1540 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1540 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ***** BEGIN GPL LICENSE BLOCK *****
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | |
|  *
 | |
|  * Contributor(s): Joseph Gilbert, Campbell Barton
 | |
|  *
 | |
|  * ***** END GPL LICENSE BLOCK *****
 | |
|  */
 | |
| 
 | |
| /** \file blender/python/mathutils/mathutils_geometry.c
 | |
|  *  \ingroup pymathutils
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include <Python.h>
 | |
| 
 | |
| #include "mathutils.h"
 | |
| #include "mathutils_geometry.h"
 | |
| 
 | |
| /* Used for PolyFill */
 | |
| #ifndef MATH_STANDALONE /* define when building outside blender */
 | |
| #  include "MEM_guardedalloc.h"
 | |
| #  include "BLI_blenlib.h"
 | |
| #  include "BLI_boxpack2d.h"
 | |
| #  include "BLI_convexhull2d.h"
 | |
| #  include "BKE_displist.h"
 | |
| #  include "BKE_curve.h"
 | |
| #endif
 | |
| 
 | |
| #include "BLI_math.h"
 | |
| #include "BLI_utildefines.h"
 | |
| 
 | |
| #include "../generic/py_capi_utils.h"
 | |
| #include "../generic/python_utildefines.h"
 | |
| 
 | |
| /*-------------------------DOC STRINGS ---------------------------*/
 | |
| PyDoc_STRVAR(M_Geometry_doc,
 | |
| "The Blender geometry module"
 | |
| );
 | |
| 
 | |
| /* ---------------------------------INTERSECTION FUNCTIONS-------------------- */
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_intersect_ray_tri_doc,
 | |
| ".. function:: intersect_ray_tri(v1, v2, v3, ray, orig, clip=True)\n"
 | |
| "\n"
 | |
| "   Returns the intersection between a ray and a triangle, if possible, returns None otherwise.\n"
 | |
| "\n"
 | |
| "   :arg v1: Point1\n"
 | |
| "   :type v1: :class:`mathutils.Vector`\n"
 | |
| "   :arg v2: Point2\n"
 | |
| "   :type v2: :class:`mathutils.Vector`\n"
 | |
| "   :arg v3: Point3\n"
 | |
| "   :type v3: :class:`mathutils.Vector`\n"
 | |
| "   :arg ray: Direction of the projection\n"
 | |
| "   :type ray: :class:`mathutils.Vector`\n"
 | |
| "   :arg orig: Origin\n"
 | |
| "   :type orig: :class:`mathutils.Vector`\n"
 | |
| "   :arg clip: When False, don't restrict the intersection to the area of the triangle, use the infinite plane defined by the triangle.\n"
 | |
| "   :type clip: boolean\n"
 | |
| "   :return: The point of intersection or None if no intersection is found\n"
 | |
| "   :rtype: :class:`mathutils.Vector` or None\n"
 | |
| );
 | |
| static PyObject *M_Geometry_intersect_ray_tri(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	const char *error_prefix = "intersect_ray_tri";
 | |
| 	PyObject *py_ray, *py_ray_off, *py_tri[3];
 | |
| 	float dir[3], orig[3], tri[3][3], e1[3], e2[3], pvec[3], tvec[3], qvec[3];
 | |
| 	float det, inv_det, u, v, t;
 | |
| 	bool clip = true;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(
 | |
| 	        args, "OOOOO|O&:intersect_ray_tri",
 | |
| 	        UNPACK3_EX(&, py_tri, ),
 | |
| 	        &py_ray, &py_ray_off,
 | |
| 	        PyC_ParseBool, &clip))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (((mathutils_array_parse(dir, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_ray, error_prefix) != -1) &&
 | |
| 	     (mathutils_array_parse(orig, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_ray_off, error_prefix) != -1)) == 0)
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(tri); i++) {
 | |
| 		if (mathutils_array_parse(tri[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_tri[i], error_prefix) == -1) {
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	normalize_v3(dir);
 | |
| 
 | |
| 	/* find vectors for two edges sharing v1 */
 | |
| 	sub_v3_v3v3(e1, tri[1], tri[0]);
 | |
| 	sub_v3_v3v3(e2, tri[2], tri[0]);
 | |
| 
 | |
| 	/* begin calculating determinant - also used to calculated U parameter */
 | |
| 	cross_v3_v3v3(pvec, dir, e2);
 | |
| 
 | |
| 	/* if determinant is near zero, ray lies in plane of triangle */
 | |
| 	det = dot_v3v3(e1, pvec);
 | |
| 
 | |
| 	if (det > -0.000001f && det < 0.000001f) {
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| 
 | |
| 	inv_det = 1.0f / det;
 | |
| 
 | |
| 	/* calculate distance from v1 to ray origin */
 | |
| 	sub_v3_v3v3(tvec, orig, tri[0]);
 | |
| 
 | |
| 	/* calculate U parameter and test bounds */
 | |
| 	u = dot_v3v3(tvec, pvec) * inv_det;
 | |
| 	if (clip && (u < 0.0f || u > 1.0f)) {
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| 
 | |
| 	/* prepare to test the V parameter */
 | |
| 	cross_v3_v3v3(qvec, tvec, e1);
 | |
| 
 | |
| 	/* calculate V parameter and test bounds */
 | |
| 	v = dot_v3v3(dir, qvec) * inv_det;
 | |
| 
 | |
| 	if (clip && (v < 0.0f || u + v > 1.0f)) {
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| 
 | |
| 	/* calculate t, ray intersects triangle */
 | |
| 	t = dot_v3v3(e2, qvec) * inv_det;
 | |
| 
 | |
| 	/* ray hit behind */
 | |
| 	if (t < 0.0f) {
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| 
 | |
| 	mul_v3_fl(dir, t);
 | |
| 	add_v3_v3v3(pvec, orig, dir);
 | |
| 
 | |
| 	return Vector_CreatePyObject(pvec, 3, NULL);
 | |
| }
 | |
| 
 | |
| /* Line-Line intersection using algorithm from mathworld.wolfram.com */
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_intersect_line_line_doc,
 | |
| ".. function:: intersect_line_line(v1, v2, v3, v4)\n"
 | |
| "\n"
 | |
| "   Returns a tuple with the points on each line respectively closest to the other.\n"
 | |
| "\n"
 | |
| "   :arg v1: First point of the first line\n"
 | |
| "   :type v1: :class:`mathutils.Vector`\n"
 | |
| "   :arg v2: Second point of the first line\n"
 | |
| "   :type v2: :class:`mathutils.Vector`\n"
 | |
| "   :arg v3: First point of the second line\n"
 | |
| "   :type v3: :class:`mathutils.Vector`\n"
 | |
| "   :arg v4: Second point of the second line\n"
 | |
| "   :type v4: :class:`mathutils.Vector`\n"
 | |
| "   :rtype: tuple of :class:`mathutils.Vector`'s\n"
 | |
| );
 | |
| static PyObject *M_Geometry_intersect_line_line(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	const char *error_prefix = "intersect_line_line";
 | |
| 	PyObject *tuple;
 | |
| 	PyObject *py_lines[4];
 | |
| 	float lines[4][3], i1[3], i2[3];
 | |
| 	int len;
 | |
| 	int result;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(
 | |
| 	        args, "OOOO:intersect_line_line",
 | |
| 	        UNPACK4_EX(&, py_lines, )))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if ((((len = mathutils_array_parse(lines[0], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_lines[0], error_prefix)) != -1) &&
 | |
| 	     (mathutils_array_parse(lines[1], len, len | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_lines[1], error_prefix) != -1) &&
 | |
| 	     (mathutils_array_parse(lines[2], len, len | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_lines[2], error_prefix) != -1) &&
 | |
| 	     (mathutils_array_parse(lines[3], len, len | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_lines[3], error_prefix) != -1)) == 0)
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	result = isect_line_line_v3(UNPACK4(lines), i1, i2);
 | |
| 	/* The return-code isnt exposed,
 | |
| 	 * this way we can check know how close the lines are. */
 | |
| 	if (result == 1) {
 | |
| 		closest_to_line_v3(i2, i1, lines[2], lines[3]);
 | |
| 	}
 | |
| 
 | |
| 	if (result == 0) {
 | |
| 		/* collinear */
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| 	else {
 | |
| 		tuple = PyTuple_New(2);
 | |
| 		PyTuple_SET_ITEMS(tuple,
