739 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			739 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * ***** BEGIN GPL LICENSE BLOCK *****
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * as published by the Free Software Foundation; either version 2
 | 
						|
 * of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software Foundation,
 | 
						|
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | 
						|
 *
 | 
						|
 * The Original Code is Copyright (C) 2006 Blender Foundation.
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * The Original Code is: all of this file.
 | 
						|
 *
 | 
						|
 * Contributor(s): Brecht Van Lommel.
 | 
						|
 *
 | 
						|
 * ***** END GPL LICENSE BLOCK *****
 | 
						|
 */
 | 
						|
 | 
						|
/** \file blender/gpu/intern/gpu_material.c
 | 
						|
 *  \ingroup gpu
 | 
						|
 *
 | 
						|
 * Manages materials, lights and textures.
 | 
						|
 */
 | 
						|
 | 
						|
#include <math.h>
 | 
						|
#include <string.h>
 | 
						|
 | 
						|
#include "MEM_guardedalloc.h"
 | 
						|
 | 
						|
#include "DNA_lamp_types.h"
 | 
						|
#include "DNA_material_types.h"
 | 
						|
#include "DNA_object_types.h"
 | 
						|
#include "DNA_scene_types.h"
 | 
						|
#include "DNA_world_types.h"
 | 
						|
 | 
						|
#include "BLI_math.h"
 | 
						|
#include "BLI_blenlib.h"
 | 
						|
#include "BLI_utildefines.h"
 | 
						|
#include "BLI_rand.h"
 | 
						|
#include "BLI_threads.h"
 | 
						|
 | 
						|
#include "BKE_anim.h"
 | 
						|
#include "BKE_colorband.h"
 | 
						|
#include "BKE_colortools.h"
 | 
						|
#include "BKE_global.h"
 | 
						|
#include "BKE_image.h"
 | 
						|
#include "BKE_layer.h"
 | 
						|
#include "BKE_main.h"
 | 
						|
#include "BKE_node.h"
 | 
						|
#include "BKE_scene.h"
 | 
						|
 | 
						|
#include "IMB_imbuf_types.h"
 | 
						|
 | 
						|
#include "GPU_extensions.h"
 | 
						|
#include "GPU_framebuffer.h"
 | 
						|
#include "GPU_material.h"
 | 
						|
#include "GPU_shader.h"
 | 
						|
#include "GPU_texture.h"
 | 
						|
#include "GPU_uniformbuffer.h"
 | 
						|
 | 
						|
#include "DRW_engine.h"
 | 
						|
 | 
						|
#include "gpu_codegen.h"
 | 
						|
 | 
						|
#ifdef WITH_OPENSUBDIV
 | 
						|
#  include "BKE_DerivedMesh.h"
 | 
						|
#endif
 | 
						|
 | 
						|
static ListBase g_orphaned_mat = {NULL, NULL};
 | 
						|
static ThreadMutex g_orphan_lock;
 | 
						|
 | 
						|
/* Structs */
 | 
						|
 | 
						|
struct GPUMaterial {
 | 
						|
	Scene *scene; /* DEPRECATED was only usefull for lamps */
 | 
						|
	Material *ma;
 | 
						|
 | 
						|
	/* material for mesh surface, worlds or something else.
 | 
						|
	 * some code generation is done differently depending on the use case */
 | 
						|
	int type; /* DEPRECATED */
 | 
						|
	GPUMaterialStatus status;
 | 
						|
 | 
						|
	const void *engine_type;   /* attached engine type */
 | 
						|
	int options;    /* to identify shader variations (shadow, probe, world background...) */
 | 
						|
 | 
						|
	/* for creating the material */
 | 
						|
	ListBase nodes;
 | 
						|
	GPUNodeLink *outlink;
 | 
						|
 | 
						|
	/* for binding the material */
 | 
						|
	GPUPass *pass;
 | 
						|
	ListBase inputs;  /* GPUInput */
 | 
						|
	GPUVertexAttribs attribs;
 | 
						|
	int builtins;
 | 
						|
	int alpha, obcolalpha;
 | 
						|
	int dynproperty;
 | 
						|
 | 
						|
	/* for passing uniforms */
 | 
						|
	int viewmatloc, invviewmatloc;
 | 
						|
	int obmatloc, invobmatloc;
 | 
						|
	int localtoviewmatloc, invlocaltoviewmatloc;
 | 
						|
	int obcolloc, obautobumpscaleloc;
 | 
						|
	int cameratexcofacloc;
 | 
						|
 | 
						|
	int partscalarpropsloc;
 | 
						|
	int partcoloc;
 | 
						|
	int partvel;
 | 
						|
	int partangvel;
 | 
						|
 | 
						|
	int objectinfoloc;
 | 
						|
 | 
						|
	bool is_opensubdiv;
 | 
						|
 | 
						|
	/* XXX: Should be in Material. But it depends on the output node
 | 
						|
	 * used and since the output selection is difference for GPUMaterial...
