2497 lines
73 KiB
C
2497 lines
73 KiB
C
/*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* Contributor(s): Full recode, Ton Roosendaal, Crete 2005
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
/** \file blender/blenkernel/intern/armature.c
|
|
* \ingroup bke
|
|
*/
|
|
|
|
|
|
#include <ctype.h>
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <float.h>
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "BLI_math.h"
|
|
#include "BLI_blenlib.h"
|
|
#include "BLI_utildefines.h"
|
|
|
|
#include "DNA_anim_types.h"
|
|
#include "DNA_armature_types.h"
|
|
#include "DNA_constraint_types.h"
|
|
#include "DNA_mesh_types.h"
|
|
#include "DNA_lattice_types.h"
|
|
#include "DNA_meshdata_types.h"
|
|
#include "DNA_nla_types.h"
|
|
#include "DNA_scene_types.h"
|
|
#include "DNA_object_types.h"
|
|
|
|
#include "BKE_animsys.h"
|
|
#include "BKE_armature.h"
|
|
#include "BKE_action.h"
|
|
#include "BKE_anim.h"
|
|
#include "BKE_constraint.h"
|
|
#include "BKE_curve.h"
|
|
#include "BKE_depsgraph.h"
|
|
#include "BKE_DerivedMesh.h"
|
|
#include "BKE_deform.h"
|
|
#include "BKE_displist.h"
|
|
#include "BKE_global.h"
|
|
#include "BKE_idprop.h"
|
|
#include "BKE_library.h"
|
|
#include "BKE_lattice.h"
|
|
#include "BKE_main.h"
|
|
#include "BKE_object.h"
|
|
|
|
#include "BIK_api.h"
|
|
#include "BKE_sketch.h"
|
|
|
|
/* **************** Generic Functions, data level *************** */
|
|
|
|
bArmature *add_armature(const char *name)
|
|
{
|
|
bArmature *arm;
|
|
|
|
arm= alloc_libblock (&G.main->armature, ID_AR, name);
|
|
arm->deformflag = ARM_DEF_VGROUP|ARM_DEF_ENVELOPE;
|
|
arm->flag = ARM_COL_CUSTOM; /* custom bone-group colors */
|
|
arm->layer= 1;
|
|
return arm;
|
|
}
|
|
|
|
bArmature *get_armature(Object *ob)
|
|
{
|
|
if(ob->type==OB_ARMATURE)
|
|
return (bArmature *)ob->data;
|
|
return NULL;
|
|
}
|
|
|
|
void free_bonelist (ListBase *lb)
|
|
{
|
|
Bone *bone;
|
|
|
|
for(bone=lb->first; bone; bone=bone->next) {
|
|
if(bone->prop) {
|
|
IDP_FreeProperty(bone->prop);
|
|
MEM_freeN(bone->prop);
|
|
}
|
|
free_bonelist(&bone->childbase);
|
|
}
|
|
|
|
BLI_freelistN(lb);
|
|
}
|
|
|
|
void free_armature(bArmature *arm)
|
|
{
|
|
if (arm) {
|
|
free_bonelist(&arm->bonebase);
|
|
|
|
/* free editmode data */
|
|
if (arm->edbo) {
|
|
BLI_freelistN(arm->edbo);
|
|
|
|
MEM_freeN(arm->edbo);
|
|
arm->edbo= NULL;
|
|
}
|
|
|
|
/* free sketch */
|
|
if (arm->sketch) {
|
|
freeSketch(arm->sketch);
|
|
arm->sketch = NULL;
|
|
}
|
|
|
|
/* free animation data */
|
|
if (arm->adt) {
|
|
BKE_free_animdata(&arm->id);
|
|
arm->adt= NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
void make_local_armature(bArmature *arm)
|
|
{
|
|
Main *bmain= G.main;
|
|
int local=0, lib=0;
|
|
Object *ob;
|
|
|
|
if (arm->id.lib==NULL) return;
|
|
if (arm->id.us==1) {
|
|
arm->id.lib= NULL;
|
|
arm->id.flag= LIB_LOCAL;
|
|
new_id(&bmain->armature, (ID*)arm, NULL);
|
|
return;
|
|
}
|
|
|
|
for(ob= bmain->object.first; ob && ELEM(0, lib, local); ob= ob->id.next) {
|
|
if(ob->data == arm) {
|
|
if(ob->id.lib) lib= 1;
|
|
else local= 1;
|
|
}
|
|
}
|
|
|
|
if(local && lib==0) {
|
|
arm->id.lib= NULL;
|
|
arm->id.flag= LIB_LOCAL;
|
|
new_id(&bmain->armature, (ID *)arm, NULL);
|
|
}
|
|
else if(local && lib) {
|
|
bArmature *armn= copy_armature(arm);
|
|
armn->id.us= 0;
|
|
|
|
for(ob= bmain->object.first; ob; ob= ob->id.next) {
|
|
if(ob->data == arm) {
|
|
if(ob->id.lib==NULL) {
|
|
ob->data= armn;
|
|
armn->id.us++;
|
|
arm->id.us--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void copy_bonechildren (Bone* newBone, Bone* oldBone, Bone* actBone, Bone **newActBone)
|
|
{
|
|
Bone *curBone, *newChildBone;
|
|
|
|
if(oldBone == actBone)
|
|
*newActBone= newBone;
|
|
|
|
if(oldBone->prop)
|
|
newBone->prop= IDP_CopyProperty(oldBone->prop);
|
|
|
|
/* Copy this bone's list*/
|
|
BLI_duplicatelist(&newBone->childbase, &oldBone->childbase);
|
|
|
|
/* For each child in the list, update it's children*/
|
|
newChildBone=newBone->childbase.first;
|
|
for (curBone=oldBone->childbase.first;curBone;curBone=curBone->next){
|
|
newChildBone->parent=newBone;
|
|
copy_bonechildren(newChildBone, curBone, actBone, newActBone);
|
|
newChildBone=newChildBone->next;
|
|
}
|
|
}
|
|
|
|
bArmature *copy_armature(bArmature *arm)
|
|
{
|
|
bArmature *newArm;
|
|
Bone *oldBone, *newBone;
|
|
Bone *newActBone= NULL;
|
|
|
|
newArm= copy_libblock (arm);
|
|
BLI_duplicatelist(&newArm->bonebase, &arm->bonebase);
|
|
|
|
/* Duplicate the childrens' lists*/
|
|
newBone=newArm->bonebase.first;
|
|
for (oldBone=arm->bonebase.first;oldBone;oldBone=oldBone->next){
|
|
newBone->parent=NULL;
|
|
copy_bonechildren (newBone, oldBone, arm->act_bone, &newActBone);
|
|
newBone=newBone->next;
|
|
};
|
|
|
|
newArm->act_bone= newActBone;
|
|
|
|
newArm->edbo= NULL;
|
|
newArm->act_edbone= NULL;
|
|
newArm->sketch= NULL;
|
|
|
|
return newArm;
|
|
}
|
|
|
|
static Bone *get_named_bone_bonechildren (Bone *bone, const char *name)
|
|
{
|
|
Bone *curBone, *rbone;
|
|
|
|
if (!strcmp (bone->name, name))
|
|
return bone;
|
|
|
|
for (curBone=bone->childbase.first; curBone; curBone=curBone->next){
|
|
rbone=get_named_bone_bonechildren (curBone, name);
|
|
if (rbone)
|
|
return rbone;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
Bone *get_named_bone (bArmature *arm, const char *name)
|
|
/*
|
|
Walk the list until the bone is found
|
|
*/
|
|
{
|
|
Bone *bone=NULL, *curBone;
|
|
|
|
if (!arm) return NULL;
|
|
|
|
for (curBone=arm->bonebase.first; curBone; curBone=curBone->next){
|
|
bone = get_named_bone_bonechildren (curBone, name);
|
|
if (bone)
|
|
return bone;
|
|
}
|
|
|
|
return bone;
|
|
}
|
|
|
|
/* Finds the best possible extension to the name on a particular axis. (For renaming, check for unique names afterwards)
|
|
* strip_number: removes number extensions (TODO: not used)
|
|
* axis: the axis to name on
|
|
* head/tail: the head/tail co-ordinate of the bone on the specified axis
|
|
*/
|
|
int bone_autoside_name (char name[MAXBONENAME], int UNUSED(strip_number), short axis, float head, float tail)
|
|
{
|
|
unsigned int len;
|
|
char basename[MAXBONENAME]= "";
|
|
char extension[5]= "";
|
|
|
|
len= strlen(name);
|
|
if (len == 0) return 0;
|
|
BLI_strncpy(basename, name, sizeof(basename));
|
|
|
|
/* Figure out extension to append:
|
|
* - The extension to append is based upon the axis that we are working on.
|
|
* - If head happens to be on 0, then we must consider the tail position as well to decide
|
|
* which side the bone is on
|
|
* -> If tail is 0, then it's bone is considered to be on axis, so no extension should be added
|
|
* -> Otherwise, extension is added from perspective of object based on which side tail goes to
|
|
* - If head is non-zero, extension is added from perspective of object based on side head is on
|
|
*/
|
|
if (axis == 2) {
|
|
/* z-axis - vertical (top/bottom) */
|
|
if (IS_EQ(head, 0)) {
|
|
if (tail < 0)
|
|
strcpy(extension, "Bot");
|
|
else if (tail > 0)
|
|
strcpy(extension, "Top");
|
|
}
|
|
else {
|
|
if (head < 0)
|
|
strcpy(extension, "Bot");
|
|
else
|
|
strcpy(extension, "Top");
|
|
}
|
|
}
|
|
else if (axis == 1) {
|
|
/* y-axis - depth (front/back) */
|
|
if (IS_EQ(head, 0)) {
|
|
if (tail < 0)
|
|
strcpy(extension, "Fr");
|
|
else if (tail > 0)
|
|
strcpy(extension, "Bk");
|
|
}
|
|
else {
|
|
if (head < 0)
|
|
strcpy(extension, "Fr");
|
|
else
|
|
strcpy(extension, "Bk");
|
|
}
|
|
}
|
|
else {
|
|
/* x-axis - horizontal (left/right) */
|
|
if (IS_EQ(head, 0)) {
|
|
if (tail < 0)
|
|
strcpy(extension, "R");
|
|
else if (tail > 0)
|
|
strcpy(extension, "L");
|
|
}
|
|
else {
|
|
if (head < 0)
|
|
strcpy(extension, "R");
|
|
else if (head > 0)
|
|
strcpy(extension, "L");
|
|
}
|
|
}
|
|
|
|
/* Simple name truncation
|
|
* - truncate if there is an extension and it wouldn't be able to fit
|
|
* - otherwise, just append to end
|
|
*/
|
|
if (extension[0]) {
|
|
int change = 1;
|
|
|
|
while (change) { /* remove extensions */
|
|
change = 0;
|
|
if (len > 2 && basename[len-2]=='.') {
|
|
if (basename[len-1]=='L' || basename[len-1] == 'R' ) { /* L R */
|
|
basename[len-2] = '\0';
|
|
len-=2;
|
|
change= 1;
|
|
}
|
|
} else if (len > 3 && basename[len-3]=='.') {
|
|
if ( (basename[len-2]=='F' && basename[len-1] == 'r') || /* Fr */
|
|
(basename[len-2]=='B' && basename[len-1] == 'k') /* Bk */
|
|
) {
|
|
basename[len-3] = '\0';
|
|
len-=3;
|
|
change= 1;
|
|
}
|
|
} else if (len > 4 && basename[len-4]=='.') {
|
|
if ( (basename[len-3]=='T' && basename[len-2]=='o' && basename[len-1] == 'p') || /* Top */
|
|
(basename[len-3]=='B' && basename[len-2]=='o' && basename[len-1] == 't') /* Bot */
|
|
) {
|
|
basename[len-4] = '\0';
|
|
len-=4;
|
|
change= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((MAXBONENAME - len) < strlen(extension) + 1) { /* add 1 for the '.' */
|
|
strncpy(name, basename, len-strlen(extension));
|
|
}
|
|
|
|
BLI_snprintf(name, MAXBONENAME, "%s.%s", basename, extension);
|
|
|
|
return 1;
|
|
}
|
|