 | |
| 		        Vector_CreatePyObject(i1, len, NULL),
 | |
| 		        Vector_CreatePyObject(i2, len, NULL));
 | |
| 		return tuple;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Line-Line intersection using algorithm from mathworld.wolfram.com */
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_intersect_sphere_sphere_2d_doc,
 | |
| ".. function:: intersect_sphere_sphere_2d(p_a, radius_a, p_b, radius_b)\n"
 | |
| "\n"
 | |
| "   Returns 2 points on between intersecting circles.\n"
 | |
| "\n"
 | |
| "   :arg p_a: Center of the first circle\n"
 | |
| "   :type p_a: :class:`mathutils.Vector`\n"
 | |
| "   :arg radius_a: Radius of the first circle\n"
 | |
| "   :type radius_a: float\n"
 | |
| "   :arg p_b: Center of the second circle\n"
 | |
| "   :type p_b: :class:`mathutils.Vector`\n"
 | |
| "   :arg radius_b: Radius of the second circle\n"
 | |
| "   :type radius_b: float\n"
 | |
| "   :rtype: tuple of :class:`mathutils.Vector`'s or None when there is no intersection\n"
 | |
| );
 | |
| static PyObject *M_Geometry_intersect_sphere_sphere_2d(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	const char *error_prefix = "intersect_sphere_sphere_2d";
 | |
| 	PyObject *ret;
 | |
| 	PyObject *py_v_a, *py_v_b;
 | |
| 	float v_a[2], v_b[2];
 | |
| 	float rad_a, rad_b;
 | |
| 	float v_ab[2];
 | |
| 	float dist;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(
 | |
| 	        args, "OfOf:intersect_sphere_sphere_2d",
 | |
| 	        &py_v_a, &rad_a,
 | |
| 	        &py_v_b, &rad_b))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (((mathutils_array_parse(v_a, 2, 2, py_v_a, error_prefix) != -1) &&
 | |
| 	     (mathutils_array_parse(v_b, 2, 2, py_v_b, error_prefix) != -1)) == 0)
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	ret = PyTuple_New(2);
 | |
| 
 | |
| 	sub_v2_v2v2(v_ab, v_b, v_a);
 | |
| 	dist = len_v2(v_ab);
 | |
| 
 | |
| 	if (/* out of range */
 | |
| 	    (dist > rad_a + rad_b) ||
 | |
| 	    /* fully-contained in the other */
 | |
| 	    (dist < fabsf(rad_a - rad_b)) ||
 | |
| 	    /* co-incident */
 | |
| 	    (dist < FLT_EPSILON))
 | |
| 	{
 | |
| 		/* out of range */
 | |
| 		PyTuple_SET_ITEMS(ret,
 | |
| 		        Py_INCREF_RET(Py_None),
 | |
| 		        Py_INCREF_RET(Py_None));
 | |
| 	}
 | |
| 	else {
 | |
| 		const float dist_delta = ((rad_a * rad_a) - (rad_b * rad_b) + (dist * dist)) / (2.0f * dist);
 | |
| 		const float h = powf(fabsf((rad_a * rad_a) - (dist_delta * dist_delta)), 0.5f);
 | |
| 		float i_cent[2];
 | |
| 		float i1[2], i2[2];
 | |
| 
 | |
| 		i_cent[0] = v_a[0] + ((v_ab[0] * dist_delta) / dist);
 | |
| 		i_cent[1] = v_a[1] + ((v_ab[1] * dist_delta) / dist);
 | |
| 
 | |
| 		i1[0] = i_cent[0] + h * v_ab[1] / dist;
 | |
| 		i1[1] = i_cent[1] - h * v_ab[0] / dist;
 | |
| 
 | |
| 		i2[0] = i_cent[0] - h * v_ab[1] / dist;
 | |
| 		i2[1] = i_cent[1] + h * v_ab[0] / dist;
 | |
| 
 | |
| 		PyTuple_SET_ITEMS(ret,
 | |
| 		        Vector_CreatePyObject(i1, 2, NULL),
 | |
| 		        Vector_CreatePyObject(i2, 2, NULL));
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_normal_doc,
 | |
| ".. function:: normal(vectors)\n"
 | |
| "\n"
 | |
| "   Returns the normal of a 3D polygon.\n"
 | |
| "\n"
 | |
| "   :arg vectors: Vectors to calculate normals with\n"
 | |
| "   :type vectors: sequence of 3 or more 3d vector\n"
 | |
| "   :rtype: :class:`mathutils.Vector`\n"
 | |
| );
 | |
| static PyObject *M_Geometry_normal(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	float (*coords)[3];
 | |
| 	int coords_len;
 | |
| 	float n[3];
 | |
| 	PyObject *ret = NULL;
 | |
| 
 | |
| 	/* use */
 | |
| 	if (PyTuple_GET_SIZE(args) == 1) {
 | |
| 		args = PyTuple_GET_ITEM(args, 0);
 | |
| 	}
 | |
| 
 | |
| 	if ((coords_len = mathutils_array_parse_alloc_v((float **)&coords, 3 | MU_ARRAY_SPILL, args, "normal")) == -1) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (coords_len < 3) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Expected 3 or more vectors");
 | |
| 		goto finally;
 | |
| 	}
 | |
| 
 | |
| 	normal_poly_v3(n, (const float (*)[3])coords, coords_len);
 | |
| 	ret = Vector_CreatePyObject(n, 3, NULL);
 | |
| 
 | |
| finally:
 | |
| 	PyMem_Free(coords);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* --------------------------------- AREA FUNCTIONS-------------------- */
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_area_tri_doc,
 | |
| ".. function:: area_tri(v1, v2, v3)\n"
 | |
| "\n"
 | |
| "   Returns the area size of the 2D or 3D triangle defined.\n"
 | |
| "\n"
 | |
| "   :arg v1: Point1\n"
 | |
| "   :type v1: :class:`mathutils.Vector`\n"
 | |
| "   :arg v2: Point2\n"
 | |
| "   :type v2: :class:`mathutils.Vector`\n"
 | |
| "   :arg v3: Point3\n"
 | |
| "   :type v3: :class:`mathutils.Vector`\n"
 | |
| "   :rtype: float\n"
 | |
| );
 | |
| static PyObject *M_Geometry_area_tri(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	const char *error_prefix = "area_tri";
 | |
| 	PyObject *py_tri[3];
 | |
| 	float tri[3][3];
 | |
| 	int len;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(
 | |
| 	        args, "OOO:area_tri",
 | |
| 	        UNPACK3_EX(&, py_tri, )))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if ((((len = mathutils_array_parse(tri[0], 2, 3, py_tri[0], error_prefix)) != -1) &&
 | |
| 	     (mathutils_array_parse(tri[1], len, len, py_tri[1], error_prefix) != -1) &&
 | |
| 	     (mathutils_array_parse(tri[2], len, len, py_tri[2], error_prefix) != -1)) == 0)
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return PyFloat_FromDouble((len == 3 ? area_tri_v3 : area_tri_v2)(UNPACK3(tri)));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_volume_tetrahedron_doc,
 | |
| ".. function:: volume_tetrahedron(v1, v2, v3, v4)\n"
 | |
| "\n"
 | |
| "   Return the volume formed by a tetrahedron (points can be in any order).\n"
 | |
| "\n"
 | |
| "   :arg v1: Point1\n"
 | |
| "   :type v1: :class:`mathutils.Vector`\n"
 | |
| "   :arg v2: Point2\n"
 | |
| "   :type v2: :class:`mathutils.Vector`\n"
 | |
| "   :arg v3: Point3\n"
 | |
| "   :type v3: :class:`mathutils.Vector`\n"
 | |
| "   :arg v4: Point4\n"
 | |
| "   :type v4: :class:`mathutils.Vector`\n"
 | |
| "   :rtype: float\n"
 | |
| );
 | |
| static PyObject *M_Geometry_volume_tetrahedron(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	const char *error_prefix = "volume_tetrahedron";
 | |
| 	PyObject *py_tet[4];
 | |
| 	float tet[4][3];
 | |
| 	int i;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(
 | |
| 	        args, "OOOO:volume_tetrahedron",
 | |
| 	        UNPACK4_EX(&, py_tet, )))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(tet); i++) {
 | |
| 		if (mathutils_array_parse(tet[i], 3, 3 | MU_ARRAY_SPILL, py_tet[i], error_prefix) == -1) {
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return PyFloat_FromDouble(volume_tetrahedron_v3(UNPACK4(tet)));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_intersect_line_line_2d_doc,
 | |
| ".. function:: intersect_line_line_2d(lineA_p1, lineA_p2, lineB_p1, lineB_p2)\n"
 | |
| "\n"
 | |
| "   Takes 2 segments (defined by 4 vectors) and returns a vector for their point of intersection or None.\n"
 | |
| "\n"
 | |
| "   .. warning:: Despite its name, this function works on segments, and not on lines.\n"
 | |
| "\n"
 | |
| "   :arg lineA_p1: First point of the first line\n"
 | |
| "   :type lineA_p1: :class:`mathutils.Vector`\n"
 | |
| "   :arg lineA_p2: Second point of the first line\n"