 | 
						|
	 */
 | 
						|
	int domain;
 | 
						|
 | 
						|
	/* Used by 2.8 pipeline */
 | 
						|
	GPUUniformBuffer *ubo; /* UBOs for shader uniforms. */
 | 
						|
 | 
						|
	/* Eevee SSS */
 | 
						|
	GPUUniformBuffer *sss_profile; /* UBO containing SSS profile. */
 | 
						|
	GPUTexture *sss_tex_profile; /* Texture containing SSS profile. */
 | 
						|
	float sss_enabled;
 | 
						|
	float sss_radii[3];
 | 
						|
	int sss_samples;
 | 
						|
	short int sss_falloff;
 | 
						|
	float sss_sharpness;
 | 
						|
	bool sss_dirty;
 | 
						|
};
 | 
						|
 | 
						|
enum {
 | 
						|
	GPU_DOMAIN_SURFACE    = (1 << 0),
 | 
						|
	GPU_DOMAIN_VOLUME     = (1 << 1),
 | 
						|
	GPU_DOMAIN_SSS        = (1 << 2)
 | 
						|
};
 | 
						|
 | 
						|
/* Functions */
 | 
						|
 | 
						|
static void gpu_material_free_single(GPUMaterial *material)
 | 
						|
{
 | 
						|
	/* Cancel / wait any pending lazy compilation. */
 | 
						|
	DRW_deferred_shader_remove(material);
 | 
						|
 | 
						|
	GPU_pass_free_nodes(&material->nodes);
 | 
						|
	GPU_inputs_free(&material->inputs);
 | 
						|
 | 
						|
	if (material->pass)
 | 
						|
		GPU_pass_release(material->pass);
 | 
						|
 | 
						|
	if (material->ubo != NULL) {
 | 
						|
		GPU_uniformbuffer_free(material->ubo);
 | 
						|
	}
 | 
						|
 | 
						|
	if (material->sss_tex_profile != NULL) {
 | 
						|
		GPU_texture_free(material->sss_tex_profile);
 | 
						|
	}
 | 
						|
 | 
						|
	if (material->sss_profile != NULL) {
 | 
						|
		GPU_uniformbuffer_free(material->sss_profile);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void GPU_material_free(ListBase *gpumaterial)
 | 
						|
{
 | 
						|
	for (LinkData *link = gpumaterial->first; link; link = link->next) {
 | 
						|
		GPUMaterial *material = link->data;
 | 
						|
 | 
						|
		/* TODO(fclem): Check if the thread has an ogl context. */
 | 
						|
		if (BLI_thread_is_main()) {
 | 
						|
			gpu_material_free_single(material);
 | 
						|
			MEM_freeN(material);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			BLI_mutex_lock(&g_orphan_lock);
 | 
						|
			BLI_addtail(&g_orphaned_mat, BLI_genericNodeN(material));
 | 
						|
			BLI_mutex_unlock(&g_orphan_lock);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	BLI_freelistN(gpumaterial);
 | 
						|
}
 | 
						|
 | 
						|
void GPU_material_orphans_init(void)
 | 
						|
{
 | 
						|
	BLI_mutex_init(&g_orphan_lock);
 | 
						|
}
 | 
						|
 | 
						|
void GPU_material_orphans_delete(void)
 | 
						|
{
 | 
						|
	BLI_mutex_lock(&g_orphan_lock);
 | 
						|
	LinkData *link;
 | 
						|
	while ((link = BLI_pophead(&g_orphaned_mat))) {
 | 
						|
		gpu_material_free_single((GPUMaterial *)link->data);
 | 
						|
		MEM_freeN(link->data);
 | 
						|
		MEM_freeN(link);
 | 
						|
	}
 | 
						|
	BLI_mutex_unlock(&g_orphan_lock);
 | 
						|
}
 | 
						|
 | 
						|
void GPU_material_orphans_exit(void)
 | 
						|
{
 | 
						|
	GPU_material_orphans_delete();
 | 
						|
	BLI_mutex_end(&g_orphan_lock);
 | 
						|
}
 | 
						|
 | 
						|
GPUBuiltin GPU_get_material_builtins(GPUMaterial *material)
 | 
						|
{
 | 
						|
	return material->builtins;
 | 
						|
}
 | 
						|
 | 
						|
