PyExc_RuntimeError,
"object must be linked to a scene before it can become a parent");
/* Check if the PyObject passed in list is a Blender object. */
for( i = 0; i < PySequence_Length( list ); i++ ) {
py_child = PySequence_GetItem( list, i );
ret_val = internal_makeParent(parent, py_child, PAROBJECT, noninverse, fast, 0, 0, 0);
Py_DECREF (py_child);
if (ret_val)
Py_DECREF(ret_val);
else {
if (!fast) /* need to sort when interupting in the middle of the list */
DAG_scene_sort( G.scene );
return NULL; /* error has been set already */
}
}
if (!fast) /* otherwise, only sort at the end */
DAG_scene_sort( G.scene );
return EXPP_incr_ret( Py_None );
}
static PyObject *Object_join( BPy_Object * self, PyObject * args )
{
PyObject *list;
PyObject *py_child;
Object *parent;
Object *child;
Scene *temp_scene;
Scene *orig_scene;
Base *temp_base;
short type;
int i, ok=0, ret_value=0, list_length=0;
/* Check if the arguments passed to makeParent are valid. */
if( !PyArg_ParseTuple( args, "O", &list ) )
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a list of objects" ) );
if( !PySequence_Check( list ) )
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a list of objects" ) );
list_length = PySequence_Length( list ); /* if there are no objects to join then exit silently */
if( !list_length )
return EXPP_incr_ret( Py_None );
parent = ( Object * ) self->object;
type = parent->type;
/* Only these object types are sypported */
if (type==OB_MESH || type==OB_MESH || type==OB_CURVE || type==OB_SURF || type==OB_ARMATURE);
else
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"Base object is not a type blender can join" ) );
/* exit editmode so join can be done */
if( G.obedit )
exit_editmode( 1 );
temp_scene = add_scene( "Scene" ); /* make the new scene */
temp_scene->lay= 2097151; /* all layers on */
/* Check if the PyObject passed in list is a Blender object. */
for( i = 0; i < list_length; i++ ) {
child = NULL;
py_child = PySequence_GetItem( list, i );
if( !Object_CheckPyObject( py_child ) ) {
/* Cleanup */
free_libblock( &G.main->scene, temp_scene );
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a list of objects, one or more of the list items is not a Blender Object." ) );
} else {
/* List item is an object, is it the same type? */
child = ( Object * ) Object_FromPyObject( py_child );
if (parent->type == child->type) {
ok =1;
/* Add a new base, then link the base to the temp_scene */
temp_base = MEM_callocN( sizeof( Base ), "pynewbase" );
/*we know these types are the same, link to the temp scene for joining*/
temp_base->object = child; /* link object to the new base */
temp_base->flag |= SELECT;
temp_base->lay = 1; /*1 layer on */
BLI_addhead( &temp_scene->base, temp_base ); /* finally, link new base to scene */
/*child->id.us += 1;*/ /*Would useually increase user count but in this case its ok not to */
} else {
child->id.us -= 1; /* python object user oddness */
}
}
}
orig_scene = G.scene; /* backup our scene */
/* Add the main object into the temp_scene */
temp_base = MEM_callocN( sizeof( Base ), "pynewbase" );
temp_base->object = parent; /* link object to the new base */
temp_base->flag |= SELECT;
temp_base->lay = 1; /*1 layer on */
BLI_addhead( &temp_scene->base, temp_base ); /* finally, link new base to scene */
parent->id.us += 1;
/* all objects in the scene, set it active and the active object */
set_scene( temp_scene );
set_active_base( temp_base );
/* Do the joining now we know everythings OK. */
if(type == OB_MESH)
ret_value = join_mesh();
else if(type == OB_CURVE)
ret_value = join_curve(OB_CURVE);
else if(type == OB_SURF)
ret_value = join_curve(OB_SURF);
else if(type == OB_ARMATURE)
ret_value = join_armature();
/* May use this for correcting object user counts later on */
/*
if (!ret_value) {
temp_base = temp_scene->base.first;
while( base ) {
object = base->object;
object->id.us +=1
base = base->next;
}
}*/
/* remove old scene */
set_scene( orig_scene );
free_libblock( &G.main->scene, temp_scene );
/* no objects were of the correct type, return None */
if (!ok)
return EXPP_incr_ret( Py_None );
/* If the join failed then raise an error */
if (!ret_value)
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"Blender failed to join the objects, this is not a script error\n\
Please add exception handeling to your script with a RuntimeError exception\n\
letting the user know that their data could not be joined." ) );
return EXPP_incr_ret( Py_None );
}
static PyObject *internal_makeParent(Object *parent, PyObject *py_child,
int partype, /* parenting type */
int noninverse, int fast, /* parenting arguments */
int v1, int v2, int v3 /* for vertex parent */
)
{
Object *child = NULL;
if( Object_CheckPyObject( py_child ) )
child = ( Object * ) Object_FromPyObject( py_child );
if( child == NULL ) {
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"Object Type expected" ) );
}
if( test_parent_loop( parent, child ) ) {
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"parenting loop detected - parenting failed" ) );
}
if (partype == PARSKEL && child->type != OB_MESH)
child->partype = PAROBJECT;
else
child->partype = (short)partype;
if (partype == PARVERT3) {
child->par1 = v1;
child->par2 = v2;
child->par3 = v3;
}
else if (partype == PARVERT1) {
child->par1 = v1;
}
child->parent = parent;
//py_obj_child = (BPy_Object *) py_child;
if( noninverse == 1 ) {
Mat4One(child->parentinv);
/* Parent inverse = unity */
child->loc[0] = 0.0;
child->loc[1] = 0.0;
child->loc[2] = 0.0;
} else {
what_does_parent( child );
Mat4Invert( child->parentinv, workob.obmat );
clear_workob();
}
if( !fast ) {
child->recalc |= OB_RECALC_OB;
}
return EXPP_incr_ret( Py_None );
}
static PyObject *Object_materialUsage( void )
{
return EXPP_ReturnPyObjError( PyExc_NotImplementedError,
"materialUsage: not yet implemented" );
}
static PyObject *Object_setDeltaLocation( BPy_Object * self, PyObject * args )
{
float dloc1;
float dloc2;
float dloc3;
int status;
if( PyObject_Length( args ) == 3 )
status = PyArg_ParseTuple( args, "fff", &dloc1, &dloc2,
&dloc3 );
else
status = PyArg_ParseTuple( args, "(fff)", &dloc1, &dloc2,
&dloc3 );
if( !status )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected list argument of 3 floats" );
self->object->dloc[0] = dloc1;
self->object->dloc[1] = dloc2;
self->object->dloc[2] = dloc3;
/* since we have messed with object, we need to flag for DAG recalc */
self->object->recalc |= OB_RECALC_OB;
Py_INCREF( Py_None );
return ( Py_None );
}
static PyObject *Object_setDrawMode( BPy_Object * self, PyObject * args )
{
char dtx;
if( !PyArg_ParseTuple( args, "b", &dtx ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected an integer as argument" ) );
}
self->object->dtx = dtx;
/* since we have messed with object, we need to flag for DAG recalc */
self->object->recalc |= OB_RECALC_OB;
Py_INCREF( Py_None );
return ( Py_None );
}
static PyObject *Object_setDrawType( BPy_Object * self, PyObject * args )
{
char dt;
if( !PyArg_ParseTuple( args, "b", &dt ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected an integer as argument" ) );
}
self->object->dt = dt;
/* since we have messed with object, we need to flag for DAG recalc */
self->object->recalc |= OB_RECALC_OB;
Py_INCREF( Py_None );
return ( Py_None );
}
static PyObject *Object_setEuler( BPy_Object * self, PyObject * args )
{
float rot1 = 0.0f;
float rot2 = 0.0f;
float rot3 = 0.0f;
int status = 0; /* failure */
PyObject *ob;
/*
args is either a tuple/list of floats or an euler.
for backward compatibility, we also accept 3 floats.
*/
/* do we have 3 floats? */
if( PyObject_Length( args ) == 3 ) {
status = PyArg_ParseTuple( args, "fff", &rot1, &rot2, &rot3 );
} else { //test to see if it's a list or a euler
if( PyArg_ParseTuple( args, "O", &ob ) ) {
if( EulerObject_Check( ob ) ) {
rot1 = ( ( EulerObject * ) ob )->eul[0];
rot2 = ( ( EulerObject * ) ob )->eul[1];
rot3 = ( ( EulerObject * ) ob )->eul[2];
status = 1; /* success! */
} else if( PySequence_Check( ob ) )
status = PyArg_ParseTuple( args, "(fff)",
&rot1, &rot2,
&rot3 );
else { /* not an euler or tuple */
/* python C api doc says don't decref this */
/*Py_DECREF (ob); */
status = 0; /* false */
}
} else { /* arg parsing failed */
status = 0;
}
}
if( !status ) /* parsing args failed */
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected euler or list/tuple of 3 floats " ) );
self->object->rot[0] = rot1;
self->object->rot[1] = rot2;
self->object->rot[2] = rot3;
/* since we have messed with object, we need to flag for DAG recalc */
self->object->recalc |= OB_RECALC_OB;
Py_INCREF( Py_None );
return ( Py_None );
}
static PyObject *Object_setMatrix( BPy_Object * self, PyObject * args )
{
MatrixObject *mat;
int x, y;
if( !PyArg_ParseTuple( args, "O!", &matrix_Type, &mat ) )
return EXPP_ReturnPyObjError
( PyExc_TypeError,
"expected matrix object as argument" );
if( mat->rowSize == 4 && mat->colSize == 4 ) {
for( x = 0; x < 4; x++ ) {
for( y = 0; y < 4; y++ ) {
self->object->obmat[x][y] = mat->matrix[x][y];
}
}
} else if( mat->rowSize == 3 && mat->colSize == 3 ) {
for( x = 0; x < 3; x++ ) {
for( y = 0; y < 3; y++ ) {
self->object->obmat[x][y] = mat->matrix[x][y];
}
}
/* if a 3x3 matrix, clear the fourth row/column */
for( x = 0; x < 3; x++ )
self->object->obmat[x][3] = self->object->obmat[3][x] = 0.0;
self->object->obmat[3][3] = 1.0;
} else
return EXPP_ReturnPyObjError ( PyExc_ValueError,
"expected 3x3 or 4x4 matrix" );
apply_obmat( self->object );
/* since we have messed with object, we need to flag for DAG recalc */
self->object->recalc |= OB_RECALC_OB;
Py_INCREF( Py_None );
return ( Py_None );
}
static PyObject *Object_setIpo( BPy_Object * self, PyObject * args )
{
PyObject *pyipo = 0;
Ipo *ipo = NULL;
Ipo *oldipo;
if( !PyArg_ParseTuple( args, "O!", &Ipo_Type, &pyipo ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected Ipo as argument" );
ipo = Ipo_FromPyObject( pyipo );
if( !ipo )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"null ipo!" );
if( ipo->blocktype != ID_OB )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"this ipo is not an object ipo" );
oldipo = self->object->ipo;
if( oldipo ) {
ID *id = &oldipo->id;
if( id->us > 0 )
id->us--;
}
( ( ID * ) & ipo->id )->us++;
self->object->ipo = ipo;
/* since we have messed with object, we need to flag for DAG recalc */
self->object->recalc |= OB_RECALC_OB;
Py_INCREF( Py_None );
return Py_None;
}
/*
* Object_insertIpoKey()
* inserts Object IPO key for LOC, ROT, SIZE, LOCROT, or LOCROTSIZE
* Note it also inserts actions!