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* ************* B-Bone support ******************* */
|
|
|
|
#define MAX_BBONE_SUBDIV 32
|
|
|
|
/* data has MAX_BBONE_SUBDIV+1 interpolated points, will become desired amount with equal distances */
|
|
static void equalize_bezier(float *data, int desired)
|
|
{
|
|
float *fp, totdist, ddist, dist, fac1, fac2;
|
|
float pdist[MAX_BBONE_SUBDIV+1];
|
|
float temp[MAX_BBONE_SUBDIV+1][4];
|
|
int a, nr;
|
|
|
|
pdist[0]= 0.0f;
|
|
for(a=0, fp= data; a<MAX_BBONE_SUBDIV; a++, fp+=4) {
|
|
QUATCOPY(temp[a], fp);
|
|
pdist[a+1]= pdist[a]+len_v3v3(fp, fp+4);
|
|
}
|
|
/* do last point */
|
|
QUATCOPY(temp[a], fp);
|
|
totdist= pdist[a];
|
|
|
|
/* go over distances and calculate new points */
|
|
ddist= totdist/((float)desired);
|
|
nr= 1;
|
|
for(a=1, fp= data+4; a<desired; a++, fp+=4) {
|
|
|
|
dist= ((float)a)*ddist;
|
|
|
|
/* we're looking for location (distance) 'dist' in the array */
|
|
while((dist>= pdist[nr]) && nr<MAX_BBONE_SUBDIV) {
|
|
nr++;
|
|
}
|
|
|
|
fac1= pdist[nr]- pdist[nr-1];
|
|
fac2= pdist[nr]-dist;
|
|
fac1= fac2/fac1;
|
|
fac2= 1.0f-fac1;
|
|
|
|
fp[0]= fac1*temp[nr-1][0]+ fac2*temp[nr][0];
|
|
fp[1]= fac1*temp[nr-1][1]+ fac2*temp[nr][1];
|
|
fp[2]= fac1*temp[nr-1][2]+ fac2*temp[nr][2];
|
|
fp[3]= fac1*temp[nr-1][3]+ fac2*temp[nr][3];
|
|
}
|
|
/* set last point, needed for orientation calculus */
|
|
QUATCOPY(fp, temp[MAX_BBONE_SUBDIV]);
|
|
}
|
|
|
|
/* returns pointer to static array, filled with desired amount of bone->segments elements */
|
|
/* this calculation is done within unit bone space */
|
|
Mat4 *b_bone_spline_setup(bPoseChannel *pchan, int rest)
|
|
{
|
|
static Mat4 bbone_array[MAX_BBONE_SUBDIV];
|
|
static Mat4 bbone_rest_array[MAX_BBONE_SUBDIV];
|
|
Mat4 *result_array= (rest)? bbone_rest_array: bbone_array;
|
|
bPoseChannel *next, *prev;
|
|
Bone *bone= pchan->bone;
|
|
float h1[3], h2[3], scale[3], length, hlength1, hlength2, roll1=0.0f, roll2;
|
|
float mat3[3][3], imat[4][4], posemat[4][4], scalemat[4][4], iscalemat[4][4];
|
|
float data[MAX_BBONE_SUBDIV+1][4], *fp;
|
|
int a, doscale= 0;
|
|
|
|
length= bone->length;
|
|
|
|
if(!rest) {
|
|
/* check if we need to take non-uniform bone scaling into account */
|
|
scale[0]= len_v3(pchan->pose_mat[0]);
|
|
scale[1]= len_v3(pchan->pose_mat[1]);
|
|
scale[2]= len_v3(pchan->pose_mat[2]);
|
|
|
|
if(fabsf(scale[0] - scale[1]) > 1e-6f || fabsf(scale[1] - scale[2]) > 1e-6f) {
|
|
unit_m4(scalemat);
|
|
scalemat[0][0]= scale[0];
|
|
scalemat[1][1]= scale[1];
|
|
scalemat[2][2]= scale[2];
|
|
invert_m4_m4(iscalemat, scalemat);
|
|
|
|
length *= scale[1];
|
|
doscale = 1;
|
|
}
|
|
}
|
|
|
|
hlength1= bone->ease1*length*0.390464f; // 0.5*sqrt(2)*kappa, the handle length for near-perfect circles
|
|
hlength2= bone->ease2*length*0.390464f;
|
|
|
|
/* evaluate next and prev bones */
|
|
if(bone->flag & BONE_CONNECTED)
|
|
prev= pchan->parent;
|
|
else
|
|
prev= NULL;
|
|
|
|
next= pchan->child;
|
|
|
|
/* find the handle points, since this is inside bone space, the
|
|
first point = (0,0,0)
|
|
last point = (0, length, 0) */
|
|
|
|
if(rest) {
|
|
invert_m4_m4(imat, pchan->bone->arm_mat);
|
|
}
|
|
else if(doscale) {
|
|
copy_m4_m4(posemat, pchan->pose_mat);
|
|
normalize_m4(posemat);
|
|
invert_m4_m4(imat, posemat);
|
|
}
|
|
else
|
|
invert_m4_m4(imat, pchan->pose_mat);
|
|
|
|
if(prev) {
|
|
float difmat[4][4], result[3][3], imat3[3][3];
|
|
|
|
/* transform previous point inside this bone space */
|
|
if(rest)
|
|
VECCOPY(h1, prev->bone->arm_head)
|
|
else
|
|
VECCOPY(h1, prev->pose_head)
|
|
mul_m4_v3(imat, h1);
|
|
|
|
if(prev->bone->segments>1) {
|
|
/* if previous bone is B-bone too, use average handle direction */
|
|
h1[1]-= length;
|
|
roll1= 0.0f;
|
|
}
|
|
|
|
normalize_v3(h1);
|
|
mul_v3_fl(h1, -hlength1);
|
|
|
|
if(prev->bone->segments==1) {
|
|
/* find the previous roll to interpolate */
|
|
if(rest)
|
|
mul_m4_m4m4(difmat, prev->bone->arm_mat, imat);
|
|
else
|
|
mul_m4_m4m4(difmat, prev->pose_mat, imat);
|
|
copy_m3_m4(result, difmat); // the desired rotation at beginning of next bone
|
|
|
|
vec_roll_to_mat3(h1, 0.0f, mat3); // the result of vec_roll without roll
|
|
|
|
invert_m3_m3(imat3, mat3);
|
|
mul_m3_m3m3(mat3, result, imat3); // the matrix transforming vec_roll to desired roll
|
|
|
|
roll1= (float)atan2(mat3[2][0], mat3[2][2]);
|
|
}
|
|
}
|
|
else {
|
|
h1[0]= 0.0f; h1[1]= hlength1; h1[2]= 0.0f;
|
|
roll1= 0.0f;
|
|
}
|
|
if(next) {
|
|
float difmat[4][4], result[3][3], imat3[3][3];
|
|
|
|
/* transform next point inside this bone space */
|
|
if(rest)
|
|
VECCOPY(h2, next->bone->arm_tail)
|
|
else
|
|
VECCOPY(h2, next->pose_tail)
|
|
mul_m4_v3(imat, h2);
|
|
/* if next bone is B-bone too, use average handle direction */
|
|
if(next->bone->segments>1);
|
|
else h2[1]-= length;
|
|
normalize_v3(h2);
|
|
|
|
/* find the next roll to interpolate as well */
|
|
if(rest)
|
|
mul_m4_m4m4(difmat, next->bone->arm_mat, imat);
|
|
else
|
|
mul_m4_m4m4(difmat, next->pose_mat, imat);
|
|
copy_m3_m4(result, difmat); // the desired rotation at beginning of next bone
|
|
|
|
vec_roll_to_mat3(h2, 0.0f, mat3); // the result of vec_roll without roll
|
|
|
|
invert_m3_m3(imat3, mat3);
|
|
mul_m3_m3m3(mat3, imat3, result); // the matrix transforming vec_roll to desired roll
|
|
|
|
roll2= (float)atan2(mat3[2][0], mat3[2][2]);
|
|
|
|
/* and only now negate handle */
|
|
mul_v3_fl(h2, -hlength2);
|
|
}
|
|
else {
|
|
h2[0]= 0.0f; h2[1]= -hlength2; h2[2]= 0.0f;
|
|
roll2= 0.0;
|
|
}
|
|
|
|
/* make curve */
|
|
if(bone->segments > MAX_BBONE_SUBDIV)
|
|
bone->segments= MAX_BBONE_SUBDIV;
|
|
|
|
forward_diff_bezier(0.0, h1[0], h2[0], 0.0, data[0], MAX_BBONE_SUBDIV, 4*sizeof(float));
|
|
forward_diff_bezier(0.0, h1[1], length + h2[1], length, data[0]+1, MAX_BBONE_SUBDIV, 4*sizeof(float));
|
|
forward_diff_bezier(0.0, h1[2], h2[2], 0.0, data[0]+2, MAX_BBONE_SUBDIV, 4*sizeof(float));
|
|
forward_diff_bezier(roll1, roll1 + 0.390464f*(roll2-roll1), roll2 - 0.390464f*(roll2-roll1), roll2, data[0]+3, MAX_BBONE_SUBDIV, 4*sizeof(float));
|
|
|
|
equalize_bezier(data[0], bone->segments); // note: does stride 4!
|
|
|
|
/* make transformation matrices for the segments for drawing */
|
|
for(a=0, fp= data[0]; a<bone->segments; a++, fp+=4) {
|
|
sub_v3_v3v3(h1, fp+4, fp);
|
|
vec_roll_to_mat3(h1, fp[3], mat3); // fp[3] is roll
|
|
|
|
copy_m4_m3(result_array[a].mat, mat3);
|
|
VECCOPY(result_array[a].mat[3], fp);
|
|
|
|
if(doscale) {
|
|
/* correct for scaling when this matrix is used in scaled space */
|
|
mul_serie_m4(result_array[a].mat, iscalemat, result_array[a].mat,
|
|
scalemat, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
}
|
|
|
|
return result_array;
|
|
}
|
|
|
|
/* ************ Armature Deform ******************* */
|
|
|
|
typedef struct bPoseChanDeform {
|
|
Mat4 *b_bone_mats;
|
|
DualQuat *dual_quat;
|
|
DualQuat *b_bone_dual_quats;
|
|
} bPoseChanDeform;
|
|
|
|
static void pchan_b_bone_defmats(bPoseChannel *pchan, bPoseChanDeform *pdef_info, int use_quaternion)
|
|
{
|
|
Bone *bone= pchan->bone;
|
|
Mat4 *b_bone= b_bone_spline_setup(pchan, 0);
|
|
Mat4 *b_bone_rest= b_bone_spline_setup(pchan, 1);
|
|
Mat4 *b_bone_mats;
|
|
DualQuat *b_bone_dual_quats= NULL;
|
|
float tmat[4][4]= MAT4_UNITY;
|
|
int a;
|
|
|
|
/* allocate b_bone matrices and dual quats */
|
|
b_bone_mats= MEM_mallocN((1+bone->segments)*sizeof(Mat4), "BBone defmats");
|
|
pdef_info->b_bone_mats= b_bone_mats;
|
|
|
|
if(use_quaternion) {
|
|
b_bone_dual_quats= MEM_mallocN((bone->segments)*sizeof(DualQuat), "BBone dqs");
|
|
pdef_info->b_bone_dual_quats= b_bone_dual_quats;
|
|
}
|
|
|
|
/* first matrix is the inverse arm_mat, to bring points in local bone space
|
|
for finding out which segment it belongs to */
|
|
invert_m4_m4(b_bone_mats[0].mat, bone->arm_mat);
|
|
|
|
/* then we make the b_bone_mats:
|
|
- first transform to local bone space
|
|
- translate over the curve to the bbone mat space
|
|
- transform with b_bone matrix
|
|
- transform back into global space */
|
|
|
|
for(a=0; a<bone->segments; a++) {
|
|
invert_m4_m4(tmat, b_bone_rest[a].mat);
|
|
|
|
mul_serie_m4(b_bone_mats[a+1].mat, pchan->chan_mat, bone->arm_mat,
|
|
b_bone[a].mat, tmat, b_bone_mats[0].mat, NULL, NULL, NULL);
|
|
|
|
if(use_quaternion)
|
|
mat4_to_dquat( &b_bone_dual_quats[a],bone->arm_mat, b_bone_mats[a+1].mat);
|
|
}
|
|
}
|
|
|
|
static void b_bone_deform(bPoseChanDeform *pdef_info, Bone *bone, float *co, DualQuat *dq, float defmat[][3])
|
|
{
|
|
Mat4 *b_bone= pdef_info->b_bone_mats;
|
|
float (*mat)[4]= b_bone[0].mat;
|
|
float segment, y;
|
|
int a;
|
|
|
|
/* need to transform co back to bonespace, only need y */
|
|
y= mat[0][1]*co[0] + mat[1][1]*co[1] + mat[2][1]*co[2] + mat[3][1];
|
|
|
|
/* now calculate which of the b_bones are deforming this */
|
|
segment= bone->length/((float)bone->segments);
|
|
a= (int)(y/segment);
|
|
|
|
/* note; by clamping it extends deform at endpoints, goes best with
|
|
straight joints in restpos. */
|
|
CLAMP(a, 0, bone->segments-1);
|
|
|