 | |
| "   :type lineA_p2: :class:`mathutils.Vector`\n"
 | |
| "   :arg lineB_p1: First point of the second line\n"
 | |
| "   :type lineB_p1: :class:`mathutils.Vector`\n"
 | |
| "   :arg lineB_p2: Second point of the second line\n"
 | |
| "   :type lineB_p2: :class:`mathutils.Vector`\n"
 | |
| "   :return: The point of intersection or None when not found\n"
 | |
| "   :rtype: :class:`mathutils.Vector` or None\n"
 | |
| );
 | |
| static PyObject *M_Geometry_intersect_line_line_2d(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	const char *error_prefix = "intersect_line_line_2d";
 | |
| 	PyObject *py_lines[4];
 | |
| 	float lines[4][2];
 | |
| 	float vi[2];
 | |
| 	int i;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(
 | |
| 	        args, "OOOO:intersect_line_line_2d",
 | |
| 	        UNPACK4_EX(&, py_lines, )))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(lines); i++) {
 | |
| 		if (mathutils_array_parse(lines[i], 2, 2 | MU_ARRAY_SPILL, py_lines[i], error_prefix) == -1) {
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (isect_seg_seg_v2_point(UNPACK4(lines), vi) == 1) {
 | |
| 		return Vector_CreatePyObject(vi, 2, NULL);
 | |
| 	}
 | |
| 	else {
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_intersect_line_plane_doc,
 | |
| ".. function:: intersect_line_plane(line_a, line_b, plane_co, plane_no, no_flip=False)\n"
 | |
| "\n"
 | |
| "   Calculate the intersection between a line (as 2 vectors) and a plane.\n"
 | |
| "   Returns a vector for the intersection or None.\n"
 | |
| "\n"
 | |
| "   :arg line_a: First point of the first line\n"
 | |
| "   :type line_a: :class:`mathutils.Vector`\n"
 | |
| "   :arg line_b: Second point of the first line\n"
 | |
| "   :type line_b: :class:`mathutils.Vector`\n"
 | |
| "   :arg plane_co: A point on the plane\n"
 | |
| "   :type plane_co: :class:`mathutils.Vector`\n"
 | |
| "   :arg plane_no: The direction the plane is facing\n"
 | |
| "   :type plane_no: :class:`mathutils.Vector`\n"
 | |
| "   :return: The point of intersection or None when not found\n"
 | |
| "   :rtype: :class:`mathutils.Vector` or None\n"
 | |
| );
 | |
| static PyObject *M_Geometry_intersect_line_plane(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	const char *error_prefix = "intersect_line_plane";
 | |
| 	PyObject *py_line_a, *py_line_b, *py_plane_co, *py_plane_no;
 | |
| 	float line_a[3], line_b[3], plane_co[3], plane_no[3];
 | |
| 	float isect[3];
 | |
| 	bool no_flip = false;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(
 | |
| 	        args, "OOOO|O&:intersect_line_plane",
 | |
| 	        &py_line_a, &py_line_b, &py_plane_co, &py_plane_no,
 | |
| 	        PyC_ParseBool, &no_flip))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (((mathutils_array_parse(line_a, 3, 3 | MU_ARRAY_SPILL, py_line_a, error_prefix) != -1) &&
 | |
| 	     (mathutils_array_parse(line_b, 3, 3 | MU_ARRAY_SPILL, py_line_b, error_prefix) != -1) &&
 | |
| 	     (mathutils_array_parse(plane_co, 3, 3 | MU_ARRAY_SPILL, py_plane_co, error_prefix) != -1) &&
 | |
| 	     (mathutils_array_parse(plane_no, 3, 3 | MU_ARRAY_SPILL, py_plane_no, error_prefix) != -1)) == 0)
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* TODO: implements no_flip */
 | |
| 	if (isect_line_plane_v3(isect, line_a, line_b, plane_co, plane_no) == 1) {
 | |
| 		return Vector_CreatePyObject(isect, 3, NULL);
 | |
| 	}
 | |
| 	else {
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_intersect_plane_plane_doc,
 | |
| ".. function:: intersect_plane_plane(plane_a_co, plane_a_no, plane_b_co, plane_b_no)\n"
 | |
| "\n"
 | |
| "   Return the intersection between two planes\n"
 | |
| "\n"
 | |
| "   :arg plane_a_co: Point on the first plane\n"
 | |
| "   :type plane_a_co: :class:`mathutils.Vector`\n"
 | |
| "   :arg plane_a_no: Normal of the first plane\n"
 | |
| "   :type plane_a_no: :class:`mathutils.Vector`\n"
 | |
| "   :arg plane_b_co: Point on the second plane\n"
 | |
| "   :type plane_b_co: :class:`mathutils.Vector`\n"
 | |
| "   :arg plane_b_no: Normal of the second plane\n"
 | |
| "   :type plane_b_no: :class:`mathutils.Vector`\n"
 | |
| "   :return: The line of the intersection represented as a point and a vector\n"
 | |
| "   :rtype: tuple pair of :class:`mathutils.Vector` or None if the intersection can't be calculated\n"
 | |
| );
 | |
| static PyObject *M_Geometry_intersect_plane_plane(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	const char *error_prefix = "intersect_plane_plane";
 | |
| 	PyObject *ret, *ret_co, *ret_no;
 | |
| 	PyObject *py_plane_a_co, *py_plane_a_no, *py_plane_b_co, *py_plane_b_no;
 | |
| 	float plane_a_co[3], plane_a_no[3], plane_b_co[3], plane_b_no[3];
 | |
| 	float plane_a[4], plane_b[4];
 | |
| 
 | |
| 	float isect_co[3];
 | |
| 	float isect_no[3];
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(
 | |
| 	        args, "OOOO:intersect_plane_plane",
 | |
| 	        &py_plane_a_co, &py_plane_a_no, &py_plane_b_co, &py_plane_b_no))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (((mathutils_array_parse(plane_a_co, 3, 3 | MU_ARRAY_SPILL, py_plane_a_co, error_prefix) != -1) &&
 | |
| 	     (mathutils_array_parse(plane_a_no, 3, 3 | MU_ARRAY_SPILL, py_plane_a_no, error_prefix) != -1) &&
 | |
| 	     (mathutils_array_parse(plane_b_co, 3, 3 | MU_ARRAY_SPILL, py_plane_b_co, error_prefix) != -1) &&
 | |
| 	     (mathutils_array_parse(plane_b_no, 3, 3 | MU_ARRAY_SPILL, py_plane_b_no, error_prefix) != -1)) == 0)
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	plane_from_point_normal_v3(plane_a, plane_a_co, plane_a_no);
 | |
| 	plane_from_point_normal_v3(plane_b, plane_b_co, plane_b_no);
 | |
| 
 | |
| 	if (isect_plane_plane_v3(
 | |
| 	        plane_a, plane_b,
 | |
| 	        isect_co, isect_no))
 | |
| 	{
 | |
| 		normalize_v3(isect_no);
 | |
| 
 | |
| 		ret_co = Vector_CreatePyObject(isect_co, 3, NULL);
 | |
| 		ret_no = Vector_CreatePyObject(isect_no, 3, NULL);
 | |
| 	}
 | |
| 	else {
 | |
| 		ret_co = Py_INCREF_RET(Py_None);
 | |
| 		ret_no = Py_INCREF_RET(Py_None);
 | |
| 	}
 | |
| 
 | |
| 	ret = PyTuple_New(2);
 | |
| 	PyTuple_SET_ITEMS(ret,
 | |
| 	        ret_co,
 | |
| 	        ret_no);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_intersect_line_sphere_doc,
 | |
| ".. function:: intersect_line_sphere(line_a, line_b, sphere_co, sphere_radius, clip=True)\n"
 | |
| "\n"
 | |
| "   Takes a line (as 2 points) and a sphere (as a point and a radius) and\n"
 | |
| "   returns the intersection\n"
 | |
| "\n"
 | |
| "   :arg line_a: First point of the line\n"
 | |
| "   :type line_a: :class:`mathutils.Vector`\n"
 | |
| "   :arg line_b: Second point of the line\n"
 | |
| "   :type line_b: :class:`mathutils.Vector`\n"
 | |
| "   :arg sphere_co: The center of the sphere\n"
 | |
| "   :type sphere_co: :class:`mathutils.Vector`\n"
 | |
| "   :arg sphere_radius: Radius of the sphere\n"
 | |
| "   :type sphere_radius: sphere_radius\n"
 | |
| "   :return: The intersection points as a pair of vectors or None when there is no intersection\n"
 | |
| "   :rtype: A tuple pair containing :class:`mathutils.Vector` or None\n"
 | |
| );
 | |
| static PyObject *M_Geometry_intersect_line_sphere(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	const char *error_prefix = "intersect_line_sphere";
 | |
| 	PyObject *py_line_a, *py_line_b, *py_sphere_co;
 | |
| 	float line_a[3], line_b[3], sphere_co[3];
 | |
| 	float sphere_radius;