*/
static PyObject *Object_insertIpoKey( BPy_Object * self, PyObject * args )
{
Object *ob= self->object;
int key = 0;
char *actname= NULL;
if( !PyArg_ParseTuple( args, "i", &( key ) ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected int argument" ) );
if(ob->ipoflag & OB_ACTION_OB)
actname= "Object";
if (key == IPOKEY_LOC || key == IPOKEY_LOCROT || key == IPOKEY_LOCROTSIZE){
insertkey((ID *)ob, ID_OB, actname, NULL,OB_LOC_X);
insertkey((ID *)ob, ID_OB, actname, NULL,OB_LOC_Y);
insertkey((ID *)ob, ID_OB, actname, NULL,OB_LOC_Z);
}
if (key == IPOKEY_ROT || key == IPOKEY_LOCROT || key == IPOKEY_LOCROTSIZE){
insertkey((ID *)ob, ID_OB, actname, NULL,OB_ROT_X);
insertkey((ID *)ob, ID_OB, actname, NULL,OB_ROT_Y);
insertkey((ID *)ob, ID_OB, actname, NULL,OB_ROT_Z);
}
if (key == IPOKEY_SIZE || key == IPOKEY_LOCROTSIZE ){
insertkey((ID *)ob, ID_OB, actname, NULL,OB_SIZE_X);
insertkey((ID *)ob, ID_OB, actname, NULL,OB_SIZE_Y);
insertkey((ID *)ob, ID_OB, actname, NULL,OB_SIZE_Z);
}
if (key == IPOKEY_PI_STRENGTH ){
insertkey((ID *)ob, ID_OB, actname, NULL, OB_PD_FSTR);
}
if (key == IPOKEY_PI_FALLOFF ){
insertkey((ID *)ob, ID_OB, actname, NULL, OB_PD_FFALL);
}
if (key == IPOKEY_PI_SURFACEDAMP ){
insertkey((ID *)ob, ID_OB, actname, NULL, OB_PD_SDAMP);
}
if (key == IPOKEY_PI_RANDOMDAMP ){
insertkey((ID *)ob, ID_OB, actname, NULL, OB_PD_RDAMP);
}
if (key == IPOKEY_PI_PERM ){
insertkey((ID *)ob, ID_OB, actname, NULL, OB_PD_PERM);
}
allspace(REMAKEIPO, 0);
EXPP_allqueue(REDRAWIPO, 0);
EXPP_allqueue(REDRAWVIEW3D, 0);
EXPP_allqueue(REDRAWACTION, 0);
EXPP_allqueue(REDRAWNLA, 0);
return EXPP_incr_ret( Py_None );
}
/*
* Object_insertPoseKey()
* inserts a Action Pose key from a given pose (sourceaction, frame) to the active action to a given framenum
*/
static PyObject *Object_insertPoseKey( BPy_Object * self, PyObject * args )
{
Object *ob= self->object;
BPy_Action *sourceact;
char *chanName;
int actframe;
//for debug prints
bActionChannel *achan;
bPoseChannel *pchan;
/* for doing the time trick, similar to editaction bake_action_with_client() */
int oldframe;
int curframe;
if( !PyArg_ParseTuple( args, "O!sii", &Action_Type, &sourceact, &chanName, &actframe, &curframe ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "expects an action to copy poses from, a string for chan/bone name, an int argument for frame-to-extract from the action and finally another int for the frame where to put the new key in the active object.action" ) );
printf("%s %s %d %d, ", sourceact->action->id.name, chanName, actframe, curframe);
printf("%s\n", ob->action->id.name);
/* */
extract_pose_from_action(ob->pose, sourceact->action, actframe);
oldframe = G.scene->r.cfra;
G.scene->r.cfra = curframe;
//debug
pchan = get_pose_channel(ob->pose, chanName);
printquat(pchan->name, pchan->quat);
achan = get_action_channel(sourceact->action, chanName);
if(achan->ipo) {
IpoCurve* icu;
for (icu = achan->ipo->curve.first; icu; icu=icu->next){
printvecf("bezt", icu->bezt->vec[1]);
}
}
insertkey(&ob->id, ID_PO, chanName, NULL, AC_LOC_X);
insertkey(&ob->id, ID_PO, chanName, NULL, AC_LOC_Y);
insertkey(&ob->id, ID_PO, chanName, NULL, AC_LOC_Z);
insertkey(&ob->id, ID_PO, chanName, NULL, AC_QUAT_X);
insertkey(&ob->id, ID_PO, chanName, NULL, AC_QUAT_Y);
insertkey(&ob->id, ID_PO, chanName, NULL, AC_QUAT_Z);
insertkey(&ob->id, ID_PO, chanName, NULL, AC_QUAT_W);
insertkey(&ob->id, ID_PO, chanName, NULL, AC_SIZE_X);
insertkey(&ob->id, ID_PO, chanName, NULL, AC_SIZE_Y);
insertkey(&ob->id, ID_PO, chanName, NULL, AC_SIZE_Z);
/*
for (achan = ob->action->chanbase.first; achan; achan=achan->next) {
if(achan->ipo) {
IpoCurve* icu;
for (icu = achan->ipo->curve.first; icu; icu=icu->next){
printf("result: %f %f %f %f", icu->bp->vec[0], icu->bp->vec[1], icu->bp->vec[2], icu->bp->vec[3]);
}
}
}
*/
G.scene->r.cfra = oldframe;
allspace(REMAKEIPO, 0);
EXPP_allqueue(REDRAWIPO, 0);
EXPP_allqueue(REDRAWVIEW3D, 0);
EXPP_allqueue(REDRAWACTION, 0);
EXPP_allqueue(REDRAWNLA, 0);
/* restore, but now with the new action in place */
//extract_pose_from_action(ob->pose, ob->action, G.scene->r.cfra);
//where_is_pose(ob);
allqueue(REDRAWACTION, 1);
return EXPP_incr_ret( Py_None );
}
static PyObject *Object_insertCurrentPoseKey( BPy_Object * self, PyObject * args )
{
Object *ob= self->object;
//bPoseChannel *pchan; //for iterating over all channels in object->pose
char *chanName;
/* for doing the time trick, similar to editaction bake_action_with_client() */
int oldframe;
int curframe;
if( !PyArg_ParseTuple( args, "si", &chanName, &curframe ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "expected chan/bone name, and a time (int) argument" ) );
oldframe = G.scene->r.cfra;
G.scene->r.cfra = curframe;
insertkey(&ob->id, ID_PO, chanName, NULL, AC_LOC_X);
insertkey(&ob->id, ID_PO, chanName, NULL, AC_LOC_Y);
insertkey(&ob->id, ID_PO, chanName, NULL, AC_LOC_Z);
insertkey(&ob->id, ID_PO, chanName, NULL, AC_QUAT_X);
insertkey(&ob->id, ID_PO, chanName, NULL, AC_QUAT_Y);
insertkey(&ob->id, ID_PO, chanName, NULL, AC_QUAT_Z);
insertkey(&ob->id, ID_PO, chanName, NULL, AC_QUAT_W);
insertkey(&ob->id, ID_PO, chanName, NULL, AC_SIZE_X);
insertkey(&ob->id, ID_PO, chanName, NULL, AC_SIZE_Y);
insertkey(&ob->id, ID_PO, chanName, NULL, AC_SIZE_Z);
G.scene->r.cfra = oldframe;
allspace(REMAKEIPO, 0);
EXPP_allqueue(REDRAWIPO, 0);
EXPP_allqueue(REDRAWVIEW3D, 0);
EXPP_allqueue(REDRAWACTION, 0);
EXPP_allqueue(REDRAWNLA, 0);
/* restore */
extract_pose_from_action(ob->pose, ob->action, G.scene->r.cfra);
where_is_pose(ob);
allqueue(REDRAWACTION, 1);
return EXPP_incr_ret( Py_None );
}
static PyObject *Object_insertMatrixKey( BPy_Object * self, PyObject * args )
{
Object *ob= self->object;
char *chanName;
/* for doing the time trick, similar to editaction bake_action_with_client() */
int oldframe;
int curframe;
/* for copying the current object/bone matrices to the new action */
float localQuat[4];
float tmat[4][4], startpos[4][4];
//to get the matrix
bArmature *arm;
Bone *bone;
if( !PyArg_ParseTuple( args, "si", &chanName, &curframe ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "expects a string for chan/bone name and an int for the frame where to put the new key" ) );
oldframe = G.scene->r.cfra;
G.scene->r.cfra = curframe;
//just to get the armaturespace mat
arm = get_armature(ob);
for (bone = arm->bonebase.first; bone; bone=bone->next)
if (bone->name == chanName) break;
//XXX does not check for if-not-found
where_is_object(ob);
world2bonespace(tmat, ob->obmat, bone->arm_mat, startpos);
Mat4ToQuat(tmat, localQuat);
insertmatrixkey(&ob->id, ID_PO, chanName, NULL, AC_LOC_X, tmat[3][0]);
insertmatrixkey(&ob->id, ID_PO, chanName, NULL, AC_LOC_Y, tmat[3][1]);
insertmatrixkey(&ob->id, ID_PO, chanName, NULL, AC_LOC_Z, tmat[3][2]);
insertmatrixkey(&ob->id, ID_PO, chanName, NULL, AC_QUAT_W, localQuat[0]);
insertmatrixkey(&ob->id, ID_PO, chanName, NULL, AC_QUAT_X, localQuat[1]);
insertmatrixkey(&ob->id, ID_PO, chanName, NULL, AC_QUAT_Y, localQuat[2]);
insertmatrixkey(&ob->id, ID_PO, chanName, NULL, AC_QUAT_Z, localQuat[3]);
//insertmatrixkey(&ob->id, ID_PO, chanName, NULL, AC_SIZE_X, );
//insertmatrixkey(&ob->id, ID_PO, chanName, NULL, AC_SIZE_Y);
//insertmatrixkey(&ob->id, ID_PO, chanName, NULL, AC_SIZE_Z);
allspace(REMAKEIPO, 0);
EXPP_allqueue(REDRAWIPO, 0);
EXPP_allqueue(REDRAWVIEW3D, 0);
EXPP_allqueue(REDRAWACTION, 0);
EXPP_allqueue(REDRAWNLA, 0);
G.scene->r.cfra = oldframe;
/* restore, but now with the new action in place */
extract_pose_from_action(ob->pose, ob->action, G.scene->r.cfra);
where_is_pose(ob);
allqueue(REDRAWACTION, 1);
return EXPP_incr_ret( Py_None );
}
static PyObject *Object_bake_to_action( BPy_Object * self, PyObject * args )
{
/* for doing the time trick, similar to editaction bake_action_with_client() */
//int oldframe;
//int curframe;
//if( !PyArg_ParseTuple( args, "i", &curframe ) )
// return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "expects an int for the frame where to put the new key" ) );
//oldframe = G.scene->r.cfra;
//G.scene->r.cfra = curframe;
bake_all_to_action(); //ob);
//G.scene->r.cfra = oldframe;
return EXPP_incr_ret( Py_None );
}
static PyObject *Object_setConstraintInfluenceForBone( BPy_Object * self, PyObject * args ) {
char *boneName, *constName;
float influence;
IpoCurve *icu;
if( !PyArg_ParseTuple( args, "ssf", &boneName, &constName, &influence ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "expects: bonename, constraintname, influenceval" ) );
icu = verify_ipocurve((ID *)self->object, ID_CO, boneName, constName, CO_ENFORCE);
insert_vert_ipo(icu, CFRA, influence);
Py_INCREF( Py_None );
return ( Py_None );
}
static PyObject *Object_copyNLA( BPy_Object * self, PyObject * args ) {
BPy_Object *bpy_fromob;
if( !PyArg_ParseTuple( args, "O", &bpy_fromob ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError, "requires a Blender Object to copy NLA strips from." ) );
