This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/armature.c

2497 lines
73 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributor(s): Full recode, Ton Roosendaal, Crete 2005
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/armature.c
* \ingroup bke
*/
#include <ctype.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <stdio.h>
#include <float.h>
#include "MEM_guardedalloc.h"
#include "BLI_math.h"
#include "BLI_blenlib.h"
#include "BLI_utildefines.h"
#include "DNA_anim_types.h"
#include "DNA_armature_types.h"
#include "DNA_constraint_types.h"
#include "DNA_mesh_types.h"
#include "DNA_lattice_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_nla_types.h"
#include "DNA_scene_types.h"
#include "DNA_object_types.h"
#include "BKE_animsys.h"
#include "BKE_armature.h"
#include "BKE_action.h"
#include "BKE_anim.h"
#include "BKE_constraint.h"
#include "BKE_curve.h"
#include "BKE_depsgraph.h"
#include "BKE_DerivedMesh.h"
#include "BKE_deform.h"
#include "BKE_displist.h"
#include "BKE_global.h"
#include "BKE_idprop.h"
#include "BKE_library.h"
#include "BKE_lattice.h"
#include "BKE_main.h"
#include "BKE_object.h"
#include "BIK_api.h"
#include "BKE_sketch.h"
/* **************** Generic Functions, data level *************** */
bArmature *add_armature(const char *name)
{
bArmature *arm;
arm= alloc_libblock (&G.main->armature, ID_AR, name);
arm->deformflag = ARM_DEF_VGROUP|ARM_DEF_ENVELOPE;
arm->flag = ARM_COL_CUSTOM; /* custom bone-group colors */
arm->layer= 1;
return arm;
}
bArmature *get_armature(Object *ob)
{
if(ob->type==OB_ARMATURE)
return (bArmature *)ob->data;
return NULL;
}
void free_bonelist (ListBase *lb)
{
Bone *bone;
for(bone=lb->first; bone; bone=bone->next) {
if(bone->prop) {
IDP_FreeProperty(bone->prop);
MEM_freeN(bone->prop);
}
free_bonelist(&bone->childbase);
}
BLI_freelistN(lb);
}
void free_armature(bArmature *arm)
{
if (arm) {
free_bonelist(&arm->bonebase);
/* free editmode data */
if (arm->edbo) {
BLI_freelistN(arm->edbo);
MEM_freeN(arm->edbo);
arm->edbo= NULL;
}
/* free sketch */
if (arm->sketch) {
freeSketch(arm->sketch);
arm->sketch = NULL;
}
/* free animation data */
if (arm->adt) {
BKE_free_animdata(&arm->id);
arm->adt= NULL;
}
}
}
void make_local_armature(bArmature *arm)
{
Main *bmain= G.main;
int local=0, lib=0;
Object *ob;
if (arm->id.lib==NULL) return;
if (arm->id.us==1) {
arm->id.lib= NULL;
arm->id.flag= LIB_LOCAL;
new_id(&bmain->armature, (ID*)arm, NULL);
return;
}
for(ob= bmain->object.first; ob && ELEM(0, lib, local); ob= ob->id.next) {
if(ob->data == arm) {
if(ob->id.lib) lib= 1;
else local= 1;
}
}
if(local && lib==0) {
arm->id.lib= NULL;
arm->id.flag= LIB_LOCAL;
new_id(&bmain->armature, (ID *)arm, NULL);
}
else if(local && lib) {
bArmature *armn= copy_armature(arm);
armn->id.us= 0;
for(ob= bmain->object.first; ob; ob= ob->id.next) {
if(ob->data == arm) {
if(ob->id.lib==NULL) {
ob->data= armn;
armn->id.us++;
arm->id.us--;
}
}
}
}
}
static void copy_bonechildren (Bone* newBone, Bone* oldBone, Bone* actBone, Bone **newActBone)
{
Bone *curBone, *newChildBone;
if(oldBone == actBone)
*newActBone= newBone;
if(oldBone->prop)
newBone->prop= IDP_CopyProperty(oldBone->prop);
/* Copy this bone's list*/
BLI_duplicatelist(&newBone->childbase, &oldBone->childbase);