Scene *GPU_material_scene(GPUMaterial *material)
 | 
						|
{
 | 
						|
	return material->scene;
 | 
						|
}
 | 
						|
 | 
						|
GPUMatType GPU_Material_get_type(GPUMaterial *material)
 | 
						|
{
 | 
						|
	return material->type;
 | 
						|
}
 | 
						|
 | 
						|
GPUPass *GPU_material_get_pass(GPUMaterial *material)
 | 
						|
{
 | 
						|
	return material->pass;
 | 
						|
}
 | 
						|
 | 
						|
ListBase *GPU_material_get_inputs(GPUMaterial *material)
 | 
						|
{
 | 
						|
	return &material->inputs;
 | 
						|
}
 | 
						|
 | 
						|
GPUUniformBuffer *GPU_material_uniform_buffer_get(GPUMaterial *material)
 | 
						|
{
 | 
						|
	return material->ubo;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Create dynamic UBO from parameters
 | 
						|
 * \param ListBase of BLI_genericNodeN(GPUInput)
 | 
						|
 */
 | 
						|
void GPU_material_uniform_buffer_create(GPUMaterial *material, ListBase *inputs)
 | 
						|
{
 | 
						|
	material->ubo = GPU_uniformbuffer_dynamic_create(inputs, NULL);
 | 
						|
}
 | 
						|
 | 
						|
/* Eevee Subsurface scattering. */
 | 
						|
/* Based on Separable SSS. by Jorge Jimenez and Diego Gutierrez */
 | 
						|
 | 
						|
#define SSS_SAMPLES 65
 | 
						|
#define SSS_EXPONENT 2.0f /* Importance sampling exponent */
 | 
						|
 | 
						|
typedef struct GPUSssKernelData {
 | 
						|
	float kernel[SSS_SAMPLES][4];
 | 
						|
	float param[3], max_radius;
 | 
						|
	int samples;
 | 
						|
} GPUSssKernelData;
 | 
						|
 | 
						|
static void sss_calculate_offsets(GPUSssKernelData *kd, int count, float exponent)
 | 
						|
{
 | 
						|
	float step = 2.0f / (float)(count - 1);
 | 
						|
	for (int i = 0; i < count; i++) {
 | 
						|
		float o = ((float)i) * step - 1.0f;
 | 
						|
		float sign = (o < 0.0f) ? -1.0f : 1.0f;
 | 
						|
		float ofs = sign * fabsf(powf(o, exponent));
 | 
						|
		kd->kernel[i][3] = ofs;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#define GAUSS_TRUNCATE 12.46f
 | 
						|
static float gaussian_profile(float r, float radius)
 | 
						|
{
 | 
						|
	const float v = radius * radius * (0.25f * 0.25f);
 | 
						|
	const float Rm = sqrtf(v * GAUSS_TRUNCATE);
 | 
						|
 | 
						|
	if (r >= Rm) {
 | 
						|
		return 0.0f;
 | 
						|
	}
 | 
						|
	return expf(-r * r / (2.0f * v)) / (2.0f * M_PI * v);
 | 
						|
}
 | 
						|
 | 
						|
#define BURLEY_TRUNCATE     16.0f
 | 
						|
#define BURLEY_TRUNCATE_CDF 0.9963790093708328f // cdf(BURLEY_TRUNCATE)
 | 
						|
static float burley_profile(float r, float d)
 | 
						|
{
 | 
						|
	float exp_r_3_d = expf(-r / (3.0f * d));
 | 
						|
	float exp_r_d = exp_r_3_d * exp_r_3_d * exp_r_3_d;
 | 
						|
	return (exp_r_d + exp_r_3_d) / (4.0f * d);
 | 
						|
}
 | 
						|
 | 
						|
static float cubic_profile(float r, float radius, float sharpness)
 | 
						|
{
 | 
						|
	float Rm = radius * (1.0f + sharpness);
 | 
						|
 | 
						|
	if (r >= Rm) {
 | 
						|
		return 0.0f;
 | 
						|
	}
 | 
						|
	/* custom variation with extra sharpness, to match the previous code */
 | 
						|
	const float y = 1.0f / (1.0f + sharpness);
 | 
						|
	float Rmy, ry, ryinv;
 | 
						|
 | 
						|
	Rmy = powf(Rm, y);
 | 
						|
	ry = powf(r, y);