copy_nlastrips(&self->object->nlastrips, &bpy_fromob->object->nlastrips);
Py_INCREF( Py_None );
return ( Py_None );
}
static PyObject *Object_convertActionToStrip( BPy_Object * self ) {
//when BPY gets a Strip type, make this to return the created strip.
convert_action_to_strip(self->object);
return EXPP_incr_ret_True (); //figured that True is closer to a Strip than None..
}
static PyObject *Object_setLocation( BPy_Object * self, PyObject * args )
{
float loc1;
float loc2;
float loc3;
int status;
if( PyObject_Length( args ) == 3 )
status = PyArg_ParseTuple( args, "fff", &loc1, &loc2, &loc3 );
else
status = PyArg_ParseTuple( args, "(fff)", &loc1, &loc2,
&loc3 );
if( !status )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected list argument of 3 floats" );
self->object->loc[0] = loc1;
self->object->loc[1] = loc2;
self->object->loc[2] = loc3;
/* since we have messed with object, we need to flag for DAG recalc */
self->object->recalc |= OB_RECALC_OB;
DAG_object_flush_update(G.scene, self->object, OB_RECALC_DATA);
Py_INCREF( Py_None );
return ( Py_None );
}
static PyObject *Object_setMaterials( BPy_Object * self, PyObject * args )
{
PyObject *list;
int len;
int i;
Material **matlist = NULL;
if (!self->object->data)
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"object must be linked to object data (e.g. to a mesh) first" );
if( !PyArg_ParseTuple( args, "O!", &PyList_Type, &list ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a list of materials (None's also accepted) as argument" );
len = PyList_Size(list);
/* Object_getMaterials can return '[]' (zero-length list), so that must
* also be accepted by this method for
* ob2.setMaterials(ob1.getMaterials()) to always work.
* In other words, list can be '[]' and so len can be zero. */
if (len > 0) {
if( len > MAXMAT )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"list must have from 1 up to 16 materials" );
matlist = EXPP_newMaterialList_fromPyList( list );
if( !matlist ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"material list must be a list of valid materials!" ) );
}
}
if( self->object->mat )
EXPP_releaseMaterialList( self->object->mat, self->object->totcol );
/* Increase the user count on all materials */
for( i = 0; i < len; i++ ) {
if( matlist[i] )
id_us_plus( ( ID * ) matlist[i] );
}
self->object->mat = matlist;
self->object->totcol = (char)len;
self->object->actcol = (char)len;
switch ( self->object->type ) {
case OB_CURVE: /* fall through */
case OB_FONT: /* fall through */
case OB_MESH: /* fall through */
case OB_MBALL: /* fall through */
case OB_SURF:
EXPP_synchronizeMaterialLists( self->object );
break;
default:
break;
}
/* since we have messed with object, we need to flag for DAG recalc */
self->object->recalc |= OB_RECALC_OB;
return EXPP_incr_ret( Py_None );
}
static PyObject *Object_setName( BPy_Object * self, PyObject * args )
{
char *name;
char buf[21];
if( !PyArg_ParseTuple( args, "s", &name ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected a String as argument" ) );
}
PyOS_snprintf( buf, sizeof( buf ), "%s", name );
rename_id( &self->object->id, buf );
Py_INCREF( Py_None );
return ( Py_None );
}
static PyObject *Object_setSize( BPy_Object * self, PyObject * args )
{
float sizex;
float sizey;
float sizez;
int status;
if( PyObject_Length( args ) == 3 )
status = PyArg_ParseTuple( args, "fff", &sizex, &sizey,
&sizez );
else
status = PyArg_ParseTuple( args, "(fff)", &sizex, &sizey,
&sizez );
if( !status )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected list argument of 3 floats" );
self->object->size[0] = sizex;
self->object->size[1] = sizey;
self->object->size[2] = sizez;
/* since we have messed with object, we need to flag for DAG recalc */
self->object->recalc |= OB_RECALC_OB;
Py_INCREF( Py_None );
return ( Py_None );
}
static PyObject *Object_setTimeOffset( BPy_Object * self, PyObject * args )
{
float newTimeOffset;
if( !PyArg_ParseTuple( args, "f", &newTimeOffset ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected a float as argument" ) );
}
self->object->sf = newTimeOffset;
Py_INCREF( Py_None );
return ( Py_None );
}
static PyObject *Object_makeTrack( BPy_Object * self, PyObject * args )
{
BPy_Object *tracked = NULL;
Object *ob = self->object;
int fast = 0;
if( !PyArg_ParseTuple( args, "O!|i", &Object_Type, &tracked, &fast ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected an object and optionally also an int as arguments." );
ob->track = tracked->object;
if( !fast )
DAG_scene_sort( G.scene );
return EXPP_incr_ret( Py_None );
}
static PyObject *Object_shareFrom( BPy_Object * self, PyObject * args )
{
BPy_Object *object;
ID *id;
ID *oldid;
if( !PyArg_ParseTuple( args, "O", &object ) ) {
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected an object argument" );
}
if( !Object_CheckPyObject( ( PyObject * ) object ) ) {
return EXPP_ReturnPyObjError( PyExc_TypeError,
"first argument is not of type 'Object'" );
}
if( self->object->type != object->object->type ) {
return EXPP_ReturnPyObjError( PyExc_TypeError,
"objects are not of same data type" );
}
switch ( self->object->type ) {
case OB_MESH:
case OB_LAMP:
case OB_CAMERA: /* we can probably add the other types, too */
case OB_ARMATURE:
case OB_CURVE:
case OB_SURF:
case OB_LATTICE:
oldid = ( ID * ) self->object->data;
id = ( ID * ) object->object->data;
self->object->data = object->object->data;
if( self->object->type == OB_MESH && id ) {
self->object->totcol = 0;
EXPP_synchronizeMaterialLists( self->object );
}
id_us_plus( id );
if( oldid ) {
if( oldid->us > 0 ) {
oldid->us--;
} else {
return ( EXPP_ReturnPyObjError
( PyExc_RuntimeError,
"old object reference count below 0" ) );
}
}
Py_INCREF( Py_None );
return ( Py_None );
default:
return EXPP_ReturnPyObjError( PyExc_TypeError,
"type not supported" );
}
}
static PyObject *Object_Select( BPy_Object * self, PyObject * args )
{
Base *base;
int sel;
base = FIRSTBASE;
if( !PyArg_ParseTuple( args, "i", &sel ) )
return EXPP_ReturnPyObjError
( PyExc_TypeError, "expected an integer, 0 or 1" );
while( base ) {
if( base->object == self->object ) {
if( sel == 1 ) {
base->flag |= SELECT;
self->object->flag = (short)base->flag;
set_active_base( base );
} else {
base->flag &= ~SELECT;
self->object->flag = (short)base->flag;
}
break;
}
base = base->next;
}
countall( );
Py_INCREF( Py_None );
return ( Py_None );
}
static PyObject *Object_getAllProperties( BPy_Object * self )
{
PyObject *prop_list;
bProperty *prop = NULL;
prop_list = PyList_New( 0 );
prop = self->object->prop.first;
while( prop ) {
PyList_Append( prop_list, Property_CreatePyObject( prop ) );
prop = prop->next;
}
return prop_list;
}
static PyObject *Object_getProperty( BPy_Object * self, PyObject * args )
{
char *prop_name = NULL;
bProperty *prop = NULL;
PyObject *py_prop = Py_None;
if( !PyArg_ParseTuple( args, "s", &prop_name ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected a string" ) );
}
prop = get_property( self->object, prop_name );
if( prop ) {
py_prop = Property_CreatePyObject( prop );
} else {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"couldn't find the property...." ) );
}
return py_prop;
}
static PyObject *Object_addProperty( BPy_Object * self, PyObject * args )
{
bProperty *prop = NULL;
char *prop_name = NULL;
PyObject *prop_data = Py_None;
char *prop_type = NULL;
short type = -1;
BPy_Property *py_prop = NULL;
int argslen = PyObject_Length( args );
if( argslen == 3 || argslen == 2 ) {
if( !PyArg_ParseTuple
( args, "sO|s", &prop_name, &prop_data, &prop_type ) ) {
return ( EXPP_ReturnPyObjError
( PyExc_AttributeError,
"unable to get string, data, and optional string" ) );
}
} else if( argslen == 1 ) {
if( !PyArg_ParseTuple( args, "O!", &property_Type, &py_prop ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"unable to get Property" ) );
}
if( py_prop->property != NULL ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"Property is already added to an object" ) );
}
} else {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected 1,2 or 3 arguments" ) );
}
//parse property type
if( !py_prop ) {
if( prop_type ) {
if( BLI_streq( prop_type, "BOOL" ) )
type = PROP_BOOL;
else if( BLI_streq( prop_type, "INT" ) )
type = PROP_INT;
else if( BLI_streq( prop_type, "FLOAT" ) )
type = PROP_FLOAT;
else if( BLI_streq( prop_type, "TIME" ) )
type = PROP_TIME;
else if( BLI_streq( prop_type, "STRING" ) )
type = PROP_STRING;
else
return ( EXPP_ReturnPyObjError
( PyExc_RuntimeError,
"BOOL, INT, FLOAT, TIME or STRING expected" ) );
} else {
//use the default
if( PyInt_Check( prop_data ) )
type = PROP_INT;
else if( PyFloat_Check( prop_data ) )
type = PROP_FLOAT;
else if( PyString_Check( prop_data ) )
type = PROP_STRING;
}
} else {
type = py_prop->type;
}
//initialize a new bProperty of the specified type
prop = new_property( type );
//parse data
if( !py_prop ) {