|
if(dq) {
|
|
copy_dq_dq(dq, &(pdef_info->b_bone_dual_quats)[a]);
|
|
}
|
|
else {
|
|
mul_m4_v3(b_bone[a+1].mat, co);
|
|
|
|
if(defmat)
|
|
copy_m3_m4(defmat, b_bone[a+1].mat);
|
|
}
|
|
}
|
|
|
|
/* using vec with dist to bone b1 - b2 */
|
|
float distfactor_to_bone (float vec[3], float b1[3], float b2[3], float rad1, float rad2, float rdist)
|
|
{
|
|
float dist=0.0f;
|
|
float bdelta[3];
|
|
float pdelta[3];
|
|
float hsqr, a, l, rad;
|
|
|
|
sub_v3_v3v3(bdelta, b2, b1);
|
|
l = normalize_v3(bdelta);
|
|
|
|
sub_v3_v3v3(pdelta, vec, b1);
|
|
|
|
a = bdelta[0]*pdelta[0] + bdelta[1]*pdelta[1] + bdelta[2]*pdelta[2];
|
|
hsqr = ((pdelta[0]*pdelta[0]) + (pdelta[1]*pdelta[1]) + (pdelta[2]*pdelta[2]));
|
|
|
|
if (a < 0.0F){
|
|
/* If we're past the end of the bone, do a spherical field attenuation thing */
|
|
dist= ((b1[0]-vec[0])*(b1[0]-vec[0]) +(b1[1]-vec[1])*(b1[1]-vec[1]) +(b1[2]-vec[2])*(b1[2]-vec[2])) ;
|
|
rad= rad1;
|
|
}
|
|
else if (a > l){
|
|
/* If we're past the end of the bone, do a spherical field attenuation thing */
|
|
dist= ((b2[0]-vec[0])*(b2[0]-vec[0]) +(b2[1]-vec[1])*(b2[1]-vec[1]) +(b2[2]-vec[2])*(b2[2]-vec[2])) ;
|
|
rad= rad2;
|
|
}
|
|
else {
|
|
dist= (hsqr - (a*a));
|
|
|
|
if(l!=0.0f) {
|
|
rad= a/l;
|
|
rad= rad*rad2 + (1.0f-rad)*rad1;
|
|
}
|
|
else rad= rad1;
|
|
}
|
|
|
|
a= rad*rad;
|
|
if(dist < a)
|
|
return 1.0f;
|
|
else {
|
|
l= rad+rdist;
|
|
l*= l;
|
|
if(rdist==0.0f || dist >= l)
|
|
return 0.0f;
|
|
else {
|
|
a= (float)sqrt(dist)-rad;
|
|
return 1.0f-( a*a )/( rdist*rdist );
|
|
}
|
|
}
|
|
}
|
|
|
|
static void pchan_deform_mat_add(bPoseChannel *pchan, float weight, float bbonemat[][3], float mat[][3])
|
|
{
|
|
float wmat[3][3];
|
|
|
|
if(pchan->bone->segments>1)
|
|
copy_m3_m3(wmat, bbonemat);
|
|
else
|
|
copy_m3_m4(wmat, pchan->chan_mat);
|
|
|
|
mul_m3_fl(wmat, weight);
|
|
add_m3_m3m3(mat, mat, wmat);
|
|
}
|
|
|
|
static float dist_bone_deform(bPoseChannel *pchan, bPoseChanDeform *pdef_info, float *vec, DualQuat *dq, float mat[][3], float *co)
|
|
{
|
|
Bone *bone= pchan->bone;
|
|
float fac, contrib=0.0;
|
|
float cop[3], bbonemat[3][3];
|
|
DualQuat bbonedq;
|
|
|
|
if(bone==NULL) return 0.0f;
|
|
|
|
VECCOPY (cop, co);
|
|
|
|
fac= distfactor_to_bone(cop, bone->arm_head, bone->arm_tail, bone->rad_head, bone->rad_tail, bone->dist);
|
|
|
|
if (fac > 0.0f) {
|
|
|
|
fac*=bone->weight;
|
|
contrib= fac;
|
|
if(contrib > 0.0f) {
|
|
if(vec) {
|
|
if(bone->segments>1)
|
|
// applies on cop and bbonemat
|
|
b_bone_deform(pdef_info, bone, cop, NULL, (mat)?bbonemat:NULL);
|
|
else
|
|
mul_m4_v3(pchan->chan_mat, cop);
|
|
|
|
// Make this a delta from the base position
|
|
sub_v3_v3(cop, co);
|
|
madd_v3_v3fl(vec, cop, fac);
|
|
|
|
if(mat)
|
|
pchan_deform_mat_add(pchan, fac, bbonemat, mat);
|
|
}
|
|
else {
|
|
if(bone->segments>1) {
|
|
b_bone_deform(pdef_info, bone, cop, &bbonedq, NULL);
|
|
add_weighted_dq_dq(dq, &bbonedq, fac);
|
|
}
|
|
else
|
|
add_weighted_dq_dq(dq, pdef_info->dual_quat, fac);
|
|
}
|
|
}
|
|
}
|
|
|
|
return contrib;
|
|
}
|
|
|
|
static void pchan_bone_deform(bPoseChannel *pchan, bPoseChanDeform *pdef_info, float weight, float *vec, DualQuat *dq, float mat[][3], float *co, float *contrib)
|
|
{
|
|
float cop[3], bbonemat[3][3];
|
|
DualQuat bbonedq;
|
|
|
|
if (!weight)
|
|
return;
|
|
|
|
VECCOPY(cop, co);
|
|
|
|
if(vec) {
|
|
if(pchan->bone->segments>1)
|
|
// applies on cop and bbonemat
|
|
b_bone_deform(pdef_info, pchan->bone, cop, NULL, (mat)?bbonemat:NULL);
|
|
else
|
|
mul_m4_v3(pchan->chan_mat, cop);
|
|
|
|
vec[0]+=(cop[0]-co[0])*weight;
|
|
vec[1]+=(cop[1]-co[1])*weight;
|
|
vec[2]+=(cop[2]-co[2])*weight;
|
|
|
|
if(mat)
|
|
pchan_deform_mat_add(pchan, weight, bbonemat, mat);
|
|
}
|
|
else {
|
|
if(pchan->bone->segments>1) {
|
|
b_bone_deform(pdef_info, pchan->bone, cop, &bbonedq, NULL);
|
|
add_weighted_dq_dq(dq, &bbonedq, weight);
|
|
}
|
|
else
|
|
add_weighted_dq_dq(dq, pdef_info->dual_quat, weight);
|
|
}
|
|
|
|
(*contrib)+=weight;
|
|
}
|
|
|
|
void armature_deform_verts(Object *armOb, Object *target, DerivedMesh *dm,
|
|
float (*vertexCos)[3], float (*defMats)[3][3],
|
|
int numVerts, int deformflag,
|
|
float (*prevCos)[3], const char *defgrp_name)
|
|
{
|
|
bPoseChanDeform *pdef_info_array;
|
|
bPoseChanDeform *pdef_info= NULL;
|
|
bArmature *arm= armOb->data;
|
|
bPoseChannel *pchan, **defnrToPC = NULL;
|
|
int *defnrToPCIndex= NULL;
|
|
MDeformVert *dverts = NULL;
|
|
bDeformGroup *dg;
|
|
DualQuat *dualquats= NULL;
|
|
float obinv[4][4], premat[4][4], postmat[4][4];
|
|
const short use_envelope = deformflag & ARM_DEF_ENVELOPE;
|
|
const short use_quaternion = deformflag & ARM_DEF_QUATERNION;
|
|
const short invert_vgroup= deformflag & ARM_DEF_INVERT_VGROUP;
|
|
int numGroups = 0; /* safety for vertexgroup index overflow */
|
|
int i, target_totvert = 0; /* safety for vertexgroup overflow */
|
|
int use_dverts = 0;
|
|
int armature_def_nr;
|
|
int totchan;
|
|
|
|
if(arm->edbo) return;
|
|
|
|
invert_m4_m4(obinv, target->obmat);
|
|
copy_m4_m4(premat, target->obmat);
|
|
mul_m4_m4m4(postmat, armOb->obmat, obinv);
|
|
invert_m4_m4(premat, postmat);
|
|
|
|
/* bone defmats are already in the channels, chan_mat */
|
|
|
|
/* initialize B_bone matrices and dual quaternions */
|
|
totchan= BLI_countlist(&armOb->pose->chanbase);
|
|
|
|
if(use_quaternion) {
|
|
dualquats= MEM_callocN(sizeof(DualQuat)*totchan, "dualquats");
|
|
}
|
|
|
|
pdef_info_array= MEM_callocN(sizeof(bPoseChanDeform)*totchan, "bPoseChanDeform");
|
|
|
|
totchan= 0;
|
|
pdef_info= pdef_info_array;
|
|
for(pchan= armOb->pose->chanbase.first; pchan; pchan= pchan->next, pdef_info++) {
|
|
if(!(pchan->bone->flag & BONE_NO_DEFORM)) {
|
|
if(pchan->bone->segments > 1)
|
|
pchan_b_bone_defmats(pchan, pdef_info, use_quaternion);
|
|
|
|
if(use_quaternion) {
|
|
pdef_info->dual_quat= &dualquats[totchan++];
|
|
mat4_to_dquat( pdef_info->dual_quat,pchan->bone->arm_mat, pchan->chan_mat);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* get the def_nr for the overall armature vertex group if present */
|
|
armature_def_nr= defgroup_name_index(target, defgrp_name);
|
|
|
|
if(ELEM(target->type, OB_MESH, OB_LATTICE)) {
|
|
numGroups = BLI_countlist(&target->defbase);
|
|
|
|
if(target->type==OB_MESH) {
|
|
Mesh *me= target->data;
|
|
dverts = me->dvert;
|
|
if(dverts)
|
|
target_totvert = me->totvert;
|
|
}
|
|
else {
|
|
Lattice *lt= target->data;
|
|
dverts = lt->dvert;
|
|
if(dverts)
|
|
target_totvert = lt->pntsu*lt->pntsv*lt->pntsw;
|
|
}
|
|
}
|
|
|
|
/* get a vertex-deform-index to posechannel array */
|
|
if(deformflag & ARM_DEF_VGROUP) {
|
|
if(ELEM(target->type, OB_MESH, OB_LATTICE)) {
|
|
/* if we have a DerivedMesh, only use dverts if it has them */
|
|
if(dm)
|
|
if(dm->getVertData(dm, 0, CD_MDEFORMVERT))
|
|
use_dverts = 1;
|
|
else use_dverts = 0;
|
|
else if(dverts) use_dverts = 1;
|
|
|
|
if(use_dverts) {
|
|
defnrToPC = MEM_callocN(sizeof(*defnrToPC) * numGroups, "defnrToBone");
|
|
defnrToPCIndex = MEM_callocN(sizeof(*defnrToPCIndex) * numGroups, "defnrToIndex");
|
|
for(i = 0, dg = target->defbase.first; dg;
|
|
i++, dg = dg->next) {
|
|
defnrToPC[i] = get_pose_channel(armOb->pose, dg->name);
|
|
/* exclude non-deforming bones */
|
|
if(defnrToPC[i]) {
|
|
if(defnrToPC[i]->bone->flag & BONE_NO_DEFORM) {
|
|
defnrToPC[i]= NULL;
|
|
}
|
|
else {
|
|
defnrToPCIndex[i]= BLI_findindex(&armOb->pose->chanbase, defnrToPC[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for(i = 0; i < numVerts; i++) {
|
|
MDeformVert *dvert;
|
|
DualQuat sumdq, *dq = NULL;
|
|
float *co, dco[3];
|
|
float sumvec[3], summat[3][3];
|
|
float *vec = NULL, (*smat)[3] = NULL;
|
|
float contrib = 0.0f;
|
|
float armature_weight = 1.0f; /* default to 1 if no overall def group */
|
|
float prevco_weight = 1.0f; /* weight for optional cached vertexcos */
|
|
int j;
|
|
|
|
if(use_quaternion) {
|
|
memset(&sumdq, 0, sizeof(DualQuat));
|
|
dq= &sumdq;
|
|
}
|
|
else {
|
|
sumvec[0] = sumvec[1] = sumvec[2] = 0.0f;
|
|
vec= sumvec;
|
|
|
|
if(defMats) {
|
|
zero_m3(summat);
|
|
smat = summat;
|
|
}
|
|
}
|
|
|
|
if(use_dverts || armature_def_nr >= 0) {
|
|
if(dm) dvert = dm->getVertData(dm, i, CD_MDEFORMVERT);
|
|
else if(dverts && i < target_totvert) dvert = dverts + i;
|
|
else dvert = NULL;
|
|
} else
|
|
dvert = NULL;
|
|
|
|
if(armature_def_nr >= 0 && dvert) {
|
|
armature_weight= defvert_find_weight(dvert, armature_def_nr);
|
|
|
|
if(invert_vgroup) {
|
|
armature_weight= 1.0f-armature_weight;
|
|
}
|
|
|
|
/* hackish: the blending factor can be used for blending with prevCos too */
|
|
if(prevCos) {
|
|
prevco_weight= armature_weight;
|
|
armature_weight= 1.0f;
|
|
}
|
|
}
|
|
|
|
/* check if there's any point in calculating for this vert */
|
|
if(armature_weight == 0.0f) continue;
|
|
|
|
/* get the coord we work on */
|
|
co= prevCos?prevCos[i]:vertexCos[i];
|
|
|
|
/* Apply the object's matrix */
|
|
mul_m4_v3(premat, co);
|
|
|
|
if(use_dverts && dvert && dvert->totweight) { // use weight groups ?