/* For each child in the list, update it's children*/
newChildBone=newBone->childbase.first;
for (curBone=oldBone->childbase.first;curBone;curBone=curBone->next){
newChildBone->parent=newBone;
copy_bonechildren(newChildBone, curBone, actBone, newActBone);
newChildBone=newChildBone->next;
}
}
bArmature *copy_armature(bArmature *arm)
{
bArmature *newArm;
Bone *oldBone, *newBone;
Bone *newActBone= NULL;
newArm= copy_libblock (arm);
BLI_duplicatelist(&newArm->bonebase, &arm->bonebase);
/* Duplicate the childrens' lists*/
newBone=newArm->bonebase.first;
for (oldBone=arm->bonebase.first;oldBone;oldBone=oldBone->next){
newBone->parent=NULL;
copy_bonechildren (newBone, oldBone, arm->act_bone, &newActBone);
newBone=newBone->next;
};
newArm->act_bone= newActBone;
newArm->edbo= NULL;
newArm->act_edbone= NULL;
newArm->sketch= NULL;
return newArm;
}
static Bone *get_named_bone_bonechildren (Bone *bone, const char *name)
{
Bone *curBone, *rbone;
if (!strcmp (bone->name, name))
return bone;
for (curBone=bone->childbase.first; curBone; curBone=curBone->next){
rbone=get_named_bone_bonechildren (curBone, name);
if (rbone)
return rbone;
}
return NULL;
}
Bone *get_named_bone (bArmature *arm, const char *name)
/*
Walk the list until the bone is found
*/
{
Bone *bone=NULL, *curBone;
if (!arm) return NULL;
for (curBone=arm->bonebase.first; curBone; curBone=curBone->next){
bone = get_named_bone_bonechildren (curBone, name);
if (bone)
return bone;
}
return bone;
}
/* Finds the best possible extension to the name on a particular axis. (For renaming, check for unique names afterwards)
* strip_number: removes number extensions (TODO: not used)
* axis: the axis to name on
* head/tail: the head/tail co-ordinate of the bone on the specified axis
*/
int bone_autoside_name (char name[MAXBONENAME], int UNUSED(strip_number), short axis, float head, float tail)
{
unsigned int len;
char basename[MAXBONENAME]= "";
char extension[5]= "";
len= strlen(name);
if (len == 0) return 0;
BLI_strncpy(basename, name, sizeof(basename));
/* Figure out extension to append:
* - The extension to append is based upon the axis that we are working on.
* - If head happens to be on 0, then we must consider the tail position as well to decide
* which side the bone is on
* -> If tail is 0, then it's bone is considered to be on axis, so no extension should be added
* -> Otherwise, extension is added from perspective of object based on which side tail goes to
* - If head is non-zero, extension is added from perspective of object based on side head is on
*/
if (axis == 2) {
/* z-axis - vertical (top/bottom) */
if (IS_EQ(head, 0)) {
if (tail < 0)
strcpy(extension, "Bot");
else if (tail > 0)
strcpy(extension, "Top");
}
else {
if (head < 0)
strcpy(extension, "Bot");
else
strcpy(extension, "Top");
}
}
else if (axis == 1) {
/* y-axis - depth (front/back) */
if (IS_EQ(head, 0)) {
if (tail < 0)
strcpy(extension, "Fr");
else if (tail > 0)
strcpy(extension, "Bk");
}
else {
if (head < 0)
strcpy(extension, "Fr");
else
strcpy(extension, "Bk");
}
}
else {
/* x-axis - horizontal (left/right) */
if (IS_EQ(head, 0)) {
if (tail < 0)
strcpy(extension, "R");
else if (tail > 0)
strcpy(extension, "L");
}
else {
if (head < 0)
strcpy(extension, "R");