 | 
						|
	ryinv = (r > 0.0f) ? powf(r, y - 1.0f) : 0.0f;
 | 
						|
 | 
						|
	const float Rmy5 = (Rmy * Rmy) * (Rmy * Rmy) * Rmy;
 | 
						|
	const float f = Rmy - ry;
 | 
						|
	const float num = f * (f * f) * (y * ryinv);
 | 
						|
 | 
						|
	return (10.0f * num) / (Rmy5 * M_PI);
 | 
						|
}
 | 
						|
 | 
						|
static float eval_profile(float r, short falloff_type, float sharpness, float param)
 | 
						|
{
 | 
						|
	r = fabsf(r);
 | 
						|
 | 
						|
	if (falloff_type == SHD_SUBSURFACE_BURLEY ||
 | 
						|
	    falloff_type == SHD_SUBSURFACE_RANDOM_WALK)
 | 
						|
	{
 | 
						|
		return burley_profile(r, param) / BURLEY_TRUNCATE_CDF;
 | 
						|
	}
 | 
						|
	else if (falloff_type == SHD_SUBSURFACE_CUBIC) {
 | 
						|
		return cubic_profile(r, param, sharpness);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		return gaussian_profile(r, param);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Resolution for each sample of the precomputed kernel profile */
 | 
						|
#define INTEGRAL_RESOLUTION 32
 | 
						|
static float eval_integral(float x0, float x1, short falloff_type, float sharpness, float param)
 | 
						|
{
 | 
						|
	const float range = x1 - x0;
 | 
						|
	const float step = range / INTEGRAL_RESOLUTION;
 | 
						|
	float integral = 0.0f;
 | 
						|
 | 
						|
	for (int i = 0; i < INTEGRAL_RESOLUTION; ++i) {
 | 
						|
		float x = x0 + range * ((float)i + 0.5f) / (float)INTEGRAL_RESOLUTION;
 | 
						|
		float y = eval_profile(x, falloff_type, sharpness, param);
 | 
						|
		integral += y * step;
 | 
						|
	}
 | 
						|
 | 
						|
	return integral;
 | 
						|
}
 | 
						|
#undef INTEGRAL_RESOLUTION
 | 
						|
 | 
						|
static void compute_sss_kernel(
 | 
						|
        GPUSssKernelData *kd, float radii[3], int sample_ct, int falloff_type, float sharpness)
 | 
						|
{
 | 
						|
	float rad[3];
 | 
						|
	/* Minimum radius */
 | 
						|
	rad[0] = MAX2(radii[0], 1e-15f);
 | 
						|
	rad[1] = MAX2(radii[1], 1e-15f);
 | 
						|
	rad[2] = MAX2(radii[2], 1e-15f);
 | 
						|
 | 
						|
	/* Christensen-Burley fitting */
 | 
						|
	float l[3], d[3];
 | 
						|
 | 
						|
	if (falloff_type == SHD_SUBSURFACE_BURLEY ||
 | 
						|
	    falloff_type == SHD_SUBSURFACE_RANDOM_WALK)
 | 
						|
	{
 | 
						|
		mul_v3_v3fl(l, rad, 0.25f * M_1_PI);
 | 
						|
		const float A = 1.0f;
 | 
						|
		const float s = 1.9f - A + 3.5f * (A - 0.8f) * (A - 0.8f);
 | 
						|
		/* XXX 0.6f Out of nowhere to match cycles! Empirical! Can be tweak better. */
 | 
						|
		mul_v3_v3fl(d, l, 0.6f / s);
 | 
						|
		mul_v3_v3fl(rad, d, BURLEY_TRUNCATE);
 | 
						|
		kd->max_radius = MAX3(rad[0], rad[1], rad[2]);
 | 
						|
 | 
						|
		copy_v3_v3(kd->param, d);
 | 
						|
	}
 | 
						|
	else if (falloff_type == SHD_SUBSURFACE_CUBIC) {
 | 
						|
		copy_v3_v3(kd->param, rad);
 | 
						|
		mul_v3_fl(rad, 1.0f + sharpness);
 | 
						|
		kd->max_radius = MAX3(rad[0], rad[1], rad[2]);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		kd->max_radius = MAX3(rad[0], rad[1], rad[2]);
 | 
						|
 | 
						|
		copy_v3_v3(kd->param, rad);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Compute samples locations on the 1d kernel [-1..1] */
 | 