|
|
int deformed = 0;
|
|
|
|
for(j = 0; j < dvert->totweight; j++){
|
|
int index = dvert->dw[j].def_nr;
|
|
if(index < numGroups && (pchan= defnrToPC[index])) {
|
|
float weight = dvert->dw[j].weight;
|
|
Bone *bone= pchan->bone;
|
|
pdef_info= pdef_info_array + defnrToPCIndex[index];
|
|
|
|
deformed = 1;
|
|
|
|
if(bone && bone->flag & BONE_MULT_VG_ENV) {
|
|
weight *= distfactor_to_bone(co, bone->arm_head,
|
|
bone->arm_tail,
|
|
bone->rad_head,
|
|
bone->rad_tail,
|
|
bone->dist);
|
|
}
|
|
pchan_bone_deform(pchan, pdef_info, weight, vec, dq, smat, co, &contrib);
|
|
}
|
|
}
|
|
/* if there are vertexgroups but not groups with bones
|
|
* (like for softbody groups)
|
|
*/
|
|
if(deformed == 0 && use_envelope) {
|
|
pdef_info= pdef_info_array;
|
|
for(pchan= armOb->pose->chanbase.first; pchan;
|
|
pchan= pchan->next, pdef_info++) {
|
|
if(!(pchan->bone->flag & BONE_NO_DEFORM))
|
|
contrib += dist_bone_deform(pchan, pdef_info, vec, dq, smat, co);
|
|
}
|
|
}
|
|
}
|
|
else if(use_envelope) {
|
|
pdef_info= pdef_info_array;
|
|
for(pchan = armOb->pose->chanbase.first; pchan;
|
|
pchan = pchan->next, pdef_info++) {
|
|
if(!(pchan->bone->flag & BONE_NO_DEFORM))
|
|
contrib += dist_bone_deform(pchan, pdef_info, vec, dq, smat, co);
|
|
}
|
|
}
|
|
|
|
/* actually should be EPSILON? weight values and contrib can be like 10e-39 small */
|
|
if(contrib > 0.0001f) {
|
|
if(use_quaternion) {
|
|
normalize_dq(dq, contrib);
|
|
|
|
if(armature_weight != 1.0f) {
|
|
VECCOPY(dco, co);
|
|
mul_v3m3_dq( dco, (defMats)? summat: NULL,dq);
|
|
sub_v3_v3(dco, co);
|
|
mul_v3_fl(dco, armature_weight);
|
|
add_v3_v3(co, dco);
|
|
}
|
|
else
|
|
mul_v3m3_dq( co, (defMats)? summat: NULL,dq);
|
|
|
|
smat = summat;
|
|
}
|
|
else {
|
|
mul_v3_fl(vec, armature_weight/contrib);
|
|
add_v3_v3v3(co, vec, co);
|
|
}
|
|
|
|
if(defMats) {
|
|
float pre[3][3], post[3][3], tmpmat[3][3];
|
|
|
|
copy_m3_m4(pre, premat);
|
|
copy_m3_m4(post, postmat);
|
|
copy_m3_m3(tmpmat, defMats[i]);
|
|
|
|
if(!use_quaternion) /* quaternion already is scale corrected */
|
|
mul_m3_fl(smat, armature_weight/contrib);
|
|
|
|
mul_serie_m3(defMats[i], tmpmat, pre, smat, post,
|
|
NULL, NULL, NULL, NULL);
|
|
}
|
|
}
|
|
|
|
/* always, check above code */
|
|
mul_m4_v3(postmat, co);
|
|
|
|
|
|
/* interpolate with previous modifier position using weight group */
|
|
if(prevCos) {
|
|
float mw= 1.0f - prevco_weight;
|
|
vertexCos[i][0]= prevco_weight*vertexCos[i][0] + mw*co[0];
|
|
vertexCos[i][1]= prevco_weight*vertexCos[i][1] + mw*co[1];
|
|
vertexCos[i][2]= prevco_weight*vertexCos[i][2] + mw*co[2];
|
|
}
|
|
}
|
|
|
|
if(dualquats) MEM_freeN(dualquats);
|
|
if(defnrToPC) MEM_freeN(defnrToPC);
|
|
if(defnrToPCIndex) MEM_freeN(defnrToPCIndex);
|
|
|
|
/* free B_bone matrices */
|
|
pdef_info= pdef_info_array;
|
|
for(pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
|
|
if(pdef_info->b_bone_mats) {
|
|
MEM_freeN(pdef_info->b_bone_mats);
|
|
}
|
|
if(pdef_info->b_bone_dual_quats) {
|
|
MEM_freeN(pdef_info->b_bone_dual_quats);
|
|
}
|
|
}
|
|
|
|
MEM_freeN(pdef_info_array);
|
|
}
|
|
|
|
/* ************ END Armature Deform ******************* */
|
|
|
|
void get_objectspace_bone_matrix (struct Bone* bone, float M_accumulatedMatrix[][4], int UNUSED(root), int UNUSED(posed))
|
|
{
|
|
copy_m4_m4(M_accumulatedMatrix, bone->arm_mat);
|
|
}
|
|
|
|
/* **************** Space to Space API ****************** */
|
|
|
|
/* Convert World-Space Matrix to Pose-Space Matrix */
|
|
void armature_mat_world_to_pose(Object *ob, float inmat[][4], float outmat[][4])
|
|
{
|
|
float obmat[4][4];
|
|
|
|
/* prevent crashes */
|
|
if (ob==NULL) return;
|
|
|
|
/* get inverse of (armature) object's matrix */
|
|
invert_m4_m4(obmat, ob->obmat);
|
|
|
|
/* multiply given matrix by object's-inverse to find pose-space matrix */
|
|
mul_m4_m4m4(outmat, obmat, inmat);
|
|
}
|
|
|
|
/* Convert Wolrd-Space Location to Pose-Space Location
|
|
* NOTE: this cannot be used to convert to pose-space location of the supplied
|
|
* pose-channel into its local space (i.e. 'visual'-keyframing)
|
|
*/
|
|
void armature_loc_world_to_pose(Object *ob, float *inloc, float *outloc)
|
|
{
|
|
float xLocMat[4][4]= MAT4_UNITY;
|
|
float nLocMat[4][4];
|
|
|
|
/* build matrix for location */
|
|
VECCOPY(xLocMat[3], inloc);
|
|
|
|
/* get bone-space cursor matrix and extract location */
|
|
armature_mat_world_to_pose(ob, xLocMat, nLocMat);
|
|
VECCOPY(outloc, nLocMat[3]);
|
|
}
|
|
|
|
/* Convert Pose-Space Matrix to Bone-Space Matrix
|
|
* NOTE: this cannot be used to convert to pose-space transforms of the supplied
|
|
* pose-channel into its local space (i.e. 'visual'-keyframing)
|
|
*/
|
|
void armature_mat_pose_to_bone(bPoseChannel *pchan, float inmat[][4], float outmat[][4])
|
|
{
|
|
float pc_trans[4][4], inv_trans[4][4];
|
|
float pc_posemat[4][4], inv_posemat[4][4];
|
|
float pose_mat[4][4];
|
|
|
|
/* paranoia: prevent crashes with no pose-channel supplied */
|
|
if (pchan==NULL) return;
|
|
|
|
/* default flag */
|
|
if((pchan->bone->flag & BONE_NO_LOCAL_LOCATION)==0) {
|
|
/* get the inverse matrix of the pchan's transforms */
|
|
switch(pchan->rotmode) {
|
|
case ROT_MODE_QUAT:
|
|
loc_quat_size_to_mat4(pc_trans, pchan->loc, pchan->quat, pchan->size);
|
|
break;
|
|
case ROT_MODE_AXISANGLE:
|
|
loc_axisangle_size_to_mat4(pc_trans, pchan->loc, pchan->rotAxis, pchan->rotAngle, pchan->size);
|
|
break;
|
|
default: /* euler */
|
|
loc_eul_size_to_mat4(pc_trans, pchan->loc, pchan->eul, pchan->size);
|
|
}
|
|
|
|
copy_m4_m4(pose_mat, pchan->pose_mat);
|
|
}
|
|
else {
|
|
/* local location, this is not default, different calculation
|
|
* note: only tested for location with pose bone snapping.
|
|
* If this is not useful in other cases the BONE_NO_LOCAL_LOCATION
|
|
* case may have to be split into its own function. */
|
|
unit_m4(pc_trans);
|
|
copy_v3_v3(pc_trans[3], pchan->loc);
|
|
|
|
/* use parents rotation/scale space + own absolute position */
|
|
if(pchan->parent) copy_m4_m4(pose_mat, pchan->parent->pose_mat);
|
|
else unit_m4(pose_mat);
|
|
|
|
copy_v3_v3(pose_mat[3], pchan->pose_mat[3]);
|
|
}
|
|
|
|
|
|
invert_m4_m4(inv_trans, pc_trans);
|
|
|
|
/* Remove the pchan's transforms from it's pose_mat.
|
|
* This should leave behind the effects of restpose +
|
|
* parenting + constraints
|
|
*/
|
|
mul_m4_m4m4(pc_posemat, inv_trans, pose_mat);
|
|
|
|
/* get the inverse of the leftovers so that we can remove
|
|
* that component from the supplied matrix
|
|
*/
|
|
invert_m4_m4(inv_posemat, pc_posemat);
|
|
|
|
/* get the new matrix */
|
|
mul_m4_m4m4(outmat, inmat, inv_posemat);
|
|
}
|
|
|
|
/* Convert Pose-Space Location to Bone-Space Location
|
|
* NOTE: this cannot be used to convert to pose-space location of the supplied
|
|
* pose-channel into its local space (i.e. 'visual'-keyframing)
|
|
*/
|
|
void armature_loc_pose_to_bone(bPoseChannel *pchan, float *inloc, float *outloc)
|
|
{
|
|
float xLocMat[4][4]= MAT4_UNITY;
|
|
float nLocMat[4][4];
|
|
|
|
/* build matrix for location */
|
|
VECCOPY(xLocMat[3], inloc);
|
|
|
|
/* get bone-space cursor matrix and extract location */
|
|
armature_mat_pose_to_bone(pchan, xLocMat, nLocMat);
|
|
VECCOPY(outloc, nLocMat[3]);
|
|
}
|
|
|
|
/* same as object_mat3_to_rot() */
|
|
void pchan_mat3_to_rot(bPoseChannel *pchan, float mat[][3], short use_compat)
|
|
{
|
|
switch(pchan->rotmode) {
|
|
case ROT_MODE_QUAT:
|
|
mat3_to_quat(pchan->quat, mat);
|
|
break;
|
|
case ROT_MODE_AXISANGLE:
|
|
mat3_to_axis_angle(pchan->rotAxis, &pchan->rotAngle, mat);
|
|
break;
|
|
default: /* euler */
|
|
if(use_compat) mat3_to_compatible_eulO(pchan->eul, pchan->eul, pchan->rotmode, mat);
|
|
else mat3_to_eulO(pchan->eul, pchan->rotmode, mat);
|
|
}
|
|
}
|
|
|
|
/* Apply a 4x4 matrix to the pose bone,
|
|
* similar to object_apply_mat4()
|
|
*/
|
|
void pchan_apply_mat4(bPoseChannel *pchan, float mat[][4], short use_compat)
|
|
{
|
|
float rot[3][3];
|
|
mat4_to_loc_rot_size(pchan->loc, rot, pchan->size, mat);
|
|
pchan_mat3_to_rot(pchan, rot, use_compat);
|
|
}
|
|
|
|
/* Remove rest-position effects from pose-transform for obtaining
|
|
* 'visual' transformation of pose-channel.