 | |
| 	bool clip = true;
 | |
| 
 | |
| 	float isect_a[3];
 | |
| 	float isect_b[3];
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(
 | |
| 	        args, "OOOf|O&:intersect_line_sphere",
 | |
| 	        &py_line_a, &py_line_b, &py_sphere_co, &sphere_radius,
 | |
| 	        PyC_ParseBool, &clip))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (((mathutils_array_parse(line_a, 3, 3 | MU_ARRAY_SPILL, py_line_a, error_prefix) != -1) &&
 | |
| 	     (mathutils_array_parse(line_b, 3, 3 | MU_ARRAY_SPILL, py_line_b, error_prefix) != -1) &&
 | |
| 	     (mathutils_array_parse(sphere_co, 3, 3 | MU_ARRAY_SPILL, py_sphere_co, error_prefix) != -1)) == 0)
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	else {
 | |
| 		bool use_a = true;
 | |
| 		bool use_b = true;
 | |
| 		float lambda;
 | |
| 
 | |
| 		PyObject *ret = PyTuple_New(2);
 | |
| 
 | |
| 		switch (isect_line_sphere_v3(line_a, line_b, sphere_co, sphere_radius, isect_a, isect_b)) {
 | |
| 			case 1:
 | |
| 				if (!(!clip || (((lambda = line_point_factor_v3(isect_a, line_a, line_b)) >= 0.0f) && (lambda <= 1.0f)))) use_a = false;
 | |
| 				use_b = false;
 | |
| 				break;
 | |
| 			case 2:
 | |
| 				if (!(!clip || (((lambda = line_point_factor_v3(isect_a, line_a, line_b)) >= 0.0f) && (lambda <= 1.0f)))) use_a = false;
 | |
| 				if (!(!clip || (((lambda = line_point_factor_v3(isect_b, line_a, line_b)) >= 0.0f) && (lambda <= 1.0f)))) use_b = false;
 | |
| 				break;
 | |
| 			default:
 | |
| 				use_a = false;
 | |
| 				use_b = false;
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		PyTuple_SET_ITEMS(ret,
 | |
| 		        use_a ? Vector_CreatePyObject(isect_a, 3, NULL) : Py_INCREF_RET(Py_None),
 | |
| 		        use_b ? Vector_CreatePyObject(isect_b, 3, NULL) : Py_INCREF_RET(Py_None));
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* keep in sync with M_Geometry_intersect_line_sphere */
 | |
| PyDoc_STRVAR(M_Geometry_intersect_line_sphere_2d_doc,
 | |
| ".. function:: intersect_line_sphere_2d(line_a, line_b, sphere_co, sphere_radius, clip=True)\n"
 | |
| "\n"
 | |
| "   Takes a line (as 2 points) and a sphere (as a point and a radius) and\n"
 | |
| "   returns the intersection\n"
 | |
| "\n"
 | |
| "   :arg line_a: First point of the line\n"
 | |
| "   :type line_a: :class:`mathutils.Vector`\n"
 | |
| "   :arg line_b: Second point of the line\n"
 | |
| "   :type line_b: :class:`mathutils.Vector`\n"
 | |
| "   :arg sphere_co: The center of the sphere\n"
 | |
| "   :type sphere_co: :class:`mathutils.Vector`\n"
 | |
| "   :arg sphere_radius: Radius of the sphere\n"
 | |
| "   :type sphere_radius: sphere_radius\n"
 | |
| "   :return: The intersection points as a pair of vectors or None when there is no intersection\n"
 | |
| "   :rtype: A tuple pair containing :class:`mathutils.Vector` or None\n"
 | |
| );
 | |
| static PyObject *M_Geometry_intersect_line_sphere_2d(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	const char *error_prefix = "intersect_line_sphere_2d";
 | |
| 	PyObject *py_line_a, *py_line_b, *py_sphere_co;
 | |
| 	float line_a[2], line_b[2], sphere_co[2];
 | |
| 	float sphere_radius;
 | |
| 	bool clip = true;
 | |
| 
 | |
| 	float isect_a[2];
 | |
| 	float isect_b[2];
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(
 | |
| 	        args, "OOOf|O&:intersect_line_sphere_2d",
 | |
| 	        &py_line_a, &py_line_b, &py_sphere_co, &sphere_radius,
 | |
| 	        PyC_ParseBool, &clip))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (((mathutils_array_parse(line_a, 2, 2 | MU_ARRAY_SPILL, py_line_a, error_prefix) != -1) &&
 | |
| 	     (mathutils_array_parse(line_b, 2, 2 | MU_ARRAY_SPILL, py_line_b, error_prefix) != -1) &&
 | |
| 	     (mathutils_array_parse(sphere_co, 2, 2 | MU_ARRAY_SPILL, py_sphere_co, error_prefix) != -1)) == 0)
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	else {
 | |
| 		bool use_a = true;
 | |
| 		bool use_b = true;
 | |
| 		float lambda;
 | |
| 
 | |
| 		PyObject *ret = PyTuple_New(2);
 | |
| 
 | |
| 		switch (isect_line_sphere_v2(line_a, line_b, sphere_co, sphere_radius, isect_a, isect_b)) {
 | |
| 			case 1:
 | |
| 				if (!(!clip || (((lambda = line_point_factor_v2(isect_a, line_a, line_b)) >= 0.0f) && (lambda <= 1.0f)))) use_a = false;
 | |
| 				use_b = false;
 | |
| 				break;
 | |
| 			case 2:
 | |
| 				if (!(!clip || (((lambda = line_point_factor_v2(isect_a, line_a, line_b)) >= 0.0f) && (lambda <= 1.0f)))) use_a = false;
 | |
| 				if (!(!clip || (((lambda = line_point_factor_v2(isect_b, line_a, line_b)) >= 0.0f) && (lambda <= 1.0f)))) use_b = false;
 | |
| 				break;
 | |
| 			default:
 | |
| 				use_a = false;
 | |
| 				use_b = false;
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		PyTuple_SET_ITEMS(ret,
 | |
| 		        use_a ? Vector_CreatePyObject(isect_a, 2, NULL) : Py_INCREF_RET(Py_None),
 | |
| 		        use_b ? Vector_CreatePyObject(isect_b, 2, NULL) : Py_INCREF_RET(Py_None));
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_intersect_point_line_doc,
 | |
| ".. function:: intersect_point_line(pt, line_p1, line_p2)\n"
 | |
| "\n"
 | |
| "   Takes a point and a line and returns a tuple with the closest point on the line and its distance from the first point of the line as a percentage of the length of the line.\n"
 | |
| "\n"
 | |
| "   :arg pt: Point\n"
 | |
| "   :type pt: :class:`mathutils.Vector`\n"
 | |
| "   :arg line_p1: First point of the line\n"
 | |
| "   :type line_p1: :class:`mathutils.Vector`\n"
 | |
| "   :arg line_p1: Second point of the line\n"
 | |
| "   :type line_p1: :class:`mathutils.Vector`\n"
 | |
| "   :rtype: (:class:`mathutils.Vector`, float)\n"
 | |
| );
 | |
| static PyObject *M_Geometry_intersect_point_line(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	const char *error_prefix = "intersect_point_line";
 | |
| 	PyObject *py_pt, *py_line_a, *py_line_b;
 | |
| 	float pt[3], pt_out[3], line_a[3], line_b[3];
 | |
| 	float lambda;
 | |
| 	PyObject *ret;
 | |
| 	int size = 2;
 | |
| 	
 | |
| 	if (!PyArg_ParseTuple(
 | |
| 	        args, "OOO:intersect_point_line",
 | |
| 	        &py_pt, &py_line_a, &py_line_b))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* accept 2d verts */
 | |
| 	if ((((size = mathutils_array_parse(pt, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_pt, error_prefix)) != -1) &&
 | |
| 	     (mathutils_array_parse(line_a, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_line_a, error_prefix) != -1) &&
 | |
| 	     (mathutils_array_parse(line_b, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_line_b, error_prefix) != -1)) == 0)
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* do the calculation */
 | |
| 	lambda = closest_to_line_v3(pt_out, pt, line_a, line_b);
 | |
| 	
 | |
| 	ret = PyTuple_New(2);
 | |
| 	PyTuple_SET_ITEMS(ret,
 | |
| 	        Vector_CreatePyObject(pt_out, size, NULL),
 | |
| 	        PyFloat_FromDouble(lambda));
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_intersect_point_tri_doc,
 | |
| ".. function:: intersect_point_tri(pt, tri_p1, tri_p2, tri_p3)\n"
 | |
| "\n"
 | |
| "   Takes 4 vectors: one is the point and the next 3 define the triangle.\n"
 | |
| "\n"
 | |
| "   :arg pt: Point\n"
 | |
| "   :type pt: :class:`mathutils.Vector`\n"
 | |
| "   :arg tri_p1: First point of the triangle\n"
 | |
| "   :type tri_p1: :class:`mathutils.Vector`\n"
 | |
| "   :arg tri_p2: Second point of the triangle\n"
 | |