else if (head > 0)
strcpy(extension, "L");
}
}
/* Simple name truncation
* - truncate if there is an extension and it wouldn't be able to fit
* - otherwise, just append to end
*/
if (extension[0]) {
int change = 1;
while (change) { /* remove extensions */
change = 0;
if (len > 2 && basename[len-2]=='.') {
if (basename[len-1]=='L' || basename[len-1] == 'R' ) { /* L R */
basename[len-2] = '\0';
len-=2;
change= 1;
}
} else if (len > 3 && basename[len-3]=='.') {
if ( (basename[len-2]=='F' && basename[len-1] == 'r') || /* Fr */
(basename[len-2]=='B' && basename[len-1] == 'k') /* Bk */
) {
basename[len-3] = '\0';
len-=3;
change= 1;
}
} else if (len > 4 && basename[len-4]=='.') {
if ( (basename[len-3]=='T' && basename[len-2]=='o' && basename[len-1] == 'p') || /* Top */
(basename[len-3]=='B' && basename[len-2]=='o' && basename[len-1] == 't') /* Bot */
) {
basename[len-4] = '\0';
len-=4;
change= 1;
}
}
}
if ((MAXBONENAME - len) < strlen(extension) + 1) { /* add 1 for the '.' */
strncpy(name, basename, len-strlen(extension));
}
BLI_snprintf(name, MAXBONENAME, "%s.%s", basename, extension);
return 1;
}
else {
return 0;
}
}
/* ************* B-Bone support ******************* */
#define MAX_BBONE_SUBDIV 32
/* data has MAX_BBONE_SUBDIV+1 interpolated points, will become desired amount with equal distances */
static void equalize_bezier(float *data, int desired)
{
float *fp, totdist, ddist, dist, fac1, fac2;
float pdist[MAX_BBONE_SUBDIV+1];
float temp[MAX_BBONE_SUBDIV+1][4];
int a, nr;
pdist[0]= 0.0f;
for(a=0, fp= data; a<MAX_BBONE_SUBDIV; a++, fp+=4) {
QUATCOPY(temp[a], fp);
pdist[a+1]= pdist[a]+len_v3v3(fp, fp+4);
}
/* do last point */
QUATCOPY(temp[a], fp);
totdist= pdist[a];
/* go over distances and calculate new points */
ddist= totdist/((float)desired);
nr= 1;
for(a=1, fp= data+4; a<desired; a++, fp+=4) {
dist= ((float)a)*ddist;
/* we're looking for location (distance) 'dist' in the array */
while((dist>= pdist[nr]) && nr<MAX_BBONE_SUBDIV) {
nr++;
}
fac1= pdist[nr]- pdist[nr-1];
fac2= pdist[nr]-dist;
fac1= fac2/fac1;
fac2= 1.0f-fac1;
fp[0]= fac1*temp[nr-1][0]+ fac2*temp[nr][0];
fp[1]= fac1*temp[nr-1][1]+ fac2*temp[nr][1];
fp[2]= fac1*temp[nr-1][2]+ fac2*temp[nr][2];
fp[3]= fac1*temp[nr-1][3]+ fac2*temp[nr][3];
}
/* set last point, needed for orientation calculus */
QUATCOPY(fp, temp[MAX_BBONE_SUBDIV]);
}
/* returns pointer to static array, filled with desired amount of bone->segments elements */
/* this calculation is done within unit bone space */
Mat4 *b_bone_spline_setup(bPoseChannel *pchan, int rest)
{
static Mat4 bbone_array[MAX_BBONE_SUBDIV];
static Mat4 bbone_rest_array[MAX_BBONE_SUBDIV];
Mat4 *result_array= (rest)? bbone_rest_array: bbone_array;
bPoseChannel *next, *prev;
Bone *bone= pchan->bone;
float h1[3], h2[3], scale[3], length, hlength1, hlength2, roll1=0.0f, roll2;
float mat3[3][3], imat[4][4], posemat[4][4], scalemat[4][4], iscalemat[4][4];
float data[MAX_BBONE_SUBDIV+1][4], *fp;
int a, doscale= 0;
length= bone->length;
if(!rest) {
/* check if we need to take non-uniform bone scaling into account */
scale[0]= len_v3(pchan->pose_mat[0]);
scale[1]= len_v3(pchan->pose_mat[1]);
scale[2]= len_v3(pchan->pose_mat[2]);
if(fabsf(scale[0] - scale[1]) > 1e-6f || fabsf(scale[1] - scale[2]) > 1e-6f) {