BLI_strncpy( prop->name, prop_name, 32 );
if( PyInt_Check( prop_data ) ) {
*( ( int * ) &prop->data ) =
( int ) PyInt_AsLong( prop_data );
} else if( PyFloat_Check( prop_data ) ) {
*( ( float * ) &prop->data ) =
( float ) PyFloat_AsDouble( prop_data );
} else if( PyString_Check( prop_data ) ) {
BLI_strncpy( prop->poin,
PyString_AsString( prop_data ),
MAX_PROPSTRING );
}
} else {
py_prop->property = prop;
if( !updateProperyData( py_prop ) ) {
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"Could not update property data - error" ) );
}
}
//add to property listbase for the object
BLI_addtail( &self->object->prop, prop );
return EXPP_incr_ret( Py_None );
}
static PyObject *Object_removeProperty( BPy_Object * self, PyObject * args )
{
char *prop_name = NULL;
BPy_Property *py_prop = NULL;
bProperty *prop = NULL;
// we have property and no optional arg
if( !PyArg_ParseTuple( args, "O!", &property_Type, &py_prop ) ) {
if( !PyArg_ParseTuple( args, "s", &prop_name ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected a Property or a string" ) );
}
}
//remove the link, free the data, and update the py struct
if( py_prop ) {
BLI_remlink( &self->object->prop, py_prop->property );
if( updatePyProperty( py_prop ) ) {
free_property( py_prop->property );
py_prop->property = NULL;
}
} else {
prop = get_property( self->object, prop_name );
if( prop ) {
BLI_remlink( &self->object->prop, prop );
free_property( prop );
}
}
return EXPP_incr_ret( Py_None );
}
static PyObject *Object_removeAllProperties( BPy_Object * self )
{
free_properties( &self->object->prop );
return EXPP_incr_ret( Py_None );
}
static PyObject *Object_copyAllPropertiesTo( BPy_Object * self,
PyObject * args )
{
PyObject *dest = Py_None;
bProperty *prop = NULL;
bProperty *propn = NULL;
if( !PyArg_ParseTuple( args, "O!", &Object_Type, &dest ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected an Object" ) );
}
//make a copy of all it's properties
prop = self->object->prop.first;
while( prop ) {
propn = copy_property( prop );
BLI_addtail( &( ( BPy_Object * ) dest )->object->prop, propn );
prop = prop->next;
}
return EXPP_incr_ret( Py_None );
}
/* obj.addScriptLink */
static PyObject *Object_addScriptLink( BPy_Object * self, PyObject * args )
{
Object *obj = self->object;
ScriptLink *slink = NULL;
slink = &( obj )->scriptlink;
return EXPP_addScriptLink( slink, args, 0 );
}
/* obj.clearScriptLinks */
static PyObject *Object_clearScriptLinks( BPy_Object * self, PyObject * args )
{
Object *obj = self->object;
ScriptLink *slink = NULL;
slink = &( obj )->scriptlink;
return EXPP_clearScriptLinks( slink, args );
}
/* obj.getScriptLinks */
static PyObject *Object_getScriptLinks( BPy_Object * self, PyObject * args )
{
Object *obj = self->object;
ScriptLink *slink = NULL;
PyObject *ret = NULL;
slink = &( obj )->scriptlink;
ret = EXPP_getScriptLinks( slink, args, 0 );
if( ret )
return ret;
else
return NULL;
}
static PyObject *Object_getDupliVerts ( BPy_Object * self ) {
if (self->object->transflag & OB_DUPLIVERTS)
return EXPP_incr_ret_True ();
else
return EXPP_incr_ret_False();
}
static PyObject *Object_setDupliVerts ( BPy_Object * self, PyObject * args ) {
int setting= 0;
if( !PyArg_ParseTuple( args, "i", &setting ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected a int, 0/1 for True/False") );
}
if (self && self->object) {
if (setting)
self->object->transflag |= OB_DUPLIVERTS;
else
self->object->transflag &= ~OB_DUPLIVERTS;
}
return Py_None;
}
static PyObject *Object_getDupliFrames ( BPy_Object * self ) {
if (self->object->transflag & OB_DUPLIFRAMES)
return EXPP_incr_ret_True ();
else
return EXPP_incr_ret_False();
}
static PyObject *Object_setDupliFrames ( BPy_Object * self, PyObject * args ) {
int setting= 0;
if( !PyArg_ParseTuple( args, "i", &setting ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected a int, 0/1 for True/False") );
}
if (self && self->object) {
if (setting)
self->object->transflag |= OB_DUPLIFRAMES;
else
self->object->transflag &= ~OB_DUPLIFRAMES;
}
return Py_None;
}
static PyObject *Object_getDupliGroup ( BPy_Object * self ) {
if (self->object->transflag & OB_DUPLIGROUP)
return EXPP_incr_ret_True ();
else
return EXPP_incr_ret_False();
}
static PyObject *Object_setDupliGroup ( BPy_Object * self, PyObject * args ) {
int setting= 0;
if( !PyArg_ParseTuple( args, "i", &setting ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected a int, 0/1 for True/False") );
}
if (self && self->object) {
if (setting)
self->object->transflag |= OB_DUPLIGROUP;
else
self->object->transflag &= ~OB_DUPLIGROUP;
}
return Py_None;
}
static PyObject *Object_getDupliRot ( BPy_Object * self ) {
if (self->object->transflag & OB_DUPLIROT)
return EXPP_incr_ret_True ();
else
return EXPP_incr_ret_False();
}
static PyObject *Object_setDupliRot ( BPy_Object * self, PyObject * args ) {
int setting= 0;
if( !PyArg_ParseTuple( args, "i", &setting ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected a int, 0/1 for True/False") );
}
if (self && self->object) {
if (setting)
self->object->transflag |= OB_DUPLIROT;
else
self->object->transflag &= ~OB_DUPLIROT;
}
return Py_None;
}
static PyObject *Object_getDupliNoSpeed ( BPy_Object * self ) {
if (self->object->transflag & OB_DUPLINOSPEED)
return EXPP_incr_ret_True ();
else
return EXPP_incr_ret_False();
}
static PyObject *Object_setDupliNoSpeed ( BPy_Object * self, PyObject * args ) {
int setting= 0;
if( !PyArg_ParseTuple( args, "i", &setting ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected a int, 0/1 for True/False") );
}
if (self && self->object) {
if (setting)
self->object->transflag |= OB_DUPLINOSPEED;
else
self->object->transflag &= ~OB_DUPLINOSPEED;
}
return Py_None;
}
static PyObject *Object_getDupliObjects ( BPy_Object * self )
{
PyObject *dupli_objects_list= PyList_New( 0 );
Object *ob= self->object;
Scene *sce= G.scene;
DupliObject *dob;
ListBase *lb;
int index=0;
if(ob->transflag & OB_DUPLI) {
/* before make duplis, update particle for current frame */
if(ob->transflag & OB_DUPLIVERTS) {
PartEff *paf= give_parteff(ob);
if(paf) {
if(paf->flag & PAF_ANIMATED) build_particle_system(ob);
}
}
if(ob->type!=OB_MBALL) {
lb= object_duplilist(sce, ob);
dupli_objects_list= PyList_New( BLI_countlist(lb)-1 );
if( !dupli_objects_list )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyList_New() failed" );
dob = lb->first;
while(dob) {
PyList_SetItem( dupli_objects_list, index,
Py_BuildValue( "(OO)",
Object_CreatePyObject(dob->ob),
newMatrixObject((float*)dob->mat,4,4,Py_NEW) )
);
index++;
dob= dob->next;
}
free_object_duplilist(lb);
}
}
return dupli_objects_list;
}
static PyObject *Object_getEffects( BPy_Object * self )
{
PyObject *effect_list;
Effect *eff;
effect_list = PyList_New( 0 );
if( !effect_list )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyList_New() failed" );
eff = self->object->effect.first;
while( eff ) {
PyList_Append( effect_list, EffectCreatePyObject( eff, self->object ) );
eff = eff->next;
}
return effect_list;
}
static PyObject *Object_insertShapeKey(BPy_Object * self)
{
insert_shapekey(self->object);
return Py_None;
}
/*****************************************************************************/
/* Function: Object_CreatePyObject */
/* Description: This function will create a new BlenObject from an existing */
/* Object structure. */
/*****************************************************************************/
PyObject *Object_CreatePyObject( struct Object * obj )
{
BPy_Object *blen_object;
if( !obj )
return EXPP_incr_ret( Py_None );
blen_object =
( BPy_Object * ) PyObject_NEW( BPy_Object, &Object_Type );
if( blen_object == NULL ) {
return ( NULL );
}
blen_object->object = obj;
obj->id.us++;
return ( ( PyObject * ) blen_object );
}
/*****************************************************************************/
/* Function: Object_CheckPyObject */
/* Description: This function returns true when the given PyObject is of the */
/* type Object. Otherwise it will return false. */
/*****************************************************************************/
int Object_CheckPyObject( PyObject * py_obj )
{
return ( py_obj->ob_type == &Object_Type );
}
/*****************************************************************************/
/* Function: Object_FromPyObject */
/* Description: This function returns the Blender object from the given */
/* PyObject. */
/*****************************************************************************/
struct Object *Object_FromPyObject( PyObject * py_obj )
{
BPy_Object *blen_obj;
blen_obj = ( BPy_Object * ) py_obj;
return ( blen_obj->object );
}
/*****************************************************************************/
/* Description: Returns the object with the name specified by the argument */
/* name. Note that the calling function has to remove the first */
/* two characters of the object name. These two characters */