						|
	sss_calculate_offsets(kd, sample_ct, SSS_EXPONENT);
 | 
						|
 | 
						|
	/* Weights sum for normalization */
 | 
						|
	float sum[3] = {0.0f, 0.0f, 0.0f};
 | 
						|
 | 
						|
	/* Compute integral of each sample footprint */
 | 
						|
	for (int i = 0; i < sample_ct; i++) {
 | 
						|
		float x0, x1;
 | 
						|
 | 
						|
		if (i == 0) {
 | 
						|
			x0 = kd->kernel[0][3] - fabsf(kd->kernel[0][3] - kd->kernel[1][3]) / 2.0f;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			x0 = (kd->kernel[i - 1][3] + kd->kernel[i][3]) / 2.0f;
 | 
						|
		}
 | 
						|
 | 
						|
		if (i == sample_ct - 1) {
 | 
						|
			x1 = kd->kernel[sample_ct - 1][3] + fabsf(kd->kernel[sample_ct - 2][3] - kd->kernel[sample_ct - 1][3]) / 2.0f;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			x1 = (kd->kernel[i][3] + kd->kernel[i + 1][3]) / 2.0f;
 | 
						|
		}
 | 
						|
 | 
						|
		x0 *= kd->max_radius;
 | 
						|
		x1 *= kd->max_radius;
 | 
						|
 | 
						|
		kd->kernel[i][0] = eval_integral(x0, x1, falloff_type, sharpness, kd->param[0]);
 | 
						|
		kd->kernel[i][1] = eval_integral(x0, x1, falloff_type, sharpness, kd->param[1]);
 | 
						|
		kd->kernel[i][2] = eval_integral(x0, x1, falloff_type, sharpness, kd->param[2]);
 | 
						|
 | 
						|
		sum[0] += kd->kernel[i][0];
 | 
						|
		sum[1] += kd->kernel[i][1];
 | 
						|
		sum[2] += kd->kernel[i][2];
 | 
						|
	}
 | 
						|
 | 
						|
	for (int i = 0; i < 3; ++i) {
 | 
						|
		if (sum[i] > 0.0f) {
 | 
						|
			/* Normalize */
 | 
						|
			for (int j = 0; j < sample_ct; j++) {
 | 
						|
				kd->kernel[j][i] /= sum[i];
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			/* Avoid 0 kernel sum. */
 | 
						|
			kd->kernel[sample_ct / 2][i] = 1.0f;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Put center sample at the start of the array (to sample first) */
 | 
						|
	float tmpv[4];
 | 
						|
	copy_v4_v4(tmpv, kd->kernel[sample_ct / 2]);
 | 
						|
	for (int i = sample_ct / 2; i > 0; i--) {
 | 
						|
		copy_v4_v4(kd->kernel[i], kd->kernel[i - 1]);
 | 
						|
	}
 | 
						|
	copy_v4_v4(kd->kernel[0], tmpv);
 | 
						|
 | 
						|
	kd->samples = sample_ct;
 | 
						|
}
 | 
						|
 | 
						|
#define INTEGRAL_RESOLUTION 512
 | 
						|
static void compute_sss_translucence_kernel(
 | 
						|
        const GPUSssKernelData *kd, int resolution, short falloff_type, float sharpness, float **output)
 | 
						|
{
 | 
						|
	float (*texels)[4];
 | 
						|
	texels = MEM_callocN(sizeof(float) * 4 * resolution, "compute_sss_translucence_kernel");
 | 
						|
	*output = (float *)texels;
 | 
						|
 | 
						|
	/* Last texel should be black, hence the - 1. */
 | 
						|
	for (int i = 0; i < resolution - 1; ++i) {
 | 
						|
		/* Distance from surface. */
 | 
						|
		float d = kd->max_radius * ((float)i + 0.00001f) / ((float)resolution);
 | 
						|
 | 
						|
		/* For each distance d we compute the radiance incomming from an hypothetic parallel plane. */
 | 
						|
		/* Compute radius of the footprint on the hypothetic plane */
 | 
						|
		float r_fp = sqrtf(kd->max_radius * kd->max_radius - d * d);
 | 
						|
		float r_step = r_fp / INTEGRAL_RESOLUTION;
 | 
						|
		float area_accum = 0.0f;
 | 
						|
