This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/functions/FN_multi_function.hh
Jacques Lucke 8369adabc0 Particles: initial object socket and emitter node support
Object sockets work now, but only the new Object Transforms and the
Particle Mesh Emitter node use it. The emitter does not actually
use the mesh surface yet. Instead, new particles are just emitted around
the origin of the object.

Internally, handles to object data blocks are passed around in the network,
instead of raw object pointers. Using handles has a couple of benefits:
* The caller of the function has control over which handles can be resolved
  and therefore limit access to specific data. The set of data blocks that
  is accessed by a node tree should be known statically. This is necessary
  for a proper integration with the dependency graph.
* When the pointer to an object changes (e.g. after restarting Blender),
  all handles are still valid.
* When an object is deleted, the handle is invalidated without causing crashes.
* The handle is just an integer that can be stored per particle and can be cached easily.

The mapping between handles and their corresponding data blocks is
stored in the Simulation data block.
2020-07-21 17:35:09 +02:00

129 lines
3.7 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef __FN_MULTI_FUNCTION_HH__
#define __FN_MULTI_FUNCTION_HH__
/** \file
* \ingroup fn
*
* A `MultiFunction` encapsulates a function that is optimized for throughput (instead of latency).
* The throughput is optimized by always processing many elements at once, instead of each element
* separately. This is ideal for functions that are evaluated often (e.g. for every particle).
*
* By processing a lot of data at once, individual functions become easier to optimize for humans
* and for the compiler. Furthermore, performance profiles become easier to understand and show
* better where bottlenecks are.
*
* Every multi-function has a name and an ordered list of parameters. Parameters are used for input
* and output. In fact, there are three kinds of parameters: inputs, outputs and mutable (which is
* combination of input and output).
*
* To call a multi-function, one has to provide three things:
* - `MFParams`: This references the input and output arrays that the function works with. The
* arrays are not owned by MFParams.
* - `IndexMask`: An array of indices indicating which indices in the provided arrays should be
* touched/processed.
* - `MFContext`: Further information for the called function.
*
* A new multi-function is generally implemented as follows:
* 1. Create a new subclass of MultiFunction.
* 2. Implement a constructor that initialized the signature of the function.
* 3. Override the `call` function.
*/
#include "BLI_hash.hh"
#include "FN_multi_function_context.hh"
#include "FN_multi_function_params.hh"
namespace blender::fn {
class MultiFunction {
private:
MFSignature signature_;
public:
virtual ~MultiFunction()
{
}
virtual void call(IndexMask mask, MFParams params, MFContext context) const = 0;
virtual uint64_t hash() const
{
return DefaultHash<const MultiFunction *>{}(this);
}
virtual bool equals(const MultiFunction &UNUSED(other)) const
{
return false;
}
int param_amount() const
{
return signature_.param_types.size();
}
IndexRange param_indices() const
{
return signature_.param_types.index_range();
}
MFParamType param_type(int param_index) const
{
return signature_.param_types[param_index];
}
StringRefNull param_name(int param_index) const
{
return signature_.param_names[param_index];
}
StringRefNull name() const
{
return signature_.function_name;
}
bool depends_on_context() const
{
return signature_.depends_on_context;
}
const MFSignature &signature() const
{
return signature_;
}
protected:
MFSignatureBuilder get_builder(std::string function_name)
{
signature_.function_name = std::move(function_name);
return MFSignatureBuilder(signature_);
}
};
inline MFParamsBuilder::MFParamsBuilder(const class MultiFunction &fn, int64_t min_array_size)
: MFParamsBuilder(fn.signature(), min_array_size)
{
}
extern const MultiFunction &dummy_multi_function;
} // namespace blender::fn
#endif /* __FN_MULTI_FUNCTION_HH__ */