/* specify the type of the object (OB, ME, WO, ...) */
/* The function will return NULL when no object with the given */
/* name is found. */
/*****************************************************************************/
Object *GetObjectByName( char *name )
{
Object *obj_iter;
obj_iter = G.main->object.first;
while( obj_iter ) {
if( StringEqual( name, GetIdName( &( obj_iter->id ) ) ) ) {
return ( obj_iter );
}
obj_iter = obj_iter->id.next;
}
/* There is no object with the given name */
return ( NULL );
}
/*****************************************************************************/
/* Function: Object_dealloc */
/* Description: This is a callback function for the BlenObject type. It is */
/* the destructor function. */
/*****************************************************************************/
static void Object_dealloc( BPy_Object * obj )
{
obj->object->id.us--;
PyObject_DEL( obj );
}
/*****************************************************************************/
/* Function: Object_getAttr */
/* Description: This is a callback function for the BlenObject type. It is */
/* the function that retrieves any value from Blender and */
/* passes it to Python. */
/*****************************************************************************/
static PyObject *Object_getAttr( BPy_Object * obj, char *name )
{
Object *object;
object = obj->object;
if( StringEqual( name, "LocX" ) )
return ( PyFloat_FromDouble( object->loc[0] ) );
if( StringEqual( name, "LocY" ) )
return ( PyFloat_FromDouble( object->loc[1] ) );
if( StringEqual( name, "LocZ" ) )
return ( PyFloat_FromDouble( object->loc[2] ) );
if( StringEqual( name, "loc" ) )
return ( Py_BuildValue( "fff", object->loc[0], object->loc[1],
object->loc[2] ) );
if( StringEqual( name, "dLocX" ) )
return ( PyFloat_FromDouble( object->dloc[0] ) );
if( StringEqual( name, "dLocY" ) )
return ( PyFloat_FromDouble( object->dloc[1] ) );
if( StringEqual( name, "dLocZ" ) )
return ( PyFloat_FromDouble( object->dloc[2] ) );
if( StringEqual( name, "dloc" ) )
return ( Py_BuildValue
( "fff", object->dloc[0], object->dloc[1],
object->dloc[2] ) );
if( StringEqual( name, "RotX" ) )
return ( PyFloat_FromDouble( object->rot[0] ) );
if( StringEqual( name, "RotY" ) )
return ( PyFloat_FromDouble( object->rot[1] ) );
if( StringEqual( name, "RotZ" ) )
return ( PyFloat_FromDouble( object->rot[2] ) );
if( StringEqual( name, "rot" ) )
return ( Py_BuildValue( "fff", object->rot[0], object->rot[1],
object->rot[2] ) );
if( StringEqual( name, "dRotX" ) )
return ( PyFloat_FromDouble( object->drot[0] ) );
if( StringEqual( name, "dRotY" ) )
return ( PyFloat_FromDouble( object->drot[1] ) );
if( StringEqual( name, "dRotZ" ) )
return ( PyFloat_FromDouble( object->drot[2] ) );
if( StringEqual( name, "drot" ) )
return ( Py_BuildValue
( "fff", object->drot[0], object->drot[1],
object->drot[2] ) );
if( StringEqual( name, "SizeX" ) )
return ( PyFloat_FromDouble( object->size[0] ) );
if( StringEqual( name, "SizeY" ) )
return ( PyFloat_FromDouble( object->size[1] ) );
if( StringEqual( name, "SizeZ" ) )
return ( PyFloat_FromDouble( object->size[2] ) );
if( StringEqual( name, "size" ) )
return ( Py_BuildValue
( "fff", object->size[0], object->size[1],
object->size[2] ) );
if( StringEqual( name, "dSizeX" ) )
return ( PyFloat_FromDouble( object->dsize[0] ) );
if( StringEqual( name, "dSizeY" ) )
return ( PyFloat_FromDouble( object->dsize[1] ) );
if( StringEqual( name, "dSizeZ" ) )
return ( PyFloat_FromDouble( object->dsize[2] ) );
if( StringEqual( name, "dsize" ) )
return ( Py_BuildValue
( "fff", object->dsize[0], object->dsize[1],
object->dsize[2] ) );
/* accept both Layer (old, for compatibility) and Layers */
if( strncmp( name, "Layer", 5 ) == 0)
return ( PyInt_FromLong( object->lay ) );
/* Layers returns a bitmask, layers returns a list of integers */
if( StringEqual( name, "layers" ) ) {
int layers, bit = 0, val = 0;
PyObject *item = NULL, *laylist = PyList_New( 0 );
if( !laylist )
return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
"couldn't create pylist!" ) );
layers = object->lay;
while( bit < 20 ) {
val = 1 << bit;
if( layers & val ) {
item = Py_BuildValue( "i", bit + 1 );
PyList_Append( laylist, item );
Py_DECREF( item );
}
bit++;
}
return laylist;
}
if( StringEqual( name, "parent" ) ) {
if( object->parent )
return Object_CreatePyObject( object->parent );
else {
Py_RETURN_NONE;
}
}
if( StringEqual( name, "parentbonename" ) ) {
if( object->parent && object->parsubstr[0] )
return ( Py_BuildValue("s", object->parsubstr) );
else {
Py_INCREF( Py_None );
return ( Py_None );
}
}
if( StringEqual( name, "track" ) )
return Object_CreatePyObject( object->track );
if( StringEqual( name, "data" ) ) {
PyObject *getdata, *tuple = PyTuple_New(0);
if (!tuple)
return EXPP_ReturnPyObjError (PyExc_MemoryError,
"couldn't create an empty tuple!");
getdata = Object_getData( obj, tuple, NULL );
Py_DECREF(tuple);
return getdata;
}
if( StringEqual( name, "ipo" ) ) {
if( object->ipo == NULL ) {
/* There's no ipo linked to the object, return Py_None. */
Py_INCREF( Py_None );
return ( Py_None );
}
return ( Ipo_CreatePyObject( object->ipo ) );
}
if( StringEqual( name, "mat" ) || StringEqual( name, "matrix" ) )
return ( Object_getMatrix
( obj, Py_BuildValue( "(s)", "worldspace" ) ) );
if( StringEqual( name, "matrixWorld" ) )
return ( Object_getMatrix
( obj, Py_BuildValue( "(s)", "worldspace" ) ) );
if( StringEqual( name, "matrixLocal" ) )
return ( Object_getMatrix
( obj, Py_BuildValue( "(s)", "localspace" ) ) );
if( StringEqual( name, "colbits" ) )
return ( Py_BuildValue( "h", object->colbits ) );
if( StringEqual( name, "drawType" ) )
return ( Py_BuildValue( "b", object->dt ) );
if( StringEqual( name, "drawMode" ) )
return ( Py_BuildValue( "b", object->dtx ) );
if( StringEqual( name, "name" ) )
return ( Py_BuildValue( "s", object->id.name + 2 ) );
if( StringEqual( name, "sel" ) )
return ( Object_isSelected( obj ) );
if( StringEqual( name, "DupSta" ) )
return PyInt_FromLong( obj->object->dupsta );
if( StringEqual( name, "DupEnd" ) )
return PyInt_FromLong( obj->object->dupend );
if( StringEqual( name, "DupOn" ) )
return PyInt_FromLong( obj->object->dupon );
if( StringEqual( name, "DupOff" ) )
return PyInt_FromLong( obj->object->dupoff );
if (StringEqual (name, "oopsLoc")) {
if (G.soops) {
Oops *oops= G.soops->oops.first;
while(oops) {
if( oops->type==ID_OB ) {
if((Object *)oops->id == object) {
return (Py_BuildValue ("ff", oops->x, oops->y));
}
}
oops= oops->next;
}
}
return EXPP_incr_ret( Py_None );
}
if( StringEqual( name, "effects" ) )
return Object_getEffects( obj );
if( StringEqual( name, "users" ) )
return PyInt_FromLong( obj->object->id.us );
if( StringEqual( name, "protectFlags" ) )
return PyInt_FromLong( obj->object->protectflag );
if( StringEqual( name, "DupObjects" ) )
return Object_getDupliObjects( obj );
if( StringEqual( name, "DupGroup" ) )
return Group_CreatePyObject( obj->object->dup_group );
if( StringEqual( name, "enableDupVerts" ) )
return Object_getDupliVerts( obj );
if( StringEqual( name, "enableDupFrames" ) )
return Object_getDupliFrames( obj );
if( StringEqual( name, "enableDupGroup" ) )
return Object_getDupliGroup( obj );
if( StringEqual( name, "enableDupRot" ) )
return Object_getDupliRot( obj );
if( StringEqual( name, "enableDupNoSpeed" ) )
return Object_getDupliNoSpeed( obj );
if( StringEqual( name, "drawSize" ) )
return ( PyFloat_FromDouble( object->empty_drawsize ) );
/* not an attribute, search the methods table */
return Py_FindMethod( BPy_Object_methods, ( PyObject * ) obj, name );
}
/*****************************************************************************/
/* Function: Object_setAttr */
/* Description: This is a callback function for the BlenObject type. It is */
/* the function that retrieves any value from Python and sets */
/* it accordingly in Blender. */
/*****************************************************************************/
static int Object_setAttr( BPy_Object * obj, char *name, PyObject * value )
{
PyObject *valtuple, *result=NULL;
struct Object *object;
object = obj->object;
/* Handle all properties which are Read Only */
if( StringEqual( name, "parent" ) )
return EXPP_ReturnIntError( PyExc_AttributeError,
"Setting the parent is not allowed." );
if( StringEqual( name, "data" ) )
return EXPP_ReturnIntError( PyExc_AttributeError,
"Setting the data is not allowed." );
if( StringEqual( name, "ipo" ) )
return EXPP_ReturnIntError( PyExc_AttributeError,
"Setting the ipo is not allowed." );
if( StringEqual( name, "mat" ) )
return EXPP_ReturnIntError( PyExc_AttributeError,
"Not allowed. Please use .setMatrix(matrix)" );
if( StringEqual( name, "matrix" ) )
return EXPP_ReturnIntError( PyExc_AttributeError,
"Not allowed. Please use .setMatrix(matrix)" );
/* FIRST, do attributes that are directly changed */
/*
All the methods below modify the object so we set the recalc
flag here.