| "   :type tri_p2: :class:`mathutils.Vector`\n"
 | |
| "   :arg tri_p3: Third point of the triangle\n"
 | |
| "   :type tri_p3: :class:`mathutils.Vector`\n"
 | |
| "   :return: Point on the triangles plane or None if its outside the triangle\n"
 | |
| "   :rtype: :class:`mathutils.Vector` or None\n"
 | |
| );
 | |
| static PyObject *M_Geometry_intersect_point_tri(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	const char *error_prefix = "intersect_point_tri";
 | |
| 	PyObject *py_pt, *py_tri[3];
 | |
| 	float pt[3], tri[3][3];
 | |
| 	float vi[3];
 | |
| 	int i;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(
 | |
| 	        args, "OOOO:intersect_point_tri",
 | |
| 	        &py_pt, UNPACK3_EX(&, py_tri, )))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (mathutils_array_parse(pt, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_pt, error_prefix) == -1) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	for (i = 0; i < ARRAY_SIZE(tri); i++) {
 | |
| 		if (mathutils_array_parse(tri[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_tri[i], error_prefix) == -1) {
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (isect_point_tri_v3(pt, UNPACK3(tri), vi)) {
 | |
| 		return Vector_CreatePyObject(vi, 3, NULL);
 | |
| 	}
 | |
| 	else {
 | |
| 		Py_RETURN_NONE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_intersect_point_tri_2d_doc,
 | |
| ".. function:: intersect_point_tri_2d(pt, tri_p1, tri_p2, tri_p3)\n"
 | |
| "\n"
 | |
| "   Takes 4 vectors (using only the x and y coordinates): one is the point and the next 3 define the triangle. Returns 1 if the point is within the triangle, otherwise 0.\n"
 | |
| "\n"
 | |
| "   :arg pt: Point\n"
 | |
| "   :type pt: :class:`mathutils.Vector`\n"
 | |
| "   :arg tri_p1: First point of the triangle\n"
 | |
| "   :type tri_p1: :class:`mathutils.Vector`\n"
 | |
| "   :arg tri_p2: Second point of the triangle\n"
 | |
| "   :type tri_p2: :class:`mathutils.Vector`\n"
 | |
| "   :arg tri_p3: Third point of the triangle\n"
 | |
| "   :type tri_p3: :class:`mathutils.Vector`\n"
 | |
| "   :rtype: int\n"
 | |
| );
 | |
| static PyObject *M_Geometry_intersect_point_tri_2d(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	const char *error_prefix = "intersect_point_tri_2d";
 | |
| 	PyObject *py_pt, *py_tri[3];
 | |
| 	float pt[2], tri[3][2];
 | |
| 	int i;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(
 | |
| 	        args, "OOOO:intersect_point_tri_2d",
 | |
| 	        &py_pt, UNPACK3_EX(&, py_tri, )))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (mathutils_array_parse(pt, 2, 2 | MU_ARRAY_SPILL, py_pt, error_prefix) == -1) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	for (i = 0; i < ARRAY_SIZE(tri); i++) {
 | |
| 		if (mathutils_array_parse(tri[i], 2, 2 | MU_ARRAY_SPILL, py_tri[i], error_prefix) == -1) {
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return PyLong_FromLong(isect_point_tri_v2(pt, UNPACK3(tri)));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_intersect_point_quad_2d_doc,
 | |
| ".. function:: intersect_point_quad_2d(pt, quad_p1, quad_p2, quad_p3, quad_p4)\n"
 | |
| "\n"
 | |
| "   Takes 5 vectors (using only the x and y coordinates): one is the point and the next 4 define the quad, \n"
 | |
| "   only the x and y are used from the vectors. Returns 1 if the point is within the quad, otherwise 0.\n"
 | |
| "   Works only with convex quads without singular edges.\n"
 | |
| "\n"
 | |
| "   :arg pt: Point\n"
 | |
| "   :type pt: :class:`mathutils.Vector`\n"
 | |
| "   :arg quad_p1: First point of the quad\n"
 | |
| "   :type quad_p1: :class:`mathutils.Vector`\n"
 | |
| "   :arg quad_p2: Second point of the quad\n"
 | |
| "   :type quad_p2: :class:`mathutils.Vector`\n"
 | |
| "   :arg quad_p3: Third point of the quad\n"
 | |
| "   :type quad_p3: :class:`mathutils.Vector`\n"
 | |
| "   :arg quad_p4: Fourth point of the quad\n"
 | |
| "   :type quad_p4: :class:`mathutils.Vector`\n"
 | |
| "   :rtype: int\n"
 | |
| );
 | |
| static PyObject *M_Geometry_intersect_point_quad_2d(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	const char *error_prefix = "intersect_point_quad_2d";
 | |
| 	PyObject *py_pt, *py_quad[4];
 | |
| 	float pt[2], quad[4][2];
 | |
| 	int i;
 | |
| 	
 | |
| 	if (!PyArg_ParseTuple(
 | |
| 	        args, "OOOOO:intersect_point_quad_2d",
 | |
| 	        &py_pt, UNPACK4_EX(&, py_quad, )))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (mathutils_array_parse(pt, 2, 2 | MU_ARRAY_SPILL, py_pt, error_prefix) == -1) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	for (i = 0; i < ARRAY_SIZE(quad); i++) {
 | |
| 		if (mathutils_array_parse(quad[i], 2, 2 | MU_ARRAY_SPILL, py_quad[i], error_prefix) == -1) {
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return PyLong_FromLong(isect_point_quad_v2(pt, UNPACK4(quad)));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_distance_point_to_plane_doc,
 | |
| ".. function:: distance_point_to_plane(pt, plane_co, plane_no)\n"
 | |
| "\n"
 | |
| "   Returns the signed distance between a point and a plane "
 | |
| "   (negative when below the normal).\n"
 | |
| "\n"
 | |
| "   :arg pt: Point\n"
 | |
| "   :type pt: :class:`mathutils.Vector`\n"
 | |
| "   :arg plane_co: A point on the plane\n"
 | |
| "   :type plane_co: :class:`mathutils.Vector`\n"
 | |
| "   :arg plane_no: The direction the plane is facing\n"
 | |
| "   :type plane_no: :class:`mathutils.Vector`\n"
 | |
| "   :rtype: float\n"
 | |
| );
 | |
| static PyObject *M_Geometry_distance_point_to_plane(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	const char *error_prefix = "distance_point_to_plane";
 | |
| 	PyObject *py_pt, *py_plane_co, *py_plane_no;
 | |
| 	float pt[3], plane_co[3], plane_no[3];
 | |
| 	float plane[4];
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(
 | |
| 	        args, "OOO:distance_point_to_plane",
 | |
| 	        &py_pt, &py_plane_co, &py_plane_no))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (((mathutils_array_parse(pt,       3, 3 | MU_ARRAY_SPILL, py_pt,       error_prefix) != -1) &&
 | |
| 	     (mathutils_array_parse(plane_co, 3, 3 | MU_ARRAY_SPILL, py_plane_co, error_prefix) != -1) &&
 | |
| 	     (mathutils_array_parse(plane_no, 3, 3 | MU_ARRAY_SPILL, py_plane_no, error_prefix) != -1)) == 0)
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	plane_from_point_normal_v3(plane, plane_co, plane_no);
 | |
| 	return PyFloat_FromDouble(dist_signed_to_plane_v3(pt, plane));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_barycentric_transform_doc,
 | |
| ".. function:: barycentric_transform(point, tri_a1, tri_a2, tri_a3, tri_b1, tri_b2, tri_b3)\n"
 | |
| "\n"
 | |
| "   Return a transformed point, the transformation is defined by 2 triangles.\n"
 | |
| "\n"
 | |
| "   :arg point: The point to transform.\n"
 | |
| "   :type point: :class:`mathutils.Vector`\n"
 | |
| "   :arg tri_a1: source triangle vertex.\n"
 | |
| "   :type tri_a1: :class:`mathutils.Vector`\n"
 | |
| "   :arg tri_a2: source triangle vertex.\n"
 | |
| "   :type tri_a2: :class:`mathutils.Vector`\n"
 | |
| "   :arg tri_a3: source triangle vertex.\n"
 | |
| "   :type tri_a3: :class:`mathutils.Vector`\n"
 | |
| "   :arg tri_a1: target triangle vertex.\n"
 | |
| "   :type tri_a1: :class:`mathutils.Vector`\n"
 | |
| "   :arg tri_a2: target triangle vertex.\n"
 | |
| "   :type tri_a2: :class:`mathutils.Vector`\n"
 | |
| "   :arg tri_a3: target triangle vertex.\n"
 | |