unit_m4(scalemat);
scalemat[0][0]= scale[0];
scalemat[1][1]= scale[1];
scalemat[2][2]= scale[2];
invert_m4_m4(iscalemat, scalemat);
length *= scale[1];
doscale = 1;
}
}
hlength1= bone->ease1*length*0.390464f; // 0.5*sqrt(2)*kappa, the handle length for near-perfect circles
hlength2= bone->ease2*length*0.390464f;
/* evaluate next and prev bones */
if(bone->flag & BONE_CONNECTED)
prev= pchan->parent;
else
prev= NULL;
next= pchan->child;
/* find the handle points, since this is inside bone space, the
first point = (0,0,0)
last point = (0, length, 0) */
if(rest) {
invert_m4_m4(imat, pchan->bone->arm_mat);
}
else if(doscale) {
copy_m4_m4(posemat, pchan->pose_mat);
normalize_m4(posemat);
invert_m4_m4(imat, posemat);
}
else
invert_m4_m4(imat, pchan->pose_mat);
if(prev) {
float difmat[4][4], result[3][3], imat3[3][3];
/* transform previous point inside this bone space */
if(rest)
VECCOPY(h1, prev->bone->arm_head)
else
VECCOPY(h1, prev->pose_head)
mul_m4_v3(imat, h1);
if(prev->bone->segments>1) {
/* if previous bone is B-bone too, use average handle direction */
h1[1]-= length;
roll1= 0.0f;
}
normalize_v3(h1);
mul_v3_fl(h1, -hlength1);
if(prev->bone->segments==1) {
/* find the previous roll to interpolate */
if(rest)
mul_m4_m4m4(difmat, prev->bone->arm_mat, imat);
else
mul_m4_m4m4(difmat, prev->pose_mat, imat);
copy_m3_m4(result, difmat); // the desired rotation at beginning of next bone
vec_roll_to_mat3(h1, 0.0f, mat3); // the result of vec_roll without roll
invert_m3_m3(imat3, mat3);
mul_m3_m3m3(mat3, result, imat3); // the matrix transforming vec_roll to desired roll
roll1= (float)atan2(mat3[2][0], mat3[2][2]);
}
}
else {
h1[0]= 0.0f; h1[1]= hlength1; h1[2]= 0.0f;
roll1= 0.0f;
}
if(next) {
float difmat[4][4], result[3][3], imat3[3][3];
/* transform next point inside this bone space */
if(rest)
VECCOPY(h2, next->bone->arm_tail)
else
VECCOPY(h2, next->pose_tail)
mul_m4_v3(imat, h2);
/* if next bone is B-bone too, use average handle direction */
if(next->bone->segments>1);
else h2[1]-= length;
normalize_v3(h2);
/* find the next roll to interpolate as well */
if(rest)
mul_m4_m4m4(difmat, next->bone->arm_mat, imat);
else
mul_m4_m4m4(difmat, next->pose_mat, imat);
copy_m3_m4(result, difmat); // the desired rotation at beginning of next bone
vec_roll_to_mat3(h2, 0.0f, mat3); // the result of vec_roll without roll
invert_m3_m3(imat3, mat3);
mul_m3_m3m3(mat3, imat3, result); // the matrix transforming vec_roll to desired roll
roll2= (float)atan2(mat3[2][0], mat3[2][2]);
/* and only now negate handle */
mul_v3_fl(h2, -hlength2);
}
else {
h2[0]= 0.0f; h2[1]= -hlength2; h2[2]= 0.0f;
roll2= 0.0;
}
/* make curve */
if(bone->segments > MAX_BBONE_SUBDIV)
bone->segments= MAX_BBONE_SUBDIV;
forward_diff_bezier(0.0, h1[0], h2[0], 0.0, data[0], MAX_BBONE_SUBDIV, 4*sizeof(float));
forward_diff_bezier(0.0, h1[1], length + h2[1], length, data[0]+1, MAX_BBONE_SUBDIV, 4*sizeof(float));
forward_diff_bezier(0.0, h1[2], h2[2], 0.0, data[0]+2, MAX_BBONE_SUBDIV, 4*sizeof(float));
forward_diff_bezier(roll1, roll1 + 0.390464f*(roll2-roll1), roll2 - 0.390464f*(roll2-roll1), roll2, data[0]+3, MAX_BBONE_SUBDIV, 4*sizeof(float));
equalize_bezier(data[0], bone->segments); // note: does stride 4!