When we move to tp_getset, the individual setters will need
to set the flag.
*/
object->recalc |= OB_RECALC_OB;
if( StringEqual( name, "LocX" ) )
return ( !PyArg_Parse( value, "f", &( object->loc[0] ) ) );
if( StringEqual( name, "LocY" ) )
return ( !PyArg_Parse( value, "f", &( object->loc[1] ) ) );
if( StringEqual( name, "LocZ" ) )
return ( !PyArg_Parse( value, "f", &( object->loc[2] ) ) );
if( StringEqual( name, "dLocX" ) )
return ( !PyArg_Parse( value, "f", &( object->dloc[0] ) ) );
if( StringEqual( name, "dLocY" ) )
return ( !PyArg_Parse( value, "f", &( object->dloc[1] ) ) );
if( StringEqual( name, "dLocZ" ) )
return ( !PyArg_Parse( value, "f", &( object->dloc[2] ) ) );
if( StringEqual( name, "RotX" ) )
return ( !PyArg_Parse( value, "f", &( object->rot[0] ) ) );
if( StringEqual( name, "RotY" ) )
return ( !PyArg_Parse( value, "f", &( object->rot[1] ) ) );
if( StringEqual( name, "RotZ" ) )
return ( !PyArg_Parse( value, "f", &( object->rot[2] ) ) );
if( StringEqual( name, "dRotX" ) )
return ( !PyArg_Parse( value, "f", &( object->drot[0] ) ) );
if( StringEqual( name, "dRotY" ) )
return ( !PyArg_Parse( value, "f", &( object->drot[1] ) ) );
if( StringEqual( name, "dRotZ" ) )
return ( !PyArg_Parse( value, "f", &( object->drot[2] ) ) );
if( StringEqual( name, "drot" ) )
return ( !PyArg_ParseTuple( value, "fff", &( object->drot[0] ),
&( object->drot[1] ),
&( object->drot[2] ) ) );
if( StringEqual( name, "SizeX" ) )
return ( !PyArg_Parse( value, "f", &( object->size[0] ) ) );
if( StringEqual( name, "SizeY" ) )
return ( !PyArg_Parse( value, "f", &( object->size[1] ) ) );
if( StringEqual( name, "SizeZ" ) )
return ( !PyArg_Parse( value, "f", &( object->size[2] ) ) );
if( StringEqual( name, "size" ) )
return ( !PyArg_ParseTuple( value, "fff", &( object->size[0] ),
&( object->size[1] ),
&( object->size[2] ) ) );
if( StringEqual( name, "dSizeX" ) )
return ( !PyArg_Parse( value, "f", &( object->dsize[0] ) ) );
if( StringEqual( name, "dSizeY" ) )
return ( !PyArg_Parse( value, "f", &( object->dsize[1] ) ) );
if( StringEqual( name, "dSizeZ" ) )
return ( !PyArg_Parse( value, "f", &( object->dsize[2] ) ) );
if( StringEqual( name, "dsize" ) )
return ( !PyArg_ParseTuple
( value, "fff", &( object->dsize[0] ),
&( object->dsize[1] ), &( object->dsize[2] ) ) );
if( StringEqual( name, "DupSta" ) )
return ( !PyArg_Parse( value, "h", &( object->dupsta ) ) );
if( StringEqual( name, "DupEnd" ) )
return ( !PyArg_Parse( value, "h", &( object->dupend ) ) );
if( StringEqual( name, "DupOn" ) )
return ( !PyArg_Parse( value, "h", &( object->dupon ) ) );
if( StringEqual( name, "DupOff" ) )
return ( !PyArg_Parse( value, "h", &( object->dupoff ) ) );
if( StringEqual( name, "colbits" ) )
return ( !PyArg_Parse( value, "h", &( object->colbits ) ) );
/* accept both Layer (for compatibility) and Layers */
if( strncmp( name, "Layer", 5 ) == 0 ) {
/* usage note: caller of this func needs to do a
Blender.Redraw(-1) to update and redraw the interface */
Base *base;
int newLayer;
int local;
if( ! PyArg_Parse( value, "i", &newLayer ) ) {
return EXPP_ReturnIntError( PyExc_AttributeError,
"expected int as bitmask" );
}
/* uppper 2 nibbles are for local view */
newLayer &= 0x00FFFFFF;
if( newLayer == 0 ) {
return EXPP_ReturnIntError( PyExc_AttributeError,
"bitmask must have from 1 up to 20 bits set");
}
/* update any bases pointing to our object */
base = FIRSTBASE; /* first base in current scene */
while( base ){
if( base->object == obj->object ) {
local = base->lay &= 0xFF000000;
base->lay = local | newLayer;
object->lay = base->lay;
}
base = base->next;
}
countall( );
return ( 0 );
}
if( StringEqual( name, "layers" ) ) {
/* usage note: caller of this func needs to do a
Blender.Redraw(-1) to update and redraw the interface */
Base *base;
int layers = 0, len_list = 0;
int local, i, val;
PyObject *list = NULL, *item = NULL;
if( !PyArg_Parse( value, "O!", &PyList_Type, &list ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected a list of integers" );
len_list = PyList_Size(list);
if (len_list == 0)
return EXPP_ReturnIntError( PyExc_AttributeError,
"list can't be empty, at least one layer must be set" );
for( i = 0; i < len_list; i++ ) {
item = PyList_GetItem( list, i );
if( !PyInt_Check( item ) )
return EXPP_ReturnIntError
( PyExc_AttributeError,
"list must contain only integer numbers" );
val = ( int ) PyInt_AsLong( item );
if( val < 1 || val > 20 )
return EXPP_ReturnIntError
( PyExc_AttributeError,
"layer values must be in the range [1, 20]" );
layers |= 1 << ( val - 1 );
}
/* update any bases pointing to our object */
base = FIRSTBASE; /* first base in current scene */
while( base ){
if( base->object == obj->object ) {
local = base->lay &= 0xFF000000;
base->lay = local | layers;
object->lay = base->lay;
}
base = base->next;
}
countall();
return ( 0 );
}
if (StringEqual (name, "oopsLoc")) {
if (G.soops) {
Oops *oops= G.soops->oops.first;
while(oops) {
if(oops->type==ID_OB) {
if ((Object *)oops->id == object) {
return (!PyArg_ParseTuple (value, "ff", &(oops->x),&(oops->y)));
}
}
oops= oops->next;
}
}
return 0;
}
if( StringEqual( name, "protectFlags" ) ) {
int flag=0;
if( !PyArg_Parse( value, "i", &flag ) )
return EXPP_ReturnIntError ( PyExc_AttributeError,
"expected an integer" );
flag &= OB_LOCK_LOCX | OB_LOCK_LOCY | OB_LOCK_LOCZ |
OB_LOCK_ROTX | OB_LOCK_ROTY | OB_LOCK_ROTZ |
OB_LOCK_SIZEX | OB_LOCK_SIZEY | OB_LOCK_SIZEZ;
object->protectflag = (short)flag;
return 0;
}
if( StringEqual( name, "DupGroup" ) ) {
PyObject *pyob=NULL;
BPy_Group *pygrp=NULL;
if( !PyArg_Parse( value, "O", &pyob) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected a group or None" );
if ( PyObject_TypeCheck(pyob, &Group_Type) ) {
pygrp= (BPy_Group *)pyob;
object->dup_group= pygrp->group;
} else if (pyob==Py_None) {
object->dup_group= NULL;
} else {
return EXPP_ReturnIntError( PyExc_TypeError,
"expected a group or None" );
}
return 0;
}
/* SECOND, handle all the attributes that passes the value as a tuple to another function */
/* Put the value(s) in a tuple. For some variables, we want to */
/* pass the values to a function, and these functions only accept */
/* PyTuples. */
valtuple = Py_BuildValue( "(O)", value );
if( !valtuple ) {
return EXPP_ReturnIntError( PyExc_MemoryError,
"Object_setAttr: couldn't create PyTuple" );
}
/* Call the setFunctions to handle it */
if( StringEqual( name, "loc" ) )
result = Object_setLocation( obj, valtuple );
else if( StringEqual( name, "dloc" ) )
result = Object_setDeltaLocation( obj, valtuple );
else if( StringEqual( name, "rot" ) )
result = Object_setEuler( obj, valtuple );
else if( StringEqual( name, "track" ) )
result = Object_makeTrack( obj, valtuple );
else if( StringEqual( name, "drawType" ) )
result = Object_setDrawType( obj, valtuple );
else if( StringEqual( name, "drawMode" ) )
result = Object_setDrawMode( obj, valtuple );
else if( StringEqual( name, "name" ) )
result = Object_setName( obj, valtuple );
else if( StringEqual( name, "sel" ) )
result = Object_Select( obj, valtuple );
else if( StringEqual( name, "effects" ) )
return EXPP_ReturnIntError( PyExc_AttributeError,
"effects is not writable" );
else if( StringEqual( name, "enableDupVerts" ) )
result = Object_setDupliVerts( obj, valtuple );
else if( StringEqual( name, "enableDupFrames" ) )
result = Object_setDupliFrames( obj, valtuple );
else if( StringEqual( name, "enableDupGroup" ) )
result = Object_setDupliGroup( obj, valtuple );
else if( StringEqual( name, "enableDupRot" ) )
result = Object_setDupliRot( obj, valtuple );
else if( StringEqual( name, "enableDupNoSpeed" ) )
result = Object_setDupliNoSpeed( obj, valtuple );
else if( StringEqual( name, "DupObjects" ) )
return EXPP_ReturnIntError( PyExc_AttributeError,
"DupObjects is not writable" );
else if( StringEqual( name, "drawSize" ) )
return ( !PyArg_Parse( value, "f", &( object->empty_drawsize ) ) );
else { /* if it turns out here, it's not an attribute*/
Py_DECREF(valtuple);
return EXPP_ReturnIntError( PyExc_KeyError, "attribute not found" );
}
/* valtuple won't be returned to the caller, so we need to DECREF it */
Py_DECREF(valtuple);
if( result != Py_None )
return -1; /* error return */
/* Py_None was incref'ed by the called Scene_set* function. We probably
* don't need to decref Py_None (!), but since Python/C API manual tells us
* to treat it like any other PyObject regarding ref counting ... */
Py_DECREF( Py_None );
return 0; /* normal return */
}
/*****************************************************************************/
/* Function: Object_compare */
/* Description: This is a callback function for the BPy_Object type. It */
/* compares two Object_Type objects. Only the "==" and "!=" */
/* comparisons are meaninful. Returns 0 for equality and -1 if */
/* they don't point to the same Blender Object struct. */
/* In Python it becomes 1 if they are equal, 0 otherwise. */
/*****************************************************************************/
static int Object_compare( BPy_Object * a, BPy_Object * b )
{
Object *pa = a->object, *pb = b->object;
return ( pa == pb ) ? 0 : -1;
}
/*****************************************************************************/
/* Function: Object_repr */
/* Description: This is a callback function for the BPy_Object type. It */
/* builds a meaninful string to represent object objects. */
/*****************************************************************************/
static PyObject *Object_repr( BPy_Object * self )
{
return PyString_FromFormat( "[Object \"%s\"]",
self->object->id.name + 2 );
}
PyObject *Object_getPIStrength( BPy_Object * self )
{
PyObject *attr;
if(!self->object->pd){
if(!setupPI(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"particle deflection could not be accessed (null pointer)" ) );
}
attr = PyFloat_FromDouble( ( double ) self->object->pd->f_strength );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object->pd->f_strength attribute" ) );