|
|
* (used by the Visual-Keyframing stuff)
|
|
*/
|
|
void armature_mat_pose_to_delta(float delta_mat[][4], float pose_mat[][4], float arm_mat[][4])
|
|
{
|
|
float imat[4][4];
|
|
|
|
invert_m4_m4(imat, arm_mat);
|
|
mul_m4_m4m4(delta_mat, pose_mat, imat);
|
|
}
|
|
|
|
/* **************** Rotation Mode Conversions ****************************** */
|
|
/* Used for Objects and Pose Channels, since both can have multiple rotation representations */
|
|
|
|
/* Called from RNA when rotation mode changes
|
|
* - the result should be that the rotations given in the provided pointers have had conversions
|
|
* applied (as appropriate), such that the rotation of the element hasn't 'visually' changed
|
|
*/
|
|
void BKE_rotMode_change_values (float quat[4], float eul[3], float axis[3], float *angle, short oldMode, short newMode)
|
|
{
|
|
/* check if any change - if so, need to convert data */
|
|
if (newMode > 0) { /* to euler */
|
|
if (oldMode == ROT_MODE_AXISANGLE) {
|
|
/* axis-angle to euler */
|
|
axis_angle_to_eulO( eul, newMode,axis, *angle);
|
|
}
|
|
else if (oldMode == ROT_MODE_QUAT) {
|
|
/* quat to euler */
|
|
normalize_qt(quat);
|
|
quat_to_eulO( eul, newMode,quat);
|
|
}
|
|
/* else { no conversion needed } */
|
|
}
|
|
else if (newMode == ROT_MODE_QUAT) { /* to quat */
|
|
if (oldMode == ROT_MODE_AXISANGLE) {
|
|
/* axis angle to quat */
|
|
axis_angle_to_quat(quat, axis, *angle);
|
|
}
|
|
else if (oldMode > 0) {
|
|
/* euler to quat */
|
|
eulO_to_quat( quat,eul, oldMode);
|
|
}
|
|
/* else { no conversion needed } */
|
|
}
|
|
else if (newMode == ROT_MODE_AXISANGLE) { /* to axis-angle */
|
|
if (oldMode > 0) {
|
|
/* euler to axis angle */
|
|
eulO_to_axis_angle( axis, angle,eul, oldMode);
|
|
}
|
|
else if (oldMode == ROT_MODE_QUAT) {
|
|
/* quat to axis angle */
|
|
normalize_qt(quat);
|
|
quat_to_axis_angle( axis, angle,quat);
|
|
}
|
|
|
|
/* when converting to axis-angle, we need a special exception for the case when there is no axis */
|
|
if (IS_EQF(axis[0], axis[1]) && IS_EQF(axis[1], axis[2])) {
|
|
/* for now, rotate around y-axis then (so that it simply becomes the roll) */
|
|
axis[1]= 1.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* **************** The new & simple (but OK!) armature evaluation ********* */
|
|
|
|
/* ****************** And how it works! ****************************************
|
|
|
|
This is the bone transformation trick; they're hierarchical so each bone(b)
|
|
is in the coord system of bone(b-1):
|
|
|
|
arm_mat(b)= arm_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b)
|
|
|
|
-> yoffs is just the y axis translation in parent's coord system
|
|
-> d_root is the translation of the bone root, also in parent's coord system
|
|
|
|
pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b)
|
|
|
|
we then - in init deform - store the deform in chan_mat, such that:
|
|
|
|
pose_mat(b)= arm_mat(b) * chan_mat(b)
|
|
|
|
*************************************************************************** */
|
|
/* Computes vector and roll based on a rotation. "mat" must
|
|
contain only a rotation, and no scaling. */
|
|
void mat3_to_vec_roll(float mat[][3], float *vec, float *roll)
|
|
{
|
|
if (vec)
|
|
copy_v3_v3(vec, mat[1]);
|
|
|
|
if (roll) {
|
|
float vecmat[3][3], vecmatinv[3][3], rollmat[3][3];
|
|
|
|
vec_roll_to_mat3(mat[1], 0.0f, vecmat);
|
|
invert_m3_m3(vecmatinv, vecmat);
|
|
mul_m3_m3m3(rollmat, vecmatinv, mat);
|
|
|
|
*roll= (float)atan2(rollmat[2][0], rollmat[2][2]);
|
|
}
|
|
}
|
|
|
|
/* Calculates the rest matrix of a bone based
|
|
On its vector and a roll around that vector */
|
|
void vec_roll_to_mat3(float *vec, float roll, float mat[][3])
|
|
{
|
|
float nor[3], axis[3], target[3]={0,1,0};
|
|
float theta;
|
|
float rMatrix[3][3], bMatrix[3][3];
|
|
|
|
normalize_v3_v3(nor, vec);
|
|
|
|
/* Find Axis & Amount for bone matrix*/
|
|
cross_v3_v3v3(axis,target,nor);
|
|
|
|
/* was 0.0000000000001, caused bug [#23954], smaller values give unstable
|
|
* roll when toggling editmode.
|
|
*
|
|
* was 0.00001, causes bug [#27675], with 0.00000495,
|
|
* so a value inbetween these is needed.
|
|
*/
|
|
if (dot_v3v3(axis,axis) > 0.000001f) {
|
|
/* if nor is *not* a multiple of target ... */
|
|
normalize_v3(axis);
|
|
|
|
theta= angle_normalized_v3v3(target, nor);
|
|
|
|
/* Make Bone matrix*/
|
|
vec_rot_to_mat3( bMatrix,axis, theta);
|
|
}
|
|
else {
|
|
/* if nor is a multiple of target ... */
|
|
float updown;
|
|
|
|
/* point same direction, or opposite? */
|
|
updown = ( dot_v3v3(target,nor) > 0 ) ? 1.0f : -1.0f;
|
|
|
|
/* I think this should work ... */
|
|
bMatrix[0][0]=updown; bMatrix[0][1]=0.0; bMatrix[0][2]=0.0;
|
|
bMatrix[1][0]=0.0; bMatrix[1][1]=updown; bMatrix[1][2]=0.0;
|
|
bMatrix[2][0]=0.0; bMatrix[2][1]=0.0; bMatrix[2][2]=1.0;
|
|
}
|
|
|
|
/* Make Roll matrix*/
|
|
vec_rot_to_mat3( rMatrix,nor, roll);
|
|
|
|
/* Combine and output result*/
|
|
mul_m3_m3m3(mat, rMatrix, bMatrix);
|
|
}
|
|
|
|
|
|
/* recursive part, calculates restposition of entire tree of children */
|
|
/* used by exiting editmode too */
|
|
void where_is_armature_bone(Bone *bone, Bone *prevbone)
|
|
{
|
|
float vec[3];
|
|
|
|
/* Bone Space */
|
|
sub_v3_v3v3(vec, bone->tail, bone->head);
|
|
vec_roll_to_mat3(vec, bone->roll, bone->bone_mat);
|
|
|
|
bone->length= len_v3v3(bone->head, bone->tail);
|
|
|
|
/* this is called on old file reading too... */
|
|
if(bone->xwidth==0.0f) {
|
|
bone->xwidth= 0.1f;
|
|
bone->zwidth= 0.1f;
|
|
bone->segments= 1;
|
|
}
|
|
|
|
if(prevbone) {
|
|
float offs_bone[4][4]; // yoffs(b-1) + root(b) + bonemat(b)
|
|
|
|
/* bone transform itself */
|
|
copy_m4_m3(offs_bone, bone->bone_mat);
|
|
|
|
/* The bone's root offset (is in the parent's coordinate system) */
|
|
VECCOPY(offs_bone[3], bone->head);
|
|
|
|
/* Get the length translation of parent (length along y axis) */
|
|
offs_bone[3][1]+= prevbone->length;
|
|
|
|
/* Compose the matrix for this bone */
|
|
mul_m4_m4m4(bone->arm_mat, offs_bone, prevbone->arm_mat);
|
|
}
|
|
else {
|
|
copy_m4_m3(bone->arm_mat, bone->bone_mat);
|
|
VECCOPY(bone->arm_mat[3], bone->head);
|
|
}
|
|
|
|
/* and the kiddies */
|
|
prevbone= bone;
|
|
for(bone= bone->childbase.first; bone; bone= bone->next) {
|
|
where_is_armature_bone(bone, prevbone);
|
|
}
|
|
}
|
|
|
|
/* updates vectors and matrices on rest-position level, only needed
|
|
after editing armature itself, now only on reading file */
|
|
void where_is_armature (bArmature *arm)
|
|
{
|
|
Bone *bone;
|
|
|
|
/* hierarchical from root to children */
|
|
for(bone= arm->bonebase.first; bone; bone= bone->next) {
|
|
where_is_armature_bone(bone, NULL);
|
|
}
|
|
}
|
|
|
|
/* if bone layer is protected, copy the data from from->pose
|
|
* when used with linked libraries this copies from the linked pose into the local pose */
|
|
static void pose_proxy_synchronize(Object *ob, Object *from, int layer_protected)
|
|
{
|
|
bPose *pose= ob->pose, *frompose= from->pose;
|
|
bPoseChannel *pchan, *pchanp, pchanw;
|
|
bConstraint *con;
|
|
int error = 0;
|
|
|
|
if (frompose==NULL) return;
|
|
|
|
/* in some cases when rigs change, we cant synchronize
|
|
* to avoid crashing check for possible errors here */
|
|
for (pchan= pose->chanbase.first; pchan; pchan= pchan->next) {
|
|
if (pchan->bone->layer & layer_protected) {
|
|
if(get_pose_channel(frompose, pchan->name) == NULL) {
|
|
printf("failed to sync proxy armature because '%s' is missing pose channel '%s'\n", from->id.name, pchan->name);
|
|
error = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(error)
|
|
return;
|
|
|
|
/* clear all transformation values from library */
|
|
rest_pose(frompose);
|
|
|
|
/* copy over all of the proxy's bone groups */
|
|
/* TODO for later - implement 'local' bone groups as for constraints
|
|
* Note: this isn't trivial, as bones reference groups by index not by pointer,
|
|
* so syncing things correctly needs careful attention
|
|
*/
|
|
BLI_freelistN(&pose->agroups);
|
|
BLI_duplicatelist(&pose->agroups, &frompose->agroups);
|
|
pose->active_group= frompose->active_group;
|
|
|
|
for (pchan= pose->chanbase.first; pchan; pchan= pchan->next) {
|
|
pchanp= get_pose_channel(frompose, pchan->name);
|
|
|
|
if (pchan->bone->layer & layer_protected) {
|
|
ListBase proxylocal_constraints = {NULL, NULL};
|
|
|
|
/* copy posechannel to temp, but restore important pointers */
|
|
pchanw= *pchanp;
|
|
pchanw.prev= pchan->prev;
|
|
pchanw.next= pchan->next;
|
|
pchanw.parent= pchan->parent;
|
|
pchanw.child= pchan->child;
|
|
|
|
/* this is freed so copy a copy, else undo crashes */
|
|
if(pchanw.prop) {
|
|
pchanw.prop= IDP_CopyProperty(pchanw.prop);
|
|
|
|
/* use the values from the the existing props */
|
|
if(pchan->prop) {
|
|
IDP_SyncGroupValues(pchanw.prop, pchan->prop);
|
|
}
|
|
}
|
|
|
|
/* constraints - proxy constraints are flushed... local ones are added after
|
|
* 1. extract constraints not from proxy (CONSTRAINT_PROXY_LOCAL) from pchan's constraints
|
|
* 2. copy proxy-pchan's constraints on-to new
|
|
* 3. add extracted local constraints back on top
|
|
*
|
|
* note for copy_constraints: when copying constraints, disable 'do_extern' otherwise we get the libs direct linked in this blend.
