The general graphing mechanism will create one graph for each output variable. So it's not limited to time and memory, but that is what the Cycles tests now output.
115 lines
4.4 KiB
Python
115 lines
4.4 KiB
Python
# Apache License, Version 2.0
|
|
|
|
from . import TestQueue
|
|
|
|
import json
|
|
import pathlib
|
|
from typing import Dict, List
|
|
|
|
|
|
class TestGraph:
|
|
def __init__(self, json_filepaths: List[pathlib.Path]):
|
|
# Initialize graph from JSON file. Note that this is implemented without
|
|
# accessing any benchmark environment or configuration. This ways benchmarks
|
|
# run on various machines can be aggregated and the graph generated on another
|
|
# machine.
|
|
|
|
# Gather entries for each device.
|
|
devices = {}
|
|
|
|
for json_filepath in json_filepaths:
|
|
queue = TestQueue(json_filepath)
|
|
|
|
for entry in queue.entries:
|
|
if entry.status in ('done', 'outdated'):
|
|
device_name = entry.device_name
|
|
if device_name in devices.keys():
|
|
devices[device_name].append(entry)
|
|
else:
|
|
devices[device_name] = [entry]
|
|
|
|
data = []
|
|
for device_name, device_entries in devices.items():
|
|
# Gather used categories.
|
|
categories = {}
|
|
for entry in device_entries:
|
|
category = entry.category
|
|
if category in categories.keys():
|
|
categories[category].append(entry)
|
|
else:
|
|
categories[category] = [entry]
|
|
|
|
# Generate one graph for every device x category x result key combination.
|
|
for category, category_entries in categories.items():
|
|
entries = sorted(category_entries, key=lambda entry: (entry.revision, entry.test))
|
|
|
|
outputs = set()
|
|
for entry in entries:
|
|
for output in entry.output.keys():
|
|
outputs.add(output)
|
|
|
|
chart_type = 'line' if entries[0].benchmark_type == 'time_series' else 'comparison'
|
|
|
|
for output in outputs:
|
|
chart_name = f"{category} ({output})"
|
|
data.append(self.chart(device_name, chart_name, entries, chart_type, output))
|
|
|
|
self.json = json.dumps(data, indent=2)
|
|
|
|
def chart(self, device_name: str, chart_name: str, entries: List, chart_type: str, output: str) -> Dict:
|
|
# Gather used tests.
|
|
tests = {}
|
|
for entry in entries:
|
|
test = entry.test
|
|
if test not in tests.keys():
|
|
tests[test] = len(tests)
|
|
|
|
# Gather used revisions.
|
|
revisions = {}
|
|
revision_dates = {}
|
|
for entry in entries:
|
|
revision = entry.revision
|
|
if revision not in revisions.keys():
|
|
revisions[revision] = len(revisions)
|
|
revision_dates[revision] = int(entry.date)
|
|
|
|
# Google Charts JSON data layout is like a spreadsheat table, with
|
|
# colums, rows and cells. We create one column for revision labels,
|
|
# and one column for each test.
|
|
cols = []
|
|
if chart_type == 'line':
|
|
cols.append({'id': '', 'label': 'Date', 'type': 'date'})
|
|
else:
|
|
cols.append({'id': '', 'label': ' ', 'type': 'string'})
|
|
for test, test_index in tests.items():
|
|
cols.append({'id': '', 'label': test, 'type': 'number'})
|
|
|
|
rows = []
|
|
for revision, revision_index in revisions.items():
|
|
if chart_type == 'line':
|
|
date = revision_dates[revision]
|
|
row = [{'f': None, 'v': 'Date({0})'.format(date * 1000)}]
|
|
else:
|
|
row = [{'f': None, 'v': revision}]
|
|
row += [{}] * len(tests)
|
|
rows.append({'c': row})
|
|
|
|
for entry in entries:
|
|
test_index = tests[entry.test]
|
|
revision_index = revisions[entry.revision]
|
|
time = entry.output[output] if output in entry.output else -1.0
|
|
rows[revision_index]['c'][test_index + 1] = {'f': None, 'v': time}
|
|
|
|
data = {'cols': cols, 'rows': rows}
|
|
return {'device': device_name, 'name': chart_name, 'data': data, 'chart_type': chart_type}
|
|
|
|
def write(self, filepath: pathlib.Path) -> None:
|
|
# Write HTML page with JSON graph data embedded.
|
|
template_dir = pathlib.Path(__file__).parent
|
|
with open(template_dir / 'graph.template.html', 'r') as f:
|
|
template = f.read()
|
|
|
|
contents = template.replace('%JSON_DATA%', self.json)
|
|
with open(filepath, "w") as f:
|
|
f.write(contents)
|