}
PyObject *Object_setPIStrength( BPy_Object * self, PyObject * args )
{
float value;
if(!self->object->pd){
if(!setupPI(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"particle deflection could not be accessed (null pointer)" ) );
}
if( !PyArg_ParseTuple( args, "f", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected float argument" ) );
if(value > 1000.0f || value < -1000.0f)
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"acceptable values are between 1000.0 and -1000.0" ) );
self->object->pd->f_strength = value;
return EXPP_incr_ret( Py_None );
}
PyObject *Object_getPIFalloff( BPy_Object * self )
{
PyObject *attr;
if(!self->object->pd){
if(!setupPI(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"particle deflection could not be accessed (null pointer)" ) );
}
attr = PyFloat_FromDouble( ( double ) self->object->pd->f_power );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object->pd->f_power attribute" ) );
}
PyObject *Object_setPIFalloff( BPy_Object * self, PyObject * args )
{
float value;
if(!self->object->pd){
if(!setupPI(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"particle deflection could not be accessed (null pointer)" ) );
}
if( !PyArg_ParseTuple( args, "f", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected float argument" ) );
if(value > 10.0f || value < 0.0f)
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"acceptable values are between 10.0 and 0.0" ) );
self->object->pd->f_power = value;
return EXPP_incr_ret( Py_None );
}
PyObject *Object_getPIMaxDist( BPy_Object * self )
{
PyObject *attr;
if(!self->object->pd){
if(!setupPI(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"particle deflection could not be accessed (null pointer)" ) );
}
attr = PyFloat_FromDouble( ( double ) self->object->pd->maxdist );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object->pd->f_maxdist attribute" ) );
}
PyObject *Object_setPIMaxDist( BPy_Object * self, PyObject * args )
{
float value;
if(!self->object->pd){
if(!setupPI(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"particle deflection could not be accessed (null pointer)" ) );
}
if( !PyArg_ParseTuple( args, "f", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected float argument" ) );
if(value > 1000.0f || value < 0.0f)
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"acceptable values are between 1000.0 and 0.0" ) );
self->object->pd->maxdist = value;
return EXPP_incr_ret( Py_None );
}
PyObject *Object_getPIUseMaxDist( BPy_Object * self )
{
PyObject *attr;
if(!self->object->pd){
if(!setupPI(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"particle deflection could not be accessed (null pointer)" ) );
}
attr = PyInt_FromLong( ( long ) self->object->pd->flag );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object->pd->flag attribute" ) );
}
PyObject *Object_setPIUseMaxDist( BPy_Object * self, PyObject * args )
{
int value;
if(!self->object->pd){
if(!setupPI(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"particle deflection could not be accessed (null pointer)" ) );
}
if( !PyArg_ParseTuple( args, "i", &( value ) ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected int argument" ) );
self->object->pd->flag = (short)value;
return EXPP_incr_ret( Py_None );
}
PyObject *Object_getPIType( BPy_Object * self )
{
PyObject *attr;
if(!self->object->pd){
if(!setupPI(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"particle deflection could not be accessed (null pointer)" ) );
}
attr = PyInt_FromLong( ( long ) self->object->pd->forcefield );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object->pd->forcefield attribute" ) );
}
PyObject *Object_setPIType( BPy_Object * self, PyObject * args )
{
int value;
if(!self->object->pd){
if(!setupPI(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"particle deflection could not be accessed (null pointer)" ) );
}
if( !PyArg_ParseTuple( args, "i", &( value ) ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected int argument" ) );
self->object->pd->forcefield = (short)value;
return EXPP_incr_ret( Py_None );
}
PyObject *Object_getPIPerm( BPy_Object * self )
{
PyObject *attr;
if(!self->object->pd){
if(!setupPI(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"particle deflection could not be accessed (null pointer)" ) );
}
attr = PyFloat_FromDouble( ( double ) self->object->pd->pdef_perm );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object->pd->pdef_perm attribute" ) );
}
PyObject *Object_setPIPerm( BPy_Object * self, PyObject * args )
{
float value;
if(!self->object->pd){
if(!setupPI(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"particle deflection could not be accessed (null pointer)" ) );
}
if( !PyArg_ParseTuple( args, "f", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected float argument" ) );
if(value > 1.0f || value < 0.0f)
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"acceptable values are between 1.0 and 0.0" ) );
self->object->pd->pdef_perm = value;
return EXPP_incr_ret( Py_None );
}
PyObject *Object_getPIRandomDamp( BPy_Object * self )
{
PyObject *attr;
if(!self->object->pd){
if(!setupPI(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"particle deflection could not be accessed (null pointer)" ) );
}
attr = PyFloat_FromDouble( ( double ) self->object->pd->pdef_rdamp );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object->pd->pdef_rdamp attribute" ) );
}
PyObject *Object_setPIRandomDamp( BPy_Object * self, PyObject * args )
{
float value;
if(!self->object->pd){
if(!setupPI(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"particle deflection could not be accessed (null pointer)" ) );
}
if( !PyArg_ParseTuple( args, "f", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected float argument" ) );
if(value > 1.0f || value < 0.0f)
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"acceptable values are between 1.0 and 0.0" ) );
self->object->pd->pdef_rdamp = value;
return EXPP_incr_ret( Py_None );
}
PyObject *Object_getPISurfaceDamp( BPy_Object * self )
{
PyObject *attr;
if(!self->object->pd){
if(!setupPI(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"particle deflection could not be accessed (null pointer)" ) );
}
attr = PyFloat_FromDouble( ( double ) self->object->pd->pdef_damp );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object->pd->pdef_rdamp attribute" ) );
}
PyObject *Object_setPISurfaceDamp( BPy_Object * self, PyObject * args )
{
float value;
if(!self->object->pd){
if(!setupPI(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"particle deflection could not be accessed (null pointer)" ) );
}
if( !PyArg_ParseTuple( args, "f", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected float argument" ) );
if(value > 1.0f || value < 0.0f)
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"acceptable values are between 1.0 and 0.0" ) );
self->object->pd->pdef_damp = value;
return EXPP_incr_ret( Py_None );
}
PyObject *Object_getPIDeflection( BPy_Object * self )
{
PyObject *attr;
if(!self->object->pd){
if(!setupPI(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"particle deflection could not be accessed (null pointer)" ) );
}
attr = PyInt_FromLong( ( long ) self->object->pd->deflect );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object->pd->deflect attribute" ) );
}
PyObject *Object_setPIDeflection( BPy_Object * self, PyObject * args )
{
int value;
if(!self->object->pd){
if(!setupPI(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"particle deflection could not be accessed (null pointer)" ) );
}
if( !PyArg_ParseTuple( args, "i", &( value ) ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected int argument" ) );
self->object->pd->deflect = (short)value;
return EXPP_incr_ret( Py_None );
}
/* SOFTBODY FUNCTIONS */
PyObject *Object_isSB(BPy_Object *self)
{
if (self->object->soft)
return EXPP_incr_ret_True();
else return EXPP_incr_ret_False();
}
PyObject *Object_getSBMass( BPy_Object * self )
{
PyObject *attr;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
attr = PyFloat_FromDouble( ( double ) self->object->soft->nodemass );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object->soft->nodemass attribute" ) );
}
PyObject *Object_setSBMass( BPy_Object * self, PyObject * args )
{
float value;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
if( !PyArg_ParseTuple( args, "f", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected float argument" ) );
if(value > 50.0f || value < 0.0f)
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"acceptable values are between 0.0 and 50.0" ) );
self->object->soft->nodemass = value;
return EXPP_incr_ret( Py_None );
}
PyObject *Object_getSBGravity( BPy_Object * self )
{
PyObject *attr;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
attr = PyFloat_FromDouble( ( double ) self->object->soft->grav );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object->soft->grav attribute" ) );
}
PyObject *Object_setSBGravity( BPy_Object * self, PyObject * args )
{
float value;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
if( !PyArg_ParseTuple( args, "f", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected float argument" ) );
if(value > 10.0f || value < 0.0f)
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"acceptable values are between 0.0 and 10.0" ) );
self->object->soft->grav = value;
return EXPP_incr_ret( Py_None );
}
PyObject *Object_getSBFriction( BPy_Object * self )
{
PyObject *attr;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
attr = PyFloat_FromDouble( ( double ) self->object->soft->mediafrict );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object->soft->mediafrict attribute" ) );
}
PyObject *Object_setSBFriction( BPy_Object * self, PyObject * args )
{
float value;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