		for (float r = 0.0f; r < r_fp; r += r_step) {
 | 
						|
			/* Compute distance to the "shading" point through the medium. */
 | 
						|
			/* r_step * 0.5f to put sample between the area borders */
 | 
						|
			float dist = hypotf(r + r_step * 0.5f, d);
 | 
						|
 | 
						|
			float profile[3];
 | 
						|
			profile[0] = eval_profile(dist, falloff_type, sharpness, kd->param[0]);
 | 
						|
			profile[1] = eval_profile(dist, falloff_type, sharpness, kd->param[1]);
 | 
						|
			profile[2] = eval_profile(dist, falloff_type, sharpness, kd->param[2]);
 | 
						|
 | 
						|
			/* Since the profile and configuration are radially symetrical we
 | 
						|
			 * can just evaluate it once and weight it accordingly */
 | 
						|
			float r_next = r + r_step;
 | 
						|
			float disk_area = (M_PI * r_next * r_next) - (M_PI * r * r);
 | 
						|
 | 
						|
			mul_v3_fl(profile, disk_area);
 | 
						|
			add_v3_v3(texels[i], profile);
 | 
						|
			area_accum += disk_area;
 | 
						|
		}
 | 
						|
		/* Normalize over the disk. */
 | 
						|
		mul_v3_fl(texels[i], 1.0f / (area_accum));
 | 
						|
	}
 | 
						|
 | 
						|
	/* Normalize */
 | 
						|
	for (int j = resolution - 2; j > 0; j--) {
 | 
						|
		texels[j][0] /= (texels[0][0] > 0.0f) ? texels[0][0] : 1.0f;
 | 
						|
		texels[j][1] /= (texels[0][1] > 0.0f) ? texels[0][1] : 1.0f;
 | 
						|
		texels[j][2] /= (texels[0][2] > 0.0f) ? texels[0][2] : 1.0f;
 | 
						|
	}
 | 
						|
 | 
						|
	/* First texel should be white */
 | 
						|
	texels[0][0] = (texels[0][0] > 0.0f) ? 1.0f : 0.0f;
 | 
						|
	texels[0][1] = (texels[0][1] > 0.0f) ? 1.0f : 0.0f;
 | 
						|
	texels[0][2] = (texels[0][2] > 0.0f) ? 1.0f : 0.0f;
 | 
						|
 | 
						|
	/* dim the last few texels for smoother transition */
 | 
						|
	mul_v3_fl(texels[resolution - 2], 0.25f);
 | 
						|
	mul_v3_fl(texels[resolution - 3], 0.5f);
 | 
						|
	mul_v3_fl(texels[resolution - 4], 0.75f);
 | 
						|
}
 | 
						|
#undef INTEGRAL_RESOLUTION
 | 
						|
 | 
						|
void GPU_material_sss_profile_create(GPUMaterial *material, float radii[3], short *falloff_type, float *sharpness)
 | 
						|
{
 | 
						|
	copy_v3_v3(material->sss_radii, radii);
 | 
						|
	material->sss_falloff = (falloff_type) ? *falloff_type : 0.0;
 | 
						|
	material->sss_sharpness = (sharpness) ? *sharpness : 0.0;
 | 
						|
	material->sss_dirty = true;
 | 
						|
	material->sss_enabled = true;
 | 
						|
 | 
						|
	/* Update / Create UBO */
 | 
						|
	if (material->sss_profile == NULL) {
 | 
						|
		material->sss_profile = GPU_uniformbuffer_create(sizeof(GPUSssKernelData), NULL, NULL);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
struct GPUUniformBuffer *GPU_material_sss_profile_get(GPUMaterial *material, int sample_ct, GPUTexture **tex_profile)
 | 
						|
{
 | 
						|
	if (!material->sss_enabled)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (material->sss_dirty || (material->sss_samples != sample_ct)) {
 | 
						|
		GPUSssKernelData kd;
 | 
						|
 | 
						|
		float sharpness = material->sss_sharpness;
 | 
						|
 | 
						|
		/* XXX Black magic but it seems to fit. Maybe because we integrate -1..1 */
 | 
						|
		sharpness *= 0.5f;
 | 
						|
 | 
						|