|
|
*/
|
|
extract_proxylocal_constraints(&proxylocal_constraints, &pchan->constraints);
|
|
copy_constraints(&pchanw.constraints, &pchanp->constraints, FALSE);
|
|
BLI_movelisttolist(&pchanw.constraints, &proxylocal_constraints);
|
|
|
|
/* constraints - set target ob pointer to own object */
|
|
for (con= pchanw.constraints.first; con; con= con->next) {
|
|
bConstraintTypeInfo *cti= constraint_get_typeinfo(con);
|
|
ListBase targets = {NULL, NULL};
|
|
bConstraintTarget *ct;
|
|
|
|
if (cti && cti->get_constraint_targets) {
|
|
cti->get_constraint_targets(con, &targets);
|
|
|
|
for (ct= targets.first; ct; ct= ct->next) {
|
|
if (ct->tar == from)
|
|
ct->tar = ob;
|
|
}
|
|
|
|
if (cti->flush_constraint_targets)
|
|
cti->flush_constraint_targets(con, &targets, 0);
|
|
}
|
|
}
|
|
|
|
/* free stuff from current channel */
|
|
free_pose_channel(pchan);
|
|
|
|
/* the final copy */
|
|
*pchan= pchanw;
|
|
}
|
|
else {
|
|
/* always copy custom shape */
|
|
pchan->custom= pchanp->custom;
|
|
pchan->custom_tx= pchanp->custom_tx;
|
|
|
|
/* ID-Property Syncing */
|
|
{
|
|
IDProperty *prop_orig= pchan->prop;
|
|
if(pchanp->prop) {
|
|
pchan->prop= IDP_CopyProperty(pchanp->prop);
|
|
if(prop_orig) {
|
|
/* copy existing values across when types match */
|
|
IDP_SyncGroupValues(pchan->prop, prop_orig);
|
|
}
|
|
}
|
|
else {
|
|
pchan->prop= NULL;
|
|
}
|
|
if (prop_orig) {
|
|
IDP_FreeProperty(prop_orig);
|
|
MEM_freeN(prop_orig);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int rebuild_pose_bone(bPose *pose, Bone *bone, bPoseChannel *parchan, int counter)
|
|
{
|
|
bPoseChannel *pchan = verify_pose_channel (pose, bone->name); // verify checks and/or adds
|
|
|
|
pchan->bone= bone;
|
|
pchan->parent= parchan;
|
|
|
|
counter++;
|
|
|
|
for(bone= bone->childbase.first; bone; bone= bone->next) {
|
|
counter= rebuild_pose_bone(pose, bone, pchan, counter);
|
|
/* for quick detecting of next bone in chain, only b-bone uses it now */
|
|
if(bone->flag & BONE_CONNECTED)
|
|
pchan->child= get_pose_channel(pose, bone->name);
|
|
}
|
|
|
|
return counter;
|
|
}
|
|
|
|
/* only after leave editmode, duplicating, validating older files, library syncing */
|
|
/* NOTE: pose->flag is set for it */
|
|
void armature_rebuild_pose(Object *ob, bArmature *arm)
|
|
{
|
|
Bone *bone;
|
|
bPose *pose;
|
|
bPoseChannel *pchan, *next;
|
|
int counter=0;
|
|
|
|
/* only done here */
|
|
if(ob->pose==NULL) {
|
|
/* create new pose */
|
|
ob->pose= MEM_callocN(sizeof(bPose), "new pose");
|
|
|
|
/* set default settings for animviz */
|
|
animviz_settings_init(&ob->pose->avs);
|
|
}
|
|
pose= ob->pose;
|
|
|
|
/* clear */
|
|
for(pchan= pose->chanbase.first; pchan; pchan= pchan->next) {
|
|
pchan->bone= NULL;
|
|
pchan->child= NULL;
|
|
}
|
|
|
|
/* first step, check if all channels are there */
|
|
for(bone= arm->bonebase.first; bone; bone= bone->next) {
|
|
counter= rebuild_pose_bone(pose, bone, NULL, counter);
|
|
}
|
|
|
|
/* and a check for garbage */
|
|
for(pchan= pose->chanbase.first; pchan; pchan= next) {
|
|
next= pchan->next;
|
|
if(pchan->bone==NULL) {
|
|
free_pose_channel(pchan);
|
|
free_pose_channels_hash(pose);
|
|
BLI_freelinkN(&pose->chanbase, pchan);
|
|
}
|
|
}
|
|
// printf("rebuild pose %s, %d bones\n", ob->id.name, counter);
|
|
|
|
/* synchronize protected layers with proxy */
|
|
if(ob->proxy) {
|
|
object_copy_proxy_drivers(ob, ob->proxy);
|
|
pose_proxy_synchronize(ob, ob->proxy, arm->layer_protected);
|
|
}
|
|
|
|
update_pose_constraint_flags(ob->pose); // for IK detection for example
|
|
|
|
/* the sorting */
|
|
if(counter>1)
|
|
DAG_pose_sort(ob);
|
|
|
|
ob->pose->flag &= ~POSE_RECALC;
|
|
ob->pose->flag |= POSE_WAS_REBUILT;
|
|
|
|
make_pose_channels_hash(ob->pose);
|
|
}
|
|
|
|
|
|
/* ********************** SPLINE IK SOLVER ******************* */
|
|
|
|
/* Temporary evaluation tree data used for Spline IK */
|
|
typedef struct tSplineIK_Tree {
|
|
struct tSplineIK_Tree *next, *prev;
|
|
|
|
int type; /* type of IK that this serves (CONSTRAINT_TYPE_KINEMATIC or ..._SPLINEIK) */
|
|
|
|
short free_points; /* free the point positions array */
|
|
short chainlen; /* number of bones in the chain */
|
|
|
|
float *points; /* parametric positions for the joints along the curve */
|
|
bPoseChannel **chain; /* chain of bones to affect using Spline IK (ordered from the tip) */
|
|
|
|
bPoseChannel *root; /* bone that is the root node of the chain */
|
|
|
|
bConstraint *con; /* constraint for this chain */
|
|
bSplineIKConstraint *ikData; /* constraint settings for this chain */
|
|
} tSplineIK_Tree;
|
|
|
|
/* ----------- */
|
|
|
|
/* Tag the bones in the chain formed by the given bone for IK */
|
|
static void splineik_init_tree_from_pchan(Scene *scene, Object *UNUSED(ob), bPoseChannel *pchan_tip)
|
|
{
|
|
bPoseChannel *pchan, *pchanRoot=NULL;
|
|
bPoseChannel *pchanChain[255];
|
|
bConstraint *con = NULL;
|
|
bSplineIKConstraint *ikData = NULL;
|
|
float boneLengths[255], *jointPoints;
|
|
float totLength = 0.0f;
|
|
short free_joints = 0;
|
|
int segcount = 0;
|
|
|
|
/* find the SplineIK constraint */
|
|
for (con= pchan_tip->constraints.first; con; con= con->next) {
|
|
if (con->type == CONSTRAINT_TYPE_SPLINEIK) {
|
|
ikData= con->data;
|
|
|
|
/* target can only be curve */
|
|
if ((ikData->tar == NULL) || (ikData->tar->type != OB_CURVE))
|
|
continue;
|
|
/* skip if disabled */
|
|
if ( (con->enforce == 0.0f) || (con->flag & (CONSTRAINT_DISABLE|CONSTRAINT_OFF)) )
|
|
continue;
|
|
|
|
/* otherwise, constraint is ok... */
|
|
break;
|
|
}
|
|
}
|
|
if (con == NULL)
|
|
return;
|
|
|
|
/* make sure that the constraint targets are ok
|
|
* - this is a workaround for a depsgraph bug...
|
|
*/
|
|
if (ikData->tar) {
|
|
Curve *cu= ikData->tar->data;
|
|
|
|
/* note: when creating constraints that follow path, the curve gets the CU_PATH set now,
|
|
* currently for paths to work it needs to go through the bevlist/displist system (ton)
|
|
*/
|
|
|
|
/* only happens on reload file, but violates depsgraph still... fix! */
|
|
if ((cu->path==NULL) || (cu->path->data==NULL))
|
|
makeDispListCurveTypes(scene, ikData->tar, 0);
|
|
}
|
|
|
|
/* find the root bone and the chain of bones from the root to the tip
|
|
* NOTE: this assumes that the bones are connected, but that may not be true...
|
|
*/
|
|
for (pchan= pchan_tip; pchan && (segcount < ikData->chainlen); pchan= pchan->parent, segcount++) {
|
|
/* store this segment in the chain */
|
|
pchanChain[segcount]= pchan;
|
|
|
|
/* if performing rebinding, calculate the length of the bone */
|
|
boneLengths[segcount]= pchan->bone->length;
|
|
totLength += boneLengths[segcount];
|
|
}
|
|
|
|
if (segcount == 0)
|
|
return;
|
|
else
|
|
pchanRoot= pchanChain[segcount-1];
|
|
|
|
/* perform binding step if required */
|
|
if ((ikData->flag & CONSTRAINT_SPLINEIK_BOUND) == 0) {
|
|
float segmentLen= (1.0f / (float)segcount);
|
|
int i;
|
|
|
|
/* setup new empty array for the points list */
|
|
if (ikData->points)
|
|
MEM_freeN(ikData->points);
|
|
ikData->numpoints= ikData->chainlen+1;
|
|
ikData->points= MEM_callocN(sizeof(float)*ikData->numpoints, "Spline IK Binding");
|
|
|
|
/* bind 'tip' of chain (i.e. first joint = tip of bone with the Spline IK Constraint) */
|
|
ikData->points[0] = 1.0f;
|
|
|
|
/* perform binding of the joints to parametric positions along the curve based
|
|
* proportion of the total length that each bone occupies
|
|
*/
|
|
for (i = 0; i < segcount; i++) {
|
|
/* 'head' joints, travelling towards the root of the chain
|
|
* - 2 methods; the one chosen depends on whether we've got usable lengths
|
|
*/
|
|
if ((ikData->flag & CONSTRAINT_SPLINEIK_EVENSPLITS) || (totLength == 0.0f)) {
|
|
/* 1) equi-spaced joints */
|
|
ikData->points[i+1]= ikData->points[i] - segmentLen;
|
|
}
|
|
else {
|
|
/* 2) to find this point on the curve, we take a step from the previous joint
|
|
* a distance given by the proportion that this bone takes
|
|
*/
|
|
ikData->points[i+1]= ikData->points[i] - (boneLengths[i] / totLength);
|
|
}
|
|
}
|
|
|
|
/* spline has now been bound */
|
|
ikData->flag |= CONSTRAINT_SPLINEIK_BOUND;
|
|
}
|
|
|
|
/* apply corrections for sensitivity to scaling on a copy of the bind points,
|
|
* since it's easier to determine the positions of all the joints beforehand this way
|
|
*/
|
|
if ((ikData->flag & CONSTRAINT_SPLINEIK_SCALE_LIMITED) && (totLength != 0.0f)) {
|
|
Curve *cu= (Curve *)ikData->tar->data;
|
|
float splineLen, maxScale;
|
|
int i;
|
|
|
|
/* make a copy of the points array, that we'll store in the tree
|
|
* - although we could just multiply the points on the fly, this approach means that
|
|
* we can introduce per-segment stretchiness later if it is necessary
|
|
*/
|
|
jointPoints= MEM_dupallocN(ikData->points);
|
|
free_joints= 1;
|
|
|
|
/* get the current length of the curve */
|
|
// NOTE: this is assumed to be correct even after the curve was resized
|
|
splineLen= cu->path->totdist;
|
|
|
|
/* calculate the scale factor to multiply all the path values by so that the
|
|
* bone chain retains its current length, such that
|
|
* maxScale * splineLen = totLength
|
|
*/
|
|
maxScale = totLength / splineLen;
|
|
|
|
/* apply scaling correction to all of the temporary points */
|
|
// TODO: this is really not adequate enough on really short chains
|
|
for (i = 0; i < segcount; i++)
|
|
jointPoints[i] *= maxScale;
|
|
}
|
|
else {
|
|
/* just use the existing points array */
|
|
jointPoints= ikData->points;
|
|
free_joints= 0;
|
|
}
|
|
|
|
/* make a new Spline-IK chain, and store it in the IK chains */
|
|
// TODO: we should check if there is already an IK chain on this, since that would take presidence...
|
|
{
|
|
/* make new tree */
|
|
tSplineIK_Tree *tree= MEM_callocN(sizeof(tSplineIK_Tree), "SplineIK Tree");
|
|
tree->type= CONSTRAINT_TYPE_SPLINEIK;
|
|
|
|
tree->chainlen= segcount;
|
|
|
|
/* copy over the array of links to bones in the chain (from tip to root) */
|
|
tree->chain= MEM_callocN(sizeof(bPoseChannel*)*segcount, "SplineIK Chain");
|
|
memcpy(tree->chain, pchanChain, sizeof(bPoseChannel*)*segcount);
|
|
|
|
/* store reference to joint position array */
|
|
tree->points= jointPoints;
|
|
tree->free_points= free_joints;
|
|
|
|
/* store references to different parts of the chain */
|
|
tree->root= pchanRoot;
|
|
tree->con= con;
|
|
tree->ikData= ikData;
|
|
|
|
/* AND! link the tree to the root */
|
|
BLI_addtail(&pchanRoot->iktree, tree);
|
|
}
|
|
|
|
/* mark root channel having an IK tree */
|
|
pchanRoot->flag |= POSE_IKSPLINE;
|
|
}
|
|
|
|
/* Tag which bones are members of Spline IK chains */
|
|
static void splineik_init_tree(Scene *scene, Object *ob, float UNUSED(ctime))
|
|
{
|
|
bPoseChannel *pchan;
|
|
|
|
/* find the tips of Spline IK chains, which are simply the bones which have been tagged as such */
|
|
for (pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
|
|
if (pchan->constflag & PCHAN_HAS_SPLINEIK)
|
|
splineik_init_tree_from_pchan(scene, ob, pchan);
|
|
}
|
|
}
|
|
|
|
/* ----------- */
|
|
|
|
/* Evaluate spline IK for a given bone */
|
|
static void splineik_evaluate_bone(tSplineIK_Tree *tree, Scene *scene, Object *ob, bPoseChannel *pchan, int index, float ctime)
|
|
{
|
|
bSplineIKConstraint *ikData= tree->ikData;
|
|
float poseHead[3], poseTail[3], poseMat[4][4];
|
|
float splineVec[3], scaleFac, radius=1.0f;
|
|
|
|
/* firstly, calculate the bone matrix the standard way, since this is needed for roll control */
|
|
where_is_pose_bone(scene, ob, pchan, ctime, 1);
|
|
|
|
VECCOPY(poseHead, pchan->pose_head);
|
|
VECCOPY(poseTail, pchan->pose_tail);
|
|
|
|
/* step 1: determine the positions for the endpoints of the bone */
|
|
{
|
|
float vec[4], dir[3], rad;
|
|
float tailBlendFac= 1.0f;
|
|
|
|
/* determine if the bone should still be affected by SplineIK */
|
|
if (tree->points[index+1] >= 1.0f) {
|
|
/* spline doesn't affect the bone anymore, so done... */
|
|
pchan->flag |= POSE_DONE;
|
|
return;
|
|
}
|
|
else if ((tree->points[index] >= 1.0f) && (tree->points[index+1] < 1.0f)) {
|
|
/* blending factor depends on the amount of the bone still left on the chain */
|
|
tailBlendFac= (1.0f - tree->points[index+1]) / (tree->points[index] - tree->points[index+1]);
|
|
}
|
|
|
|
/* tail endpoint */
|
|
if ( where_on_path(ikData->tar, tree->points[index], vec, dir, NULL, &rad, NULL) ) {
|
|
/* apply curve's object-mode transforms to the position
|
|
* unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
|
|
*/
|
|
if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
|
|
mul_m4_v3(ikData->tar->obmat, vec);
|
|
|
|
/* convert the position to pose-space, then store it */
|
|
mul_m4_v3(ob->imat, vec);
|
|
interp_v3_v3v3(poseTail, pchan->pose_tail, vec, tailBlendFac);
|
|
|
|
/* set the new radius */
|
|
radius= rad;
|
|
}
|
|
|
|
/* head endpoint */
|
|