if( !PyArg_ParseTuple( args, "f", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected float argument" ) );
if(value > 10.0f || value < 0.0f)
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"acceptable values are between 0.0 and 10.0" ) );
self->object->soft->mediafrict = value;
return EXPP_incr_ret( Py_None );
}
PyObject *Object_getSBErrorLimit( BPy_Object * self )
{
PyObject *attr;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
attr = PyFloat_FromDouble( ( double ) self->object->soft->rklimit );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object->soft->rklimit attribute" ) );
}
PyObject *Object_setSBErrorLimit( BPy_Object * self, PyObject * args )
{
float value;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
if( !PyArg_ParseTuple( args, "f", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected float argument" ) );
if(value > 1.0f || value < 0.01f)
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"acceptable values are between 0.01 and 1.0" ) );
self->object->soft->rklimit = value;
return EXPP_incr_ret( Py_None );
}
PyObject *Object_getSBGoalSpring( BPy_Object * self )
{
PyObject *attr;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
attr = PyFloat_FromDouble( ( double ) self->object->soft->goalspring );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object->soft->goalspring attribute" ) );
}
PyObject *Object_setSBGoalSpring( BPy_Object * self, PyObject * args )
{
float value;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer) " ) );
}
if( !PyArg_ParseTuple( args, "f", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected float argument" ) );
if(value > 0.999f || value < 0.00f)
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"acceptable values are between 0.00 and 0.999" ) );
self->object->soft->goalspring = value;
return EXPP_incr_ret( Py_None );
}
PyObject *Object_getSBGoalFriction( BPy_Object * self )
{
PyObject *attr;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
attr = PyFloat_FromDouble( ( double ) self->object->soft->goalfrict );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object->soft->goalfrict attribute" ) );
}
PyObject *Object_setSBGoalFriction( BPy_Object * self, PyObject * args )
{
float value;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
if( !PyArg_ParseTuple( args, "f", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected float argument" ) );
if(value > 10.0f || value < 0.00f)
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"acceptable values are between 0.00 and 10.0" ) );
self->object->soft->goalfrict = value;
return EXPP_incr_ret( Py_None );
}
PyObject *Object_getSBMinGoal( BPy_Object * self )
{
PyObject *attr;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
attr = PyFloat_FromDouble( ( double ) self->object->soft->mingoal );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object->soft->mingoal attribute" ) );
}
PyObject *Object_setSBMinGoal( BPy_Object * self, PyObject * args )
{
float value;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
if( !PyArg_ParseTuple( args, "f", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected float argument" ) );
if(value > 1.0f || value < 0.00f)
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"acceptable values are between 0.00 and 1.0" ) );
self->object->soft->mingoal = value;
return EXPP_incr_ret( Py_None );
}
PyObject *Object_getSBMaxGoal( BPy_Object * self )
{
PyObject *attr;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
attr = PyFloat_FromDouble( ( double ) self->object->soft->maxgoal );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object->soft->maxgoal attribute" ) );
}
PyObject *Object_setSBMaxGoal( BPy_Object * self, PyObject * args )
{
float value;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
if( !PyArg_ParseTuple( args, "f", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected float argument" ) );
if(value > 1.0f || value < 0.00f)
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"acceptable values are between 0.00 and 1.0" ) );
self->object->soft->maxgoal = value;
return EXPP_incr_ret( Py_None );
}
PyObject *Object_getSBInnerSpring( BPy_Object * self )
{
PyObject *attr;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
attr = PyFloat_FromDouble( ( double ) self->object->soft->inspring );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object->soft->inspring attribute" ) );
}
PyObject *Object_setSBInnerSpring( BPy_Object * self, PyObject * args )
{
float value;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
if( !PyArg_ParseTuple( args, "f", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected float argument" ) );
if(value > 0.999f || value < 0.00f)
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"acceptable values are between 0.00 and 0.999" ) );
self->object->soft->inspring = value;
return EXPP_incr_ret( Py_None );
}
PyObject *Object_getSBInnerSpringFriction( BPy_Object * self )
{
PyObject *attr;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
attr = PyFloat_FromDouble( ( double ) self->object->soft->infrict );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object->soft->infrict attribute" ) );
}
PyObject *Object_setSBInnerSpringFriction( BPy_Object * self, PyObject * args )
{
float value;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
if( !PyArg_ParseTuple( args, "f", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected float argument" ) );
if(value > 10.0f || value < 0.00f)
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"acceptable values are between 0.00 and 10.0" ) );
self->object->soft->infrict = value;
return EXPP_incr_ret( Py_None );
}
PyObject *Object_getSBDefaultGoal( BPy_Object * self )
{
PyObject *attr;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
attr = PyFloat_FromDouble( ( double ) self->object->soft->defgoal );
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object->soft->defgoal attribute" ) );
}
PyObject *Object_setSBDefaultGoal( BPy_Object * self, PyObject * args )
{
float value;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
if( !PyArg_ParseTuple( args, "f", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected float argument" ) );
if(value > 1.0f || value < 0.00f)
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"acceptable values are between 0.00 and 1.0" ) );
self->object->soft->defgoal = value;
return EXPP_incr_ret( Py_None );
}
PyObject *Object_getSBUseGoal( BPy_Object * self )
{
/*short flag = self->object->softflag;*/
PyObject *attr = NULL;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
if(self->object->softflag & OB_SB_GOAL){
attr = PyInt_FromLong(1);
}
else{ attr = PyInt_FromLong(0); }
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object->softflag attribute" ) );
}
PyObject *Object_setSBUseGoal( BPy_Object * self, PyObject * args )
{
short value;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
if( !PyArg_ParseTuple( args, "h", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected integer argument" ) );
if(value){ self->object->softflag |= OB_SB_GOAL; }
else{ self->object->softflag &= ~OB_SB_GOAL; }
return EXPP_incr_ret( Py_None );
}
PyObject *Object_getSBUseEdges( BPy_Object * self )
{
/*short flag = self->object->softflag;*/
PyObject *attr = NULL;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
if(self->object->softflag & OB_SB_EDGES){
attr = PyInt_FromLong(1);
}
else{ attr = PyInt_FromLong(0); }
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object->softflag attribute" ) );
}
PyObject *Object_setSBUseEdges( BPy_Object * self, PyObject * args )
{
short value;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
if( !PyArg_ParseTuple( args, "h", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected integer argument" ) );
if(value){ self->object->softflag |= OB_SB_EDGES; }
else{ self->object->softflag &= ~OB_SB_EDGES; }
return EXPP_incr_ret( Py_None );
}
PyObject *Object_getSBStiffQuads( BPy_Object * self )
{
/*short flag = self->object->softflag;*/
PyObject *attr = NULL;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
if(self->object->softflag & OB_SB_QUADS){
attr = PyInt_FromLong(1);
}
else{ attr = PyInt_FromLong(0); }
if( attr )
return attr;
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Object->softflag attribute" ) );
}
PyObject *Object_setSBStiffQuads( BPy_Object * self, PyObject * args )
{
short value;
if(!self->object->soft){
if(!setupSB(self->object))
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"softbody could not be accessed (null pointer)" ) );
}
if( !PyArg_ParseTuple( args, "h", &value ) )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected integer argument" ) );
if(value){ self->object->softflag |= OB_SB_QUADS; }
else{ self->object->softflag &= ~OB_SB_QUADS; }
return EXPP_incr_ret( Py_None );
}
int setupSB(Object* ob){
ob->soft= sbNew();
ob->softflag |= OB_SB_GOAL|OB_SB_EDGES;
if(ob->soft){
ob->soft->nodemass = 1.0f;
ob->soft->grav = 0.0f;
ob->soft->mediafrict = 0.5f;
ob->soft->rklimit = 0.1f;
ob->soft->goalspring = 0.5f;
ob->soft->goalfrict = 0.0f;
ob->soft->mingoal = 0.0f;
ob->soft->maxgoal = 1.0f;
ob->soft->inspring = 0.5f;
ob->soft->infrict = 0.5f;
ob->soft->defgoal = 0.7f;
return 1;
}
else {
return 0;
}
}
int setupPI(Object* ob){
if(ob->pd==NULL) {
ob->pd= MEM_callocN(sizeof(PartDeflect), "PartDeflect");
/* and if needed, init here */
}
if(ob->pd){
ob->pd->deflect =0;
ob->pd->forcefield =0;
ob->pd->flag =0;
ob->pd->pdef_damp =0;
ob->pd->pdef_rdamp =0;
ob->pd->pdef_perm =0;
ob->pd->f_strength =0;
ob->pd->f_power =0;
ob->pd->maxdist =0;
return 1;
}
else{
return 0;
}
}
/*
* scan list of Objects looking for matching obdata.
* if found, set OB_RECALC_DATA flag.
* call this from a bpy type update() method.
*/
void Object_updateDag( void *data )
{
Object *ob;
if( !data)
return;
for( ob= G.main->object.first; ob; ob= ob->id.next){
if( ob->data == data){
ob->recalc |= OB_RECALC_DATA;
}
}
}