		compute_sss_kernel(&kd, material->sss_radii, sample_ct, material->sss_falloff, sharpness);
 | 
						|
 | 
						|
		/* Update / Create UBO */
 | 
						|
		GPU_uniformbuffer_update(material->sss_profile, &kd);
 | 
						|
 | 
						|
		/* Update / Create Tex */
 | 
						|
		float *translucence_profile;
 | 
						|
		compute_sss_translucence_kernel(&kd, 64, material->sss_falloff, sharpness, &translucence_profile);
 | 
						|
 | 
						|
		if (material->sss_tex_profile != NULL) {
 | 
						|
			GPU_texture_free(material->sss_tex_profile);
 | 
						|
		}
 | 
						|
 | 
						|
		material->sss_tex_profile = GPU_texture_create_1D(64, GPU_RGBA16F, translucence_profile, NULL);
 | 
						|
 | 
						|
		MEM_freeN(translucence_profile);
 | 
						|
 | 
						|
		material->sss_samples = sample_ct;
 | 
						|
		material->sss_dirty = false;
 | 
						|
	}
 | 
						|
 | 
						|
	if (tex_profile != NULL) {
 | 
						|
		*tex_profile = material->sss_tex_profile;
 | 
						|
	}
 | 
						|
	return material->sss_profile;
 | 
						|
}
 | 
						|
 | 
						|
#undef SSS_EXPONENT
 | 
						|
#undef SSS_SAMPLES
 | 
						|
 | 
						|
void GPU_material_vertex_attributes(GPUMaterial *material, GPUVertexAttribs *attribs)
 | 
						|
{
 | 
						|
	*attribs = material->attribs;
 | 
						|
}
 | 
						|
 | 
						|
void GPU_material_output_link(GPUMaterial *material, GPUNodeLink *link)
 | 
						|
{
 | 
						|
	if (!material->outlink)
 | 
						|
		material->outlink = link;
 | 
						|
}
 | 
						|
 | 
						|
void gpu_material_add_node(GPUMaterial *material, GPUNode *node)
 | 
						|
{
 | 
						|
	BLI_addtail(&material->nodes, node);
 | 
						|
}
 | 
						|
 | 
						|
/* Return true if the material compilation has not yet begin or begin. */
 | 
						|
GPUMaterialStatus GPU_material_status(GPUMaterial *mat)
 | 
						|
{
 | 
						|
	return mat->status;
 | 
						|
}
 | 
						|
 | 
						|
/* Code generation */
 | 
						|
 | 
						|
bool GPU_material_do_color_management(GPUMaterial *mat)
 | 
						|
{
 | 
						|
	if (!BKE_scene_check_color_management_enabled(mat->scene))
 | 
						|
		return false;
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
bool GPU_material_use_domain_surface(GPUMaterial *mat)
 | 
						|
{
 | 
						|
	return (mat->domain & GPU_DOMAIN_SURFACE);
 | 
						|
}
 | 
						|
 | 
						|
bool GPU_material_use_domain_volume(GPUMaterial *mat)
 | 
						|
{
 | 
						|
	return (mat->domain & GPU_DOMAIN_VOLUME);
 | 
						|
}
 | 
						|
 | 
						|
GPUMaterial *GPU_material_from_nodetree_find(
 | 
						|
        ListBase *gpumaterials, const void *engine_type, int options)
 | 
						|
{
 | 
						|
	for (LinkData *link = gpumaterials->first; link; link = link->next) {
 | 
						|
		GPUMaterial *current_material = (GPUMaterial *)link->data;
 | 
						|
		if (current_material->engine_type == engine_type &&
 | 
						|
		    current_material->options == options)
 | 
						|
		{
 | 
						|
			return current_material;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * \note Caller must use #GPU_material_from_nodetree_find to re-use existing materials,
 | 
						|
 * This is enforced since constructing other arguments to this function may be expensive
 | 
						|
 * so only do this when they are needed.