if ( where_on_path(ikData->tar, tree->points[index+1], vec, dir, NULL, &rad, NULL) ) {
|
|
/* apply curve's object-mode transforms to the position
|
|
* unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
|
|
*/
|
|
if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
|
|
mul_m4_v3(ikData->tar->obmat, vec);
|
|
|
|
/* store the position, and convert it to pose space */
|
|
mul_m4_v3(ob->imat, vec);
|
|
VECCOPY(poseHead, vec);
|
|
|
|
/* set the new radius (it should be the average value) */
|
|
radius = (radius+rad) / 2;
|
|
}
|
|
}
|
|
|
|
/* step 2: determine the implied transform from these endpoints
|
|
* - splineVec: the vector direction that the spline applies on the bone
|
|
* - scaleFac: the factor that the bone length is scaled by to get the desired amount
|
|
*/
|
|
sub_v3_v3v3(splineVec, poseTail, poseHead);
|
|
scaleFac= len_v3(splineVec) / pchan->bone->length;
|
|
|
|
/* step 3: compute the shortest rotation needed to map from the bone rotation to the current axis
|
|
* - this uses the same method as is used for the Damped Track Constraint (see the code there for details)
|
|
*/
|
|
{
|
|
float dmat[3][3], rmat[3][3], tmat[3][3];
|
|
float raxis[3], rangle;
|
|
|
|
/* compute the raw rotation matrix from the bone's current matrix by extracting only the
|
|
* orientation-relevant axes, and normalising them
|
|
*/
|
|
VECCOPY(rmat[0], pchan->pose_mat[0]);
|
|
VECCOPY(rmat[1], pchan->pose_mat[1]);
|
|
VECCOPY(rmat[2], pchan->pose_mat[2]);
|
|
normalize_m3(rmat);
|
|
|
|
/* also, normalise the orientation imposed by the bone, now that we've extracted the scale factor */
|
|
normalize_v3(splineVec);
|
|
|
|
/* calculate smallest axis-angle rotation necessary for getting from the
|
|
* current orientation of the bone, to the spline-imposed direction
|
|
*/
|
|
cross_v3_v3v3(raxis, rmat[1], splineVec);
|
|
|
|
rangle= dot_v3v3(rmat[1], splineVec);
|
|
rangle= acos( MAX2(-1.0f, MIN2(1.0f, rangle)) );
|
|
|
|
/* multiply the magnitude of the angle by the influence of the constraint to
|
|
* control the influence of the SplineIK effect
|
|
*/
|
|
rangle *= tree->con->enforce;
|
|
|
|
/* construct rotation matrix from the axis-angle rotation found above
|
|
* - this call takes care to make sure that the axis provided is a unit vector first
|
|
*/
|
|
axis_angle_to_mat3(dmat, raxis, rangle);
|
|
|
|
/* combine these rotations so that the y-axis of the bone is now aligned as the spline dictates,
|
|
* while still maintaining roll control from the existing bone animation
|
|
*/
|
|
mul_m3_m3m3(tmat, dmat, rmat); // m1, m3, m2
|
|
normalize_m3(tmat); /* attempt to reduce shearing, though I doubt this'll really help too much now... */
|
|
copy_m4_m3(poseMat, tmat);
|
|
}
|
|
|
|
/* step 4: set the scaling factors for the axes */
|
|
{
|
|
/* only multiply the y-axis by the scaling factor to get nice volume-preservation */
|
|
mul_v3_fl(poseMat[1], scaleFac);
|
|
|
|
/* set the scaling factors of the x and z axes from... */
|
|
switch (ikData->xzScaleMode) {
|
|
case CONSTRAINT_SPLINEIK_XZS_ORIGINAL:
|
|
{
|
|
/* original scales get used */
|
|
float scale;
|
|
|
|
/* x-axis scale */
|
|
scale= len_v3(pchan->pose_mat[0]);
|
|
mul_v3_fl(poseMat[0], scale);
|
|
/* z-axis scale */
|
|
scale= len_v3(pchan->pose_mat[2]);
|
|
mul_v3_fl(poseMat[2], scale);
|
|
}
|
|
break;
|
|
case CONSTRAINT_SPLINEIK_XZS_VOLUMETRIC:
|
|
{
|
|
/* 'volume preservation' */
|
|
float scale;
|
|
|
|
/* calculate volume preservation factor which is
|
|
* basically the inverse of the y-scaling factor
|
|
*/
|
|
if (fabsf(scaleFac) != 0.0f) {
|
|
scale= 1.0f / fabsf(scaleFac);
|
|
|
|
/* we need to clamp this within sensible values */
|
|
// NOTE: these should be fine for now, but should get sanitised in future
|
|
CLAMP(scale, 0.0001f, 100000.0f);
|
|
}
|
|
else
|
|
scale= 1.0f;
|
|
|
|
/* apply the scaling */
|
|
mul_v3_fl(poseMat[0], scale);
|
|
mul_v3_fl(poseMat[2], scale);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* finally, multiply the x and z scaling by the radius of the curve too,
|
|
* to allow automatic scales to get tweaked still
|
|
*/
|
|
if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_CURVERAD) == 0) {
|
|
mul_v3_fl(poseMat[0], radius);
|
|
mul_v3_fl(poseMat[2], radius);
|
|
}
|
|
}
|
|
|
|
/* step 5: set the location of the bone in the matrix */
|
|
if (ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) {
|
|
/* when the 'no-root' option is affected, the chain can retain
|
|
* the shape but be moved elsewhere
|
|
*/
|
|
VECCOPY(poseHead, pchan->pose_head);
|
|
}
|
|
else if (tree->con->enforce < 1.0f) {
|
|
/* when the influence is too low
|
|
* - blend the positions for the 'root' bone
|
|
* - stick to the parent for any other
|
|
*/
|
|
if (pchan->parent) {
|
|
VECCOPY(poseHead, pchan->pose_head);
|
|
}
|
|
else {
|
|
// FIXME: this introduces popping artifacts when we reach 0.0
|
|
interp_v3_v3v3(poseHead, pchan->pose_head, poseHead, tree->con->enforce);
|
|
}
|
|
}
|
|
VECCOPY(poseMat[3], poseHead);
|
|
|
|
/* finally, store the new transform */
|
|
copy_m4_m4(pchan->pose_mat, poseMat);
|
|
VECCOPY(pchan->pose_head, poseHead);
|
|
|
|
/* recalculate tail, as it's now outdated after the head gets adjusted above! */
|
|
where_is_pose_bone_tail(pchan);
|
|
|
|
/* done! */
|
|
pchan->flag |= POSE_DONE;
|
|
}
|
|
|
|
/* Evaluate the chain starting from the nominated bone */
|
|
static void splineik_execute_tree(Scene *scene, Object *ob, bPoseChannel *pchan_root, float ctime)
|
|
{
|
|
tSplineIK_Tree *tree;
|
|
|
|
/* for each pose-tree, execute it if it is spline, otherwise just free it */
|
|
for (tree= pchan_root->iktree.first; tree; tree= pchan_root->iktree.first) {
|
|
/* only evaluate if tagged for Spline IK */
|
|
if (tree->type == CONSTRAINT_TYPE_SPLINEIK) {
|
|
int i;
|
|
|
|
/* walk over each bone in the chain, calculating the effects of spline IK
|
|
* - the chain is traversed in the opposite order to storage order (i.e. parent to children)
|
|
* so that dependencies are correct
|
|
*/
|
|
for (i= tree->chainlen-1; i >= 0; i--) {
|
|
bPoseChannel *pchan= tree->chain[i];
|
|
splineik_evaluate_bone(tree, scene, ob, pchan, i, ctime);
|
|
}
|
|
|
|
/* free the tree info specific to SplineIK trees now */
|
|
if (tree->chain) MEM_freeN(tree->chain);
|
|
if (tree->free_points) MEM_freeN(tree->points);
|
|
}
|
|
|
|
/* free this tree */
|
|
BLI_freelinkN(&pchan_root->iktree, tree);
|
|
}
|
|
}
|
|
|
|
/* ********************** THE POSE SOLVER ******************* */
|
|
|
|
/* loc/rot/size to given mat4 */
|
|
void pchan_to_mat4(bPoseChannel *pchan, float chan_mat[4][4])
|
|
{
|
|
float smat[3][3];
|
|
float rmat[3][3];
|
|
float tmat[3][3];
|
|
|
|
/* get scaling matrix */
|
|
size_to_mat3(smat, pchan->size);
|
|
|
|
/* rotations may either be quats, eulers (with various rotation orders), or axis-angle */
|
|
if (pchan->rotmode > 0) {
|
|
/* euler rotations (will cause gimble lock, but this can be alleviated a bit with rotation orders) */
|
|
eulO_to_mat3(rmat, pchan->eul, pchan->rotmode);
|
|
}
|
|
else if (pchan->rotmode == ROT_MODE_AXISANGLE) {
|
|
/* axis-angle - not really that great for 3D-changing orientations */
|
|
axis_angle_to_mat3(rmat, pchan->rotAxis, pchan->rotAngle);
|
|
}
|
|
else {
|
|
/* quats are normalised before use to eliminate scaling issues */
|
|
float quat[4];
|
|
|
|
/* NOTE: we now don't normalise the stored values anymore, since this was kindof evil in some cases
|
|
* but if this proves to be too problematic, switch back to the old system of operating directly on
|
|
* the stored copy
|
|
*/
|
|
normalize_qt_qt(quat, pchan->quat);
|
|
quat_to_mat3(rmat, quat);
|
|
}
|
|
|
|
/* calculate matrix of bone (as 3x3 matrix, but then copy the 4x4) */
|
|
mul_m3_m3m3(tmat, rmat, smat);
|
|
copy_m4_m3(chan_mat, tmat);
|
|
|
|
/* prevent action channels breaking chains */
|
|
/* need to check for bone here, CONSTRAINT_TYPE_ACTION uses this call */
|
|
if ((pchan->bone==NULL) || !(pchan->bone->flag & BONE_CONNECTED)) {
|
|
VECCOPY(chan_mat[3], pchan->loc);
|
|
}
|
|
}
|
|
|
|
/* loc/rot/size to mat4 */
|
|
/* used in constraint.c too */
|
|
void pchan_calc_mat(bPoseChannel *pchan)
|
|
{
|
|
/* this is just a wrapper around the copy of this function which calculates the matrix
|
|
* and stores the result in any given channel
|
|
*/
|
|
pchan_to_mat4(pchan, pchan->chan_mat);
|
|
}
|
|
|
|
/* NLA strip modifiers */
|
|
static void do_strip_modifiers(Scene *scene, Object *armob, Bone *bone, bPoseChannel *pchan)
|
|
{
|
|
bActionModifier *amod;
|
|
bActionStrip *strip, *strip2;
|
|
float scene_cfra= (float)scene->r.cfra;
|
|
int do_modif;
|
|
|
|
for (strip=armob->nlastrips.first; strip; strip=strip->next) {
|
|
do_modif=0;
|
|
|
|
if (scene_cfra>=strip->start && scene_cfra<=strip->end)
|
|
do_modif=1;
|
|
|
|
if ((scene_cfra > strip->end) && (strip->flag & ACTSTRIP_HOLDLASTFRAME)) {
|
|
do_modif=1;
|
|
|
|
/* if there are any other strips active, ignore modifiers for this strip -
|
|
* 'hold' option should only hold action modifiers if there are
|
|
* no other active strips */
|
|
for (strip2=strip->next; strip2; strip2=strip2->next) {
|
|
if (strip2 == strip) continue;
|
|
|
|
if (scene_cfra>=strip2->start && scene_cfra<=strip2->end) {
|
|
if (!(strip2->flag & ACTSTRIP_MUTE))
|
|
do_modif=0;
|
|
}
|
|
}
|
|
|
|
/* if there are any later, activated, strips with 'hold' set, they take precedence,
|
|
* so ignore modifiers for this strip */
|
|
for (strip2=strip->next; strip2; strip2=strip2->next) {
|
|
if (scene_cfra < strip2->start) continue;
|
|
if ((strip2->flag & ACTSTRIP_HOLDLASTFRAME) && !(strip2->flag & ACTSTRIP_MUTE)) {
|
|
do_modif=0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (do_modif) {
|
|
/* temporal solution to prevent 2 strips accumulating */
|
|
if(scene_cfra==strip->end && strip->next && strip->next->start==scene_cfra)
|
|
continue;
|
|
|
|
for(amod= strip->modifiers.first; amod; amod= amod->next) {
|
|
switch (amod->type) {
|
|
case ACTSTRIP_MOD_DEFORM:
|
|
{
|
|
/* validate first */
|
|
if(amod->ob && amod->ob->type==OB_CURVE && amod->channel[0]) {
|
|
|
|
if( strcmp(pchan->name, amod->channel)==0 ) {
|
|
float mat4[4][4], mat3[3][3];
|
|
|
|
curve_deform_vector(scene, amod->ob, armob, bone->arm_mat[3], pchan->pose_mat[3], mat3, amod->no_rot_axis);
|
|
copy_m4_m4(mat4, pchan->pose_mat);
|
|
mul_m4_m3m4(pchan->pose_mat, mat3, mat4);
|
|
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case ACTSTRIP_MOD_NOISE:
|
|
{
|
|
if( strcmp(pchan->name, amod->channel)==0 ) {
|
|
float nor[3], loc[3], ofs;
|
|
float eul[3], size[3], eulo[3], sizeo[3];
|
|
|
|
/* calculate turbulance */
|
|
ofs = amod->turbul / 200.0f;
|
|
|
|
/* make a copy of starting conditions */
|
|
VECCOPY(loc, pchan->pose_mat[3]);
|
|
mat4_to_eul( eul,pchan->pose_mat);
|
|
mat4_to_size( size,pchan->pose_mat);
|
|
VECCOPY(eulo, eul);
|
|
VECCOPY(sizeo, size);
|
|
|
|
/* apply noise to each set of channels */
|
|
if (amod->channels & 4) {
|
|
/* for scaling */
|
|
nor[0] = BLI_gNoise(amod->noisesize, size[0]+ofs, size[1], size[2], 0, 0) - ofs;
|
|
nor[1] = BLI_gNoise(amod->noisesize, size[0], size[1]+ofs, size[2], 0, 0) - ofs;
|
|
nor[2] = BLI_gNoise(amod->noisesize, size[0], size[1], size[2]+ofs, 0, 0) - ofs;
|
|
add_v3_v3(size, nor);
|
|
|
|
if (sizeo[0] != 0)
|
|
mul_v3_fl(pchan->pose_mat[0], size[0] / sizeo[0]);
|
|
if (sizeo[1] != 0)
|
|
mul_v3_fl(pchan->pose_mat[1], size[1] / sizeo[1]);
|
|
if (sizeo[2] != 0)
|
|
mul_v3_fl(pchan->pose_mat[2], size[2] / sizeo[2]);
|
|
}
|
|
if (amod->channels & 2) {
|
|
/* for rotation */
|
|
nor[0] = BLI_gNoise(amod->noisesize, eul[0]+ofs, eul[1], eul[2], 0, 0) - ofs;
|
|
nor[1] = BLI_gNoise(amod->noisesize, eul[0], eul[1]+ofs, eul[2], 0, 0) - ofs;
|
|
nor[2] = BLI_gNoise(amod->noisesize, eul[0], eul[1], eul[2]+ofs, 0, 0) - ofs;
|
|
|
|
compatible_eul(nor, eulo);
|
|
add_v3_v3(eul, nor);
|
|
compatible_eul(eul, eulo);
|
|
|
|
loc_eul_size_to_mat4(pchan->pose_mat, loc, eul, size);
|
|
}
|
|
if (amod->channels & 1) {
|
|
/* for location */
|
|
nor[0] = BLI_gNoise(amod->noisesize, loc[0]+ofs, loc[1], loc[2], 0, 0) - ofs;
|
|
nor[1] = BLI_gNoise(amod->noisesize, loc[0], loc[1]+ofs, loc[2], 0, 0) - ofs;
|
|
nor[2] = BLI_gNoise(amod->noisesize, loc[0], loc[1], loc[2]+ofs, 0, 0) - ofs;
|
|
|
|
add_v3_v3v3(pchan->pose_mat[3], loc, nor);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* calculate tail of posechannel */
|
|
void where_is_pose_bone_tail(bPoseChannel *pchan)
|
|
{
|
|
float vec[3];
|
|
|
|
VECCOPY(vec, pchan->pose_mat[1]);
|
|
mul_v3_fl(vec, pchan->bone->length);
|
|
add_v3_v3v3(pchan->pose_tail, pchan->pose_head, vec);
|
|
}
|
|
|
|
/* The main armature solver, does all constraints excluding IK */
|
|
/* pchan is validated, as having bone and parent pointer
|
|
* 'do_extra': when zero skips loc/size/rot, constraints and strip modifiers.