| "   :type tri_a3: :class:`mathutils.Vector`\n"
 | |
| "   :return: The transformed point\n"
 | |
| "   :rtype: :class:`mathutils.Vector`'s\n"
 | |
| );
 | |
| static PyObject *M_Geometry_barycentric_transform(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	const char *error_prefix = "barycentric_transform";
 | |
| 	PyObject *py_pt_src, *py_tri_src[3], *py_tri_dst[3];
 | |
| 	float pt_src[3], pt_dst[3], tri_src[3][3], tri_dst[3][3];
 | |
| 	int i;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(
 | |
| 	        args, "OOOOOOO:barycentric_transform",
 | |
| 	        &py_pt_src,
 | |
| 	        UNPACK3_EX(&, py_tri_src, ),
 | |
| 	        UNPACK3_EX(&, py_tri_dst, )))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (mathutils_array_parse(pt_src, 3, 3 | MU_ARRAY_SPILL, py_pt_src, error_prefix) == -1) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	for (i = 0; i < ARRAY_SIZE(tri_src); i++) {
 | |
| 		if (((mathutils_array_parse(tri_src[i], 3, 3 | MU_ARRAY_SPILL, py_tri_src[i], error_prefix) != -1) &&
 | |
| 		     (mathutils_array_parse(tri_dst[i], 3, 3 | MU_ARRAY_SPILL, py_tri_dst[i], error_prefix) != -1)) == 0)
 | |
| 		{
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	transform_point_by_tri_v3(
 | |
| 	        pt_dst, pt_src,
 | |
| 	        UNPACK3(tri_dst),
 | |
| 	        UNPACK3(tri_src));
 | |
| 
 | |
| 	return Vector_CreatePyObject(pt_dst, 3, NULL);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_points_in_planes_doc,
 | |
| ".. function:: points_in_planes(planes)\n"
 | |
| "\n"
 | |
| "   Returns a list of points inside all planes given and a list of index values for the planes used.\n"
 | |
| "\n"
 | |
| "   :arg planes: List of planes (4D vectors).\n"
 | |
| "   :type planes: list of :class:`mathutils.Vector`\n"
 | |
| "   :return: two lists, once containing the vertices inside the planes, another containing the plane indices used\n"
 | |
| "   :rtype: pair of lists\n"
 | |
| );
 | |
| /* note: this function could be optimized by some spatial structure */
 | |
| static PyObject *M_Geometry_points_in_planes(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	PyObject *py_planes;
 | |
| 	float (*planes)[4];
 | |
| 	unsigned int planes_len;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(
 | |
| 	        args, "O:points_in_planes",
 | |
| 	        &py_planes))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if ((planes_len = mathutils_array_parse_alloc_v((float **)&planes, 4, py_planes, "points_in_planes")) == -1) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	else {
 | |
| 		/* note, this could be refactored into plain C easy - py bits are noted */
 | |
| 		const float eps = 0.0001f;
 | |
| 		const unsigned int len = (unsigned int)planes_len;
 | |
| 		unsigned int i, j, k, l;
 | |
| 
 | |
| 		float n1n2[3], n2n3[3], n3n1[3];
 | |
| 		float potentialVertex[3];
 | |
| 		char *planes_used = PyMem_Malloc(sizeof(char) * len);
 | |
| 
 | |
| 		/* python */
 | |
| 		PyObject *py_verts = PyList_New(0);
 | |
| 		PyObject *py_plane_index = PyList_New(0);
 | |
| 
 | |
| 		memset(planes_used, 0, sizeof(char) * len);
 | |
| 
 | |
| 		for (i = 0; i < len; i++) {
 | |
| 			const float *N1 = planes[i];
 | |
| 			for (j = i + 1; j < len; j++) {
 | |
| 				const float *N2 = planes[j];
 | |
| 				cross_v3_v3v3(n1n2, N1, N2);
 | |
| 				if (len_squared_v3(n1n2) > eps) {
 | |
| 					for (k = j + 1; k < len; k++) {
 | |
| 						const float *N3 = planes[k];
 | |
| 						cross_v3_v3v3(n2n3, N2, N3);
 | |
| 						if (len_squared_v3(n2n3) > eps) {
 | |
| 							cross_v3_v3v3(n3n1, N3, N1);
 | |
| 							if (len_squared_v3(n3n1) > eps) {
 | |
| 								const float quotient = dot_v3v3(N1, n2n3);
 | |
| 								if (fabsf(quotient) > eps) {
 | |
| 									/* potentialVertex = (n2n3 * N1[3] + n3n1 * N2[3] + n1n2 * N3[3]) * (-1.0 / quotient); */
 | |
| 									const float quotient_ninv = -1.0f / quotient;
 | |
| 									potentialVertex[0] = ((n2n3[0] * N1[3]) + (n3n1[0] * N2[3]) + (n1n2[0] * N3[3])) * quotient_ninv;
 | |
| 									potentialVertex[1] = ((n2n3[1] * N1[3]) + (n3n1[1] * N2[3]) + (n1n2[1] * N3[3])) * quotient_ninv;
 | |
| 									potentialVertex[2] = ((n2n3[2] * N1[3]) + (n3n1[2] * N2[3]) + (n1n2[2] * N3[3])) * quotient_ninv;
 | |
| 									for (l = 0; l < len; l++) {
 | |
| 										const float *NP = planes[l];
 | |
| 										if ((dot_v3v3(NP, potentialVertex) + NP[3]) > 0.000001f) {
 | |
| 											break;
 | |
| 										}
 | |
| 									}
 | |
| 
 | |
| 									if (l == len) { /* ok */
 | |
| 										/* python */
 | |
| 										PyList_APPEND(py_verts, Vector_CreatePyObject(potentialVertex, 3, NULL));
 | |
| 										planes_used[i] = planes_used[j] = planes_used[k] = true;
 | |
| 									}
 | |
| 								}
 | |
| 							}
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		PyMem_Free(planes);
 | |
| 
 | |
| 		/* now make a list of used planes */
 | |
| 		for (i = 0; i < len; i++) {
 | |
| 			if (planes_used[i]) {
 | |
| 				PyList_APPEND(py_plane_index, PyLong_FromLong(i));
 | |
| 			}
 | |
| 		}
 | |
| 		PyMem_Free(planes_used);
 | |
| 
 | |
| 		{
 | |
| 			PyObject *ret = PyTuple_New(2);
 | |
| 			PyTuple_SET_ITEMS(ret,
 | |
| 			        py_verts,
 | |
| 			        py_plane_index);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifndef MATH_STANDALONE
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_interpolate_bezier_doc,
 | |
| ".. function:: interpolate_bezier(knot1, handle1, handle2, knot2, resolution)\n"
 | |
| "\n"
 | |
| "   Interpolate a bezier spline segment.\n"
 | |
| "\n"
 | |
| "   :arg knot1: First bezier spline point.\n"
 | |
| "   :type knot1: :class:`mathutils.Vector`\n"
 | |
| "   :arg handle1: First bezier spline handle.\n"
 | |
| "   :type handle1: :class:`mathutils.Vector`\n"
 | |
| "   :arg handle2: Second bezier spline handle.\n"
 | |
| "   :type handle2: :class:`mathutils.Vector`\n"
 | |
| "   :arg knot2: Second bezier spline point.\n"
 | |
| "   :type knot2: :class:`mathutils.Vector`\n"
 | |
| "   :arg resolution: Number of points to return.\n"
 | |
| "   :type resolution: int\n"
 | |
| "   :return: The interpolated points\n"
 | |
| "   :rtype: list of :class:`mathutils.Vector`'s\n"
 | |
| );
 | |
| static PyObject *M_Geometry_interpolate_bezier(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
| 	const char *error_prefix = "interpolate_bezier";
 | |
| 	PyObject *py_data[4];
 | |
| 	float data[4][4] = {{0.0f}};
 | |
| 	int resolu;
 | |
| 	int dims = 0;
 | |
| 	int i;
 | |
| 	float *coord_array, *fp;
 | |
| 	PyObject *list;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(
 | |
| 	        args, "OOOOi:interpolate_bezier",
 | |
| 	        UNPACK4_EX(&, py_data, ), &resolu))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		int dims_tmp;
 | |
| 		if ((dims_tmp = mathutils_array_parse(data[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_data[i], error_prefix)) == -1) {
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		dims = max_ii(dims, dims_tmp);
 | |
| 	}
 | |
| 
 | |
| 	if (resolu <= 1) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "resolution must be 2 or over");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	coord_array = MEM_callocN(dims * (resolu) * sizeof(float), error_prefix);
 | |
| 	for (i = 0; i < dims; i++) {
 | |
| 		BKE_curve_forward_diff_bezier(UNPACK4_EX(, data, [i]), coord_array + i, resolu - 1, sizeof(float) * dims);
 | |
| 	}
 | |
| 
 | |