 | 
						|
 */
 | 
						|
GPUMaterial *GPU_material_from_nodetree(
 | 
						|
        Scene *scene, struct bNodeTree *ntree, ListBase *gpumaterials, const void *engine_type, int options,
 | 
						|
        const char *vert_code, const char *geom_code, const char *frag_lib, const char *defines)
 | 
						|
{
 | 
						|
	LinkData *link;
 | 
						|
	bool has_volume_output, has_surface_output;
 | 
						|
 | 
						|
	/* Caller must re-use materials. */
 | 
						|
	BLI_assert(GPU_material_from_nodetree_find(gpumaterials, engine_type, options) == NULL);
 | 
						|
 | 
						|
	/* allocate material */
 | 
						|
	GPUMaterial *mat = MEM_callocN(sizeof(GPUMaterial), "GPUMaterial");;
 | 
						|
	mat->scene = scene;
 | 
						|
	mat->engine_type = engine_type;
 | 
						|
	mat->options = options;
 | 
						|
 | 
						|
	ntreeGPUMaterialNodes(ntree, mat, &has_surface_output, &has_volume_output);
 | 
						|
 | 
						|
	if (has_surface_output) {
 | 
						|
		mat->domain |= GPU_DOMAIN_SURFACE;
 | 
						|
	}
 | 
						|
	if (has_volume_output) {
 | 
						|
		mat->domain |= GPU_DOMAIN_VOLUME;
 | 
						|
	}
 | 
						|
 | 
						|
	if (mat->outlink) {
 | 
						|
		/* Prune the unused nodes and extract attribs before compiling so the
 | 
						|
		 * generated VBOs are ready to accept the future shader. */
 | 
						|
		GPU_nodes_prune(&mat->nodes, mat->outlink);
 | 
						|
		GPU_nodes_get_vertex_attributes(&mat->nodes, &mat->attribs);
 | 
						|
		/* Create source code and search pass cache for an already compiled version. */
 | 
						|
		mat->pass = GPU_generate_pass_new(mat,
 | 
						|
		                      mat->outlink,
 | 
						|
		                      &mat->attribs,
 | 
						|
		                      &mat->nodes,
 | 
						|
		                      vert_code,
 | 
						|
		                      geom_code,
 | 
						|
		                      frag_lib,
 | 
						|
		                      defines);
 | 
						|
 | 
						|
		if (mat->pass == NULL) {
 | 
						|
			/* We had a cache hit and the shader has already failed to compile. */
 | 
						|
			mat->status = GPU_MAT_FAILED;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			GPUShader *sh = GPU_pass_shader_get(mat->pass);
 | 
						|
			if (sh != NULL) {
 | 
						|
				/* We had a cache hit and the shader is already compiled. */
 | 
						|
				mat->status = GPU_MAT_SUCCESS;
 | 
						|
				GPU_nodes_extract_dynamic_inputs(sh, &mat->inputs, &mat->nodes);
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				mat->status = GPU_MAT_QUEUED;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		mat->status = GPU_MAT_FAILED;
 | 
						|
	}
 | 
						|
 | 
						|
	/* note that even if building the shader fails in some way, we still keep
 | 
						|
	 * it to avoid trying to compile again and again, and simply do not use
 | 
						|
	 * the actual shader on drawing */
 | 
						|
 | 
						|
	link = MEM_callocN(sizeof(LinkData), "GPUMaterialLink");
 | 
						|
	link->data = mat;
 | 
						|
	BLI_addtail(gpumaterials, link);
 | 
						|
 | 
						|
	return mat;
 | 
						|
}
 | 
						|
 | 
						|
void GPU_material_compile(GPUMaterial *mat)
 | 
						|
{
 | 
						|
	/* Only run once! */
 | 
						|
	BLI_assert(mat->status == GPU_MAT_QUEUED);
 | 
						|
	BLI_assert(mat->pass);
 | 
						|
 | 
						|
	/* NOTE: The shader may have already been compiled here since we are
 | 
						|
	 * sharing GPUShader across GPUMaterials. In this case it's a no-op. */
 | 
						|
	GPU_pass_compile(mat->pass);
 | 
						|
	GPUShader *sh = GPU_pass_shader_get(mat->pass);
 | 
						|
 | 
						|
	if (sh != NULL) {
 | 
						|
		mat->status = GPU_MAT_SUCCESS;
 | 
						|
		GPU_nodes_extract_dynamic_inputs(sh, &mat->inputs, &mat->nodes);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		mat->status = GPU_MAT_FAILED;
 | 
						|
		GPU_pass_free_nodes(&mat->nodes);
 | 
						|
		GPU_pass_release(mat->pass);
 | 
						|
		mat->pass = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void GPU_materials_free(Main *bmain)
 | 
						|
{
 | 
						|
	Material *ma;
 | 
						|
	World *wo;
 | 
						|
	extern Material defmaterial;
 | 
						|
 | 
						|
	for (ma = bmain->mat.first; ma; ma = ma->id.next)
 | 
						|
		GPU_material_free(&ma->gpumaterial);
 | 
						|
 | 
						|
	for (wo = bmain->world.first; wo; wo = wo->id.next)
 | 
						|
		GPU_material_free(&wo->gpumaterial);
 | 
						|
 | 
						|
	GPU_material_free(&defmaterial.gpumaterial);
 | 
						|
}
 |