|
|
*/
|
|
void where_is_pose_bone(Scene *scene, Object *ob, bPoseChannel *pchan, float ctime, int do_extra)
|
|
{
|
|
Bone *bone, *parbone;
|
|
bPoseChannel *parchan;
|
|
float vec[3];
|
|
|
|
/* set up variables for quicker access below */
|
|
bone= pchan->bone;
|
|
parbone= bone->parent;
|
|
parchan= pchan->parent;
|
|
|
|
/* this gives a chan_mat with actions (ipos) results */
|
|
if(do_extra) pchan_calc_mat(pchan);
|
|
else unit_m4(pchan->chan_mat);
|
|
|
|
/* construct the posemat based on PoseChannels, that we do before applying constraints */
|
|
/* pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b) */
|
|
|
|
if(parchan) {
|
|
float offs_bone[4][4]; // yoffs(b-1) + root(b) + bonemat(b)
|
|
|
|
/* bone transform itself */
|
|
copy_m4_m3(offs_bone, bone->bone_mat);
|
|
|
|
/* The bone's root offset (is in the parent's coordinate system) */
|
|
VECCOPY(offs_bone[3], bone->head);
|
|
|
|
/* Get the length translation of parent (length along y axis) */
|
|
offs_bone[3][1]+= parbone->length;
|
|
|
|
/* Compose the matrix for this bone */
|
|
if((bone->flag & BONE_HINGE) && (bone->flag & BONE_NO_SCALE)) { // uses restposition rotation, but actual position
|
|
float tmat[4][4];
|
|
/* the rotation of the parent restposition */
|
|
copy_m4_m4(tmat, parbone->arm_mat);
|
|
mul_serie_m4(pchan->pose_mat, tmat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
else if(bone->flag & BONE_HINGE) { // same as above but apply parent scale
|
|
float tmat[4][4];
|
|
|
|
/* apply the parent matrix scale */
|
|
float tsmat[4][4], tscale[3];
|
|
|
|
/* the rotation of the parent restposition */
|
|
copy_m4_m4(tmat, parbone->arm_mat);
|
|
|
|
/* extract the scale of the parent matrix */
|
|
mat4_to_size(tscale, parchan->pose_mat);
|
|
size_to_mat4(tsmat, tscale);
|
|
mul_m4_m4m4(tmat, tmat, tsmat);
|
|
|
|
mul_serie_m4(pchan->pose_mat, tmat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
else if(bone->flag & BONE_NO_SCALE) {
|
|
float orthmat[4][4];
|
|
|
|
/* do transform, with an ortho-parent matrix */
|
|
copy_m4_m4(orthmat, parchan->pose_mat);
|
|
normalize_m4(orthmat);
|
|
mul_serie_m4(pchan->pose_mat, orthmat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
else
|
|
mul_serie_m4(pchan->pose_mat, parchan->pose_mat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
|
|
|
|
/* in these cases we need to compute location separately */
|
|
if(bone->flag & (BONE_HINGE|BONE_NO_SCALE|BONE_NO_LOCAL_LOCATION)) {
|
|
float bone_loc[3], chan_loc[3];
|
|
|
|
mul_v3_m4v3(bone_loc, parchan->pose_mat, offs_bone[3]);
|
|
copy_v3_v3(chan_loc, pchan->chan_mat[3]);
|
|
|
|
/* no local location is not transformed by bone matrix */
|
|
if(!(bone->flag & BONE_NO_LOCAL_LOCATION))
|
|
mul_mat3_m4_v3(offs_bone, chan_loc);
|
|
|
|
/* for hinge we use armature instead of pose mat */
|
|
if(bone->flag & BONE_HINGE) mul_mat3_m4_v3(parbone->arm_mat, chan_loc);
|
|
else mul_mat3_m4_v3(parchan->pose_mat, chan_loc);
|
|
|
|
add_v3_v3v3(pchan->pose_mat[3], bone_loc, chan_loc);
|
|
}
|
|
}
|
|
else {
|
|
mul_m4_m4m4(pchan->pose_mat, pchan->chan_mat, bone->arm_mat);
|
|
|
|
/* optional location without arm_mat rotation */
|
|
if(bone->flag & BONE_NO_LOCAL_LOCATION)
|
|
add_v3_v3v3(pchan->pose_mat[3], bone->arm_mat[3], pchan->chan_mat[3]);
|
|
|
|
/* only rootbones get the cyclic offset (unless user doesn't want that) */
|
|
if ((bone->flag & BONE_NO_CYCLICOFFSET) == 0)
|
|
add_v3_v3(pchan->pose_mat[3], ob->pose->cyclic_offset);
|
|
}
|
|
|
|
if(do_extra) {
|
|
/* do NLA strip modifiers - i.e. curve follow */
|
|
do_strip_modifiers(scene, ob, bone, pchan);
|
|
|
|
/* Do constraints */
|
|
if (pchan->constraints.first) {
|
|
bConstraintOb *cob;
|
|
|
|
/* make a copy of location of PoseChannel for later */
|
|
VECCOPY(vec, pchan->pose_mat[3]);
|
|
|
|
/* prepare PoseChannel for Constraint solving
|
|
* - makes a copy of matrix, and creates temporary struct to use
|
|
*/
|
|
cob= constraints_make_evalob(scene, ob, pchan, CONSTRAINT_OBTYPE_BONE);
|
|
|
|
/* Solve PoseChannel's Constraints */
|
|
solve_constraints(&pchan->constraints, cob, ctime); // ctime doesnt alter objects
|
|
|
|
/* cleanup after Constraint Solving
|
|
* - applies matrix back to pchan, and frees temporary struct used
|
|
*/
|
|
constraints_clear_evalob(cob);
|
|
|
|
/* prevent constraints breaking a chain */
|
|
if(pchan->bone->flag & BONE_CONNECTED) {
|
|
VECCOPY(pchan->pose_mat[3], vec);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* calculate head */
|
|
VECCOPY(pchan->pose_head, pchan->pose_mat[3]);
|
|
/* calculate tail */
|
|
where_is_pose_bone_tail(pchan);
|
|
}
|
|
|
|
/* This only reads anim data from channels, and writes to channels */
|
|
/* This is the only function adding poses */
|
|
void where_is_pose (Scene *scene, Object *ob)
|
|
{
|
|
bArmature *arm;
|
|
Bone *bone;
|
|
bPoseChannel *pchan;
|
|
float imat[4][4];
|
|
float ctime;
|
|
|
|
if(ob->type!=OB_ARMATURE) return;
|
|
arm = ob->data;
|
|
|
|
if(ELEM(NULL, arm, scene)) return;
|
|
if((ob->pose==NULL) || (ob->pose->flag & POSE_RECALC))
|
|
armature_rebuild_pose(ob, arm);
|
|
|
|
ctime= bsystem_time(scene, ob, (float)scene->r.cfra, 0.0); /* not accurate... */
|
|
|
|
/* In editmode or restposition we read the data from the bones */
|
|
if(arm->edbo || (arm->flag & ARM_RESTPOS)) {
|
|
|
|
for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
|
|
bone= pchan->bone;
|
|
if(bone) {
|
|
copy_m4_m4(pchan->pose_mat, bone->arm_mat);
|
|
VECCOPY(pchan->pose_head, bone->arm_head);
|
|
VECCOPY(pchan->pose_tail, bone->arm_tail);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
invert_m4_m4(ob->imat, ob->obmat); // imat is needed
|
|
|
|
/* 1. clear flags */
|
|
for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
|
|
pchan->flag &= ~(POSE_DONE|POSE_CHAIN|POSE_IKTREE|POSE_IKSPLINE);
|
|
}
|
|
|
|
/* 2a. construct the IK tree (standard IK) */
|
|
BIK_initialize_tree(scene, ob, ctime);
|
|
|
|
/* 2b. construct the Spline IK trees
|
|
* - this is not integrated as an IK plugin, since it should be able
|
|
* to function in conjunction with standard IK
|
|
*/
|
|
splineik_init_tree(scene, ob, ctime);
|
|
|
|
/* 3. the main loop, channels are already hierarchical sorted from root to children */
|
|
for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
|
|
/* 4a. if we find an IK root, we handle it separated */
|
|
if(pchan->flag & POSE_IKTREE) {
|
|
BIK_execute_tree(scene, ob, pchan, ctime);
|
|
}
|
|
/* 4b. if we find a Spline IK root, we handle it separated too */
|
|
else if(pchan->flag & POSE_IKSPLINE) {
|
|
splineik_execute_tree(scene, ob, pchan, ctime);
|
|
}
|
|
/* 5. otherwise just call the normal solver */
|
|
else if(!(pchan->flag & POSE_DONE)) {
|
|
where_is_pose_bone(scene, ob, pchan, ctime, 1);
|
|
}
|
|
}
|
|
/* 6. release the IK tree */
|
|
BIK_release_tree(scene, ob, ctime);
|
|
}
|
|
|
|
/* calculating deform matrices */
|
|
for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
|
|
if(pchan->bone) {
|
|
invert_m4_m4(imat, pchan->bone->arm_mat);
|
|
mul_m4_m4m4(pchan->chan_mat, imat, pchan->pose_mat);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Returns total selected vgroups,
|
|
* wpi.defbase_sel is assumed malloc'd, all values are set */
|
|
int get_selected_defgroups(Object *ob, char *dg_selection, int defbase_len)
|
|
{
|
|
bDeformGroup *defgroup;
|
|
unsigned int i;
|
|
Object *armob= object_pose_armature_get(ob);
|
|
int dg_flags_sel_tot= 0;
|
|
|
|
if(armob) {
|
|
bPose *pose= armob->pose;
|
|
for (i= 0, defgroup= ob->defbase.first; i < defbase_len && defgroup; defgroup = defgroup->next, i++) {
|
|
bPoseChannel *pchan= get_pose_channel(pose, defgroup->name);
|
|
if(pchan && (pchan->bone->flag & BONE_SELECTED)) {
|
|
dg_selection[i]= TRUE;
|
|
dg_flags_sel_tot++;
|
|
}
|
|
else {
|
|
dg_selection[i]= FALSE;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
memset(dg_selection, FALSE, sizeof(char) * defbase_len);
|
|
}
|
|
|
|
return dg_flags_sel_tot;
|
|
}
|