| 	list = PyList_New(resolu);
 | |
| 	fp = coord_array;
 | |
| 	for (i = 0; i < resolu; i++, fp = fp + dims) {
 | |
| 		PyList_SET_ITEM(list, i, Vector_CreatePyObject(fp, dims, NULL));
 | |
| 	}
 | |
| 	MEM_freeN(coord_array);
 | |
| 	return list;
 | |
| }
 | |
| 
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_tessellate_polygon_doc,
 | |
| ".. function:: tessellate_polygon(veclist_list)\n"
 | |
| "\n"
 | |
| "   Takes a list of polylines (each point a vector) and returns the point indices for a polyline filled with triangles.\n"
 | |
| "\n"
 | |
| "   :arg veclist_list: list of polylines\n"
 | |
| "   :rtype: list\n"
 | |
| );
 | |
| /* PolyFill function, uses Blenders scanfill to fill multiple poly lines */
 | |
| static PyObject *M_Geometry_tessellate_polygon(PyObject *UNUSED(self), PyObject *polyLineSeq)
 | |
| {
 | |
| 	PyObject *tri_list; /*return this list of tri's */
 | |
| 	PyObject *polyLine, *polyVec;
 | |
| 	int i, len_polylines, len_polypoints, ls_error = 0;
 | |
| 
 | |
| 	/* display listbase */
 | |
| 	ListBase dispbase = {NULL, NULL};
 | |
| 	DispList *dl;
 | |
| 	float *fp; /*pointer to the array of malloced dl->verts to set the points from the vectors */
 | |
| 	int index, *dl_face, totpoints = 0;
 | |
| 
 | |
| 	if (!PySequence_Check(polyLineSeq)) {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 		                "expected a sequence of poly lines");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	len_polylines = PySequence_Size(polyLineSeq);
 | |
| 
 | |
| 	for (i = 0; i < len_polylines; i++) {
 | |
| 		polyLine = PySequence_GetItem(polyLineSeq, i);
 | |
| 		if (!PySequence_Check(polyLine)) {
 | |
| 			BKE_displist_free(&dispbase);
 | |
| 			Py_XDECREF(polyLine); /* may be null so use Py_XDECREF*/
 | |
| 			PyErr_SetString(PyExc_TypeError,
 | |
| 			                "One or more of the polylines is not a sequence of mathutils.Vector's");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		len_polypoints = PySequence_Size(polyLine);
 | |
| 		if (len_polypoints > 0) { /* don't bother adding edges as polylines */
 | |
| #if 0
 | |
| 			if (EXPP_check_sequence_consistency(polyLine, &vector_Type) != 1) {
 | |
| 				freedisplist(&dispbase);
 | |
| 				Py_DECREF(polyLine);
 | |
| 				PyErr_SetString(PyExc_TypeError,
 | |
| 				                "A point in one of the polylines is not a mathutils.Vector type");
 | |
| 				return NULL;
 | |
| 			}
 | |
| #endif
 | |
| 			dl = MEM_callocN(sizeof(DispList), "poly disp");
 | |
| 			BLI_addtail(&dispbase, dl);
 | |
| 			dl->type = DL_INDEX3;
 | |
| 			dl->nr = len_polypoints;
 | |
| 			dl->type = DL_POLY;
 | |
| 			dl->parts = 1; /* no faces, 1 edge loop */
 | |
| 			dl->col = 0; /* no material */
 | |
| 			dl->verts = fp = MEM_callocN(sizeof(float) * 3 * len_polypoints, "dl verts");
 | |
| 			dl->index = MEM_callocN(sizeof(int) * 3 * len_polypoints, "dl index");
 | |
| 
 | |
| 			for (index = 0; index < len_polypoints; index++, fp += 3) {
 | |
| 				polyVec = PySequence_GetItem(polyLine, index);
 | |
| 				if (VectorObject_Check(polyVec)) {
 | |
| 
 | |
| 					if (BaseMath_ReadCallback((VectorObject *)polyVec) == -1)
 | |
| 						ls_error = 1;
 | |
| 
 | |
| 					fp[0] = ((VectorObject *)polyVec)->vec[0];
 | |
| 					fp[1] = ((VectorObject *)polyVec)->vec[1];
 | |
| 					if (((VectorObject *)polyVec)->size > 2)
 | |
| 						fp[2] = ((VectorObject *)polyVec)->vec[2];
 | |
| 					else
 | |
| 						fp[2] = 0.0f;  /* if its a 2d vector then set the z to be zero */
 | |
| 				}
 | |
| 				else {
 | |
| 					ls_error = 1;
 | |
| 				}
 | |
| 
 | |
| 				totpoints++;
 | |
| 				Py_DECREF(polyVec);
 | |
| 			}
 | |
| 		}
 | |
| 		Py_DECREF(polyLine);
 | |
| 	}
 | |
| 
 | |
| 	if (ls_error) {
 | |
| 		BKE_displist_free(&dispbase); /* possible some dl was allocated */
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 		                "A point in one of the polylines "
 | |
| 		                "is not a mathutils.Vector type");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	else if (totpoints) {
 | |
| 		/* now make the list to return */
 | |
| 		/* TODO, add normal arg */
 | |
| 		BKE_displist_fill(&dispbase, &dispbase, NULL, false);
 | |
| 
 | |
| 		/* The faces are stored in a new DisplayList
 | |
| 		 * thats added to the head of the listbase */
 | |
| 		dl = dispbase.first;
 | |
| 
 | |
| 		tri_list = PyList_New(dl->parts);
 | |
| 		if (!tri_list) {
 | |
| 			BKE_displist_free(&dispbase);
 | |
| 			PyErr_SetString(PyExc_RuntimeError,
 | |
| 			                "failed to make a new list");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		index = 0;
 | |
| 		dl_face = dl->index;
 | |
| 		while (index < dl->parts) {
 | |
| 			PyList_SET_ITEM(tri_list, index, Py_BuildValue("iii", dl_face[0], dl_face[1], dl_face[2]));
 | |
| 			dl_face += 3;
 | |
| 			index++;
 | |
| 		}
 | |
| 		BKE_displist_free(&dispbase);
 | |
| 	}
 | |
| 	else {
 | |
| 		/* no points, do this so scripts don't barf */
 | |
| 		BKE_displist_free(&dispbase); /* possible some dl was allocated */
 | |
| 		tri_list = PyList_New(0);
 | |
| 	}
 | |
| 
 | |
| 	return tri_list;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int boxPack_FromPyObject(PyObject *value, BoxPack **boxarray)
 | |
| {
 | |
| 	Py_ssize_t len, i;
 | |
| 	PyObject *list_item, *item_1, *item_2;
 | |
| 	BoxPack *box;
 | |
| 
 | |
| 
 | |
| 	/* Error checking must already be done */
 | |
| 	if (!PyList_Check(value)) {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 		                "can only back a list of [x, y, w, h]");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	len = PyList_GET_SIZE(value);
 | |
| 
 | |
| 	*boxarray = MEM_mallocN(len * sizeof(BoxPack), "BoxPack box");
 | |
| 
 | |
| 
 | |
| 	for (i = 0; i < len; i++) {
 | |
| 		list_item = PyList_GET_ITEM(value, i);
 | |
| 		if (!PyList_Check(list_item) || PyList_GET_SIZE(list_item) < 4) {
 | |
| 			MEM_freeN(*boxarray);
 | |
| 			PyErr_SetString(PyExc_TypeError,
 | |
| 			                "can only pack a list of [x, y, w, h]");
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		box = (*boxarray) + i;
 | |
| 
 | |
| 		item_1 = PyList_GET_ITEM(list_item, 2);
 | |
| 		item_2 = PyList_GET_ITEM(list_item, 3);
 | |
| 
 | |
| 		box->w =  (float)PyFloat_AsDouble(item_1);
 | |
| 		box->h =  (float)PyFloat_AsDouble(item_2);
 | |
| 		box->index = i;
 | |
| 
 | |
| 		/* accounts for error case too and overwrites with own error */
 | |
| 		if (box->w < 0.0f || box->h < 0.0f) {
 | |
| 			MEM_freeN(*boxarray);
 | |
| 			PyErr_SetString(PyExc_TypeError,
 | |
| 			                "error parsing width and height values from list: "
 | |
| 			                "[x, y, w, h], not numbers or below zero");
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		/* verts will be added later */
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void boxPack_ToPyObject(PyObject *value, BoxPack **boxarray)
 | |
| {
 | |
| 	Py_ssize_t len, i;
 | |
| 	PyObject *list_item;
 | |
| 	BoxPack *box;
 | |
| 
 | |
| 	len = PyList_GET_SIZE(value);
 | |
| 
 | |
| 	for (i = 0; i < len; i++) {
 | |
| 		box = (*boxarray) + i;
 | |
| 		list_item = PyList_GET_ITEM(value, box->index);
 | |
| 		PyList_SET_ITEM(list_item, 0, PyFloat_FromDouble(box->x));
 | |
| 		PyList_SET_ITEM(list_item, 1, PyFloat_FromDouble(box->y));
 | |
| 	}
 | |
| 	MEM_freeN(*boxarray);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_box_pack_2d_doc,
 | |
| ".. function:: box_pack_2d(boxes)\n"
 | |
| "\n"
 | |
| "   Returns the normal of the 3D tri or quad.\n"
 | |
| "\n"
 | |
| "   :arg boxes: list of boxes, each box is a list where the first 4 items are [x, y, width, height, ...] other items are ignored.\n"
 | |
| "   :type boxes: list\n"
 | |
| "   :return: the width and height of the packed bounding box\n"
 | |
| "   :rtype: tuple, pair of floats\n"
 | |
| );
 | |
| static PyObject *M_Geometry_box_pack_2d(PyObject *UNUSED(self), PyObject *boxlist)
 | |
| {
 | |
| 	float tot_width = 0.0f, tot_height = 0.0f;
 | |
| 	Py_ssize_t len;
 | |
| 
 | |
| 	PyObject *ret;
 | |
| 
 | |
| 	if (!PyList_Check(boxlist)) {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 		                "expected a list of boxes [[x, y, w, h], ... ]");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	len = PyList_GET_SIZE(boxlist);
 | |
| 	if (len) {
 | |
| 		BoxPack *boxarray = NULL;
 | |
| 		if (boxPack_FromPyObject(boxlist, &boxarray) == -1) {
 | |
| 			return NULL; /* exception set */
 | |
| 		}
 | |
| 
 | |
| 		/* Non Python function */
 | |
| 		BLI_box_pack_2d(boxarray, len, &tot_width, &tot_height);
 | |
| 
 | |
| 		boxPack_ToPyObject(boxlist, &boxarray);
 | |
| 	}
 | |
| 
 | |
| 	ret = PyTuple_New(2);
 | |
| 	PyTuple_SET_ITEMS(ret,
 | |
| 	        PyFloat_FromDouble(tot_width),
 | |
| 	        PyFloat_FromDouble(tot_height));
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_box_fit_2d_doc,
 | |
| ".. function:: box_fit_2d(points)\n"
 | |
| "\n"
 | |
| "   Returns an angle that best fits the points to an axis aligned rectangle\n"
 | |
| "\n"
 | |
| "   :arg points: list of 2d points.\n"
 | |
| "   :type points: list\n"
 | |
| "   :return: angle\n"
 | |
| "   :rtype: float\n"
 | |
| );
 | |
| static PyObject *M_Geometry_box_fit_2d(PyObject *UNUSED(self), PyObject *pointlist)
 | |
| {
 | |
| 	float (*points)[2];
 | |
| 	Py_ssize_t len;
 | |
| 
 | |
| 	float angle = 0.0f;
 | |
| 
 | |
| 	len = mathutils_array_parse_alloc_v(((float **)&points), 2, pointlist, "box_fit_2d");
 | |
| 	if (len == -1) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (len) {
 | |
| 		/* Non Python function */
 | |
| 		angle = BLI_convexhull_aabb_fit_points_2d((const float (*)[2])points, len);
 | |
| 
 | |
| 		PyMem_Free(points);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	return PyFloat_FromDouble(angle);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Geometry_convex_hull_2d_doc,
 | |
| ".. function:: convex_hull_2d(points)\n"
 | |
| "\n"
 | |
| "   Returns a list of indices into the list given\n"
 | |
| "\n"
 | |
| "   :arg points: list of 2d points.\n"
 | |
| "   :type points: list\n"
 | |
| "   :return: a list of indices\n"
 | |
| "   :rtype: list of ints\n"
 | |
| );
 | |
| static PyObject *M_Geometry_convex_hull_2d(PyObject *UNUSED(self), PyObject *pointlist)
 | |
| {
 | |
| 	float (*points)[2];
 | |
| 	Py_ssize_t len;
 | |
| 
 | |
| 	PyObject *ret;
 | |
| 
 | |
| 	len = mathutils_array_parse_alloc_v(((float **)&points), 2, pointlist, "convex_hull_2d");
 | |
| 	if (len == -1) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (len) {
 | |
| 		int *index_map;
 | |
| 		Py_ssize_t len_ret, i;
 | |
| 
 | |
| 		index_map  = MEM_mallocN(sizeof(*index_map) * len * 2, __func__);
 | |
| 
 | |
| 		/* Non Python function */
 | |
| 		len_ret = BLI_convexhull_2d((const float (*)[2])points, len, index_map);
 | |
| 
 | |
| 		ret = PyList_New(len_ret);
 | |
| 		for (i = 0; i < len_ret; i++) {
 | |
| 			PyList_SET_ITEM(ret, i, PyLong_FromLong(index_map[i]));
 | |
| 		}
 | |
| 
 | |
| 		MEM_freeN(index_map);
 | |
| 
 | |
| 		PyMem_Free(points);
 | |
| 	}
 | |
| 	else {
 | |
| 		ret = PyList_New(0);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #endif /* MATH_STANDALONE */
 | |
| 
 | |
| 
 | |
| static PyMethodDef M_Geometry_methods[] = {
 | |
| 	{"intersect_ray_tri", (PyCFunction) M_Geometry_intersect_ray_tri, METH_VARARGS, M_Geometry_intersect_ray_tri_doc},
 | |
| 	{"intersect_point_line", (PyCFunction) M_Geometry_intersect_point_line, METH_VARARGS, M_Geometry_intersect_point_line_doc},
 | |
| 	{"intersect_point_tri", (PyCFunction) M_Geometry_intersect_point_tri, METH_VARARGS, M_Geometry_intersect_point_tri_doc},
 | |
| 	{"intersect_point_tri_2d", (PyCFunction) M_Geometry_intersect_point_tri_2d, METH_VARARGS, M_Geometry_intersect_point_tri_2d_doc},
 | |
| 	{"intersect_point_quad_2d", (PyCFunction) M_Geometry_intersect_point_quad_2d, METH_VARARGS, M_Geometry_intersect_point_quad_2d_doc},
 | |
| 	{"intersect_line_line", (PyCFunction) M_Geometry_intersect_line_line, METH_VARARGS, M_Geometry_intersect_line_line_doc},
 | |
| 	{"intersect_line_line_2d", (PyCFunction) M_Geometry_intersect_line_line_2d, METH_VARARGS, M_Geometry_intersect_line_line_2d_doc},
 | |
| 	{"intersect_line_plane", (PyCFunction) M_Geometry_intersect_line_plane, METH_VARARGS, M_Geometry_intersect_line_plane_doc},
 | |
| 	{"intersect_plane_plane", (PyCFunction) M_Geometry_intersect_plane_plane, METH_VARARGS, M_Geometry_intersect_plane_plane_doc},
 | |
| 	{"intersect_line_sphere", (PyCFunction) M_Geometry_intersect_line_sphere, METH_VARARGS, M_Geometry_intersect_line_sphere_doc},
 | |
| 	{"intersect_line_sphere_2d", (PyCFunction) M_Geometry_intersect_line_sphere_2d, METH_VARARGS, M_Geometry_intersect_line_sphere_2d_doc},
 | |
| 	{"distance_point_to_plane", (PyCFunction) M_Geometry_distance_point_to_plane, METH_VARARGS, M_Geometry_distance_point_to_plane_doc},
 | |
| 	{"intersect_sphere_sphere_2d", (PyCFunction) M_Geometry_intersect_sphere_sphere_2d, METH_VARARGS, M_Geometry_intersect_sphere_sphere_2d_doc},
 | |
| 	{"area_tri", (PyCFunction) M_Geometry_area_tri, METH_VARARGS, M_Geometry_area_tri_doc},
 | |
| 	{"volume_tetrahedron", (PyCFunction) M_Geometry_volume_tetrahedron, METH_VARARGS, M_Geometry_volume_tetrahedron_doc},
 | |
| 	{"normal", (PyCFunction) M_Geometry_normal, METH_VARARGS, M_Geometry_normal_doc},
 | |
| 	{"barycentric_transform", (PyCFunction) M_Geometry_barycentric_transform, METH_VARARGS, M_Geometry_barycentric_transform_doc},
 | |
| 	{"points_in_planes", (PyCFunction) M_Geometry_points_in_planes, METH_VARARGS, M_Geometry_points_in_planes_doc},
 | |
| #ifndef MATH_STANDALONE
 | |
| 	{"interpolate_bezier", (PyCFunction) M_Geometry_interpolate_bezier, METH_VARARGS, M_Geometry_interpolate_bezier_doc},
 | |
| 	{"tessellate_polygon", (PyCFunction) M_Geometry_tessellate_polygon, METH_O, M_Geometry_tessellate_polygon_doc},
 | |
| 	{"convex_hull_2d", (PyCFunction) M_Geometry_convex_hull_2d, METH_O, M_Geometry_convex_hull_2d_doc},
 | |
| 	{"box_fit_2d", (PyCFunction) M_Geometry_box_fit_2d, METH_O, M_Geometry_box_fit_2d_doc},
 | |
| 	{"box_pack_2d", (PyCFunction) M_Geometry_box_pack_2d, METH_O, M_Geometry_box_pack_2d_doc},
 | |
| #endif
 | |
| 	{NULL, NULL, 0, NULL}
 | |
| };
 | |
| 
 | |
| static struct PyModuleDef M_Geometry_module_def = {
 | |
| 	PyModuleDef_HEAD_INIT,
 | |
| 	"mathutils.geometry",  /* m_name */
 | |
| 	M_Geometry_doc,  /* m_doc */
 | |
| 	0,  /* m_size */
 | |
| 	M_Geometry_methods,  /* m_methods */
 | |
| 	NULL,  /* m_reload */
 | |
| 	NULL,  /* m_traverse */
 | |
| 	NULL,  /* m_clear */
 | |
| 	NULL,  /* m_free */
 | |
| };
 | |
| 
 | |
| /*----------------------------MODULE INIT-------------------------*/
 | |
| PyMODINIT_FUNC PyInit_mathutils_geometry(void)
 | |
| {
 | |
| 	PyObject *submodule = PyModule_Create(&M_Geometry_module_def);
 | |
| 	return submodule;
 | |
| }
 |