/* make transformation matrices for the segments for drawing */
for(a=0, fp= data[0]; a<bone->segments; a++, fp+=4) {
sub_v3_v3v3(h1, fp+4, fp);
vec_roll_to_mat3(h1, fp[3], mat3); // fp[3] is roll
copy_m4_m3(result_array[a].mat, mat3);
VECCOPY(result_array[a].mat[3], fp);
if(doscale) {
/* correct for scaling when this matrix is used in scaled space */
mul_serie_m4(result_array[a].mat, iscalemat, result_array[a].mat,
scalemat, NULL, NULL, NULL, NULL, NULL);
}
}
return result_array;
}
/* ************ Armature Deform ******************* */
typedef struct bPoseChanDeform {
Mat4 *b_bone_mats;
DualQuat *dual_quat;
DualQuat *b_bone_dual_quats;
} bPoseChanDeform;
static void pchan_b_bone_defmats(bPoseChannel *pchan, bPoseChanDeform *pdef_info, int use_quaternion)
{
Bone *bone= pchan->bone;
Mat4 *b_bone= b_bone_spline_setup(pchan, 0);
Mat4 *b_bone_rest= b_bone_spline_setup(pchan, 1);
Mat4 *b_bone_mats;
DualQuat *b_bone_dual_quats= NULL;
float tmat[4][4]= MAT4_UNITY;
int a;
/* allocate b_bone matrices and dual quats */
b_bone_mats= MEM_mallocN((1+bone->segments)*sizeof(Mat4), "BBone defmats");
pdef_info->b_bone_mats= b_bone_mats;
if(use_quaternion) {
b_bone_dual_quats= MEM_mallocN((bone->segments)*sizeof(DualQuat), "BBone dqs");
pdef_info->b_bone_dual_quats= b_bone_dual_quats;
}
/* first matrix is the inverse arm_mat, to bring points in local bone space
for finding out which segment it belongs to */
invert_m4_m4(b_bone_mats[0].mat, bone->arm_mat);
/* then we make the b_bone_mats:
- first transform to local bone space
- translate over the curve to the bbone mat space
- transform with b_bone matrix
- transform back into global space */
for(a=0; a<bone->segments; a++) {
invert_m4_m4(tmat, b_bone_rest[a].mat);
mul_serie_m4(b_bone_mats[a+1].mat, pchan->chan_mat, bone->arm_mat,
b_bone[a].mat, tmat, b_bone_mats[0].mat, NULL, NULL, NULL);
if(use_quaternion)
mat4_to_dquat( &b_bone_dual_quats[a],bone->arm_mat, b_bone_mats[a+1].mat);
}
}
static void b_bone_deform(bPoseChanDeform *pdef_info, Bone *bone, float *co, DualQuat *dq, float defmat[][3])
{
Mat4 *b_bone= pdef_info->b_bone_mats;
float (*mat)[4]= b_bone[0].mat;
float segment, y;
int a;
/* need to transform co back to bonespace, only need y */
y= mat[0][1]*co[0] + mat[1][1]*co[1] + mat[2][1]*co[2] + mat[3][1];
/* now calculate which of the b_bones are deforming this */
segment= bone->length/((float)bone->segments);
a= (int)(y/segment);
/* note; by clamping it extends deform at endpoints, goes best with
straight joints in restpos. */
CLAMP(a, 0, bone->segments-1);
if(dq) {
copy_dq_dq(dq, &(pdef_info->b_bone_dual_quats)[a]);
}
else {
mul_m4_v3(b_bone[a+1].mat, co);
if(defmat)
copy_m3_m4(defmat, b_bone[a+1].mat);
}
}
/* using vec with dist to bone b1 - b2 */
float distfactor_to_bone (float vec[3], float b1[3], float b2[3], float rad1, float rad2, float rdist)
{
float dist=0.0f;
float bdelta[3];
float pdelta[3];
float hsqr, a, l, rad;
sub_v3_v3v3(bdelta, b2, b1);
l = normalize_v3(bdelta);
sub_v3_v3v3(pdelta, vec, b1);
a = bdelta[0]*pdelta[0] + bdelta[1]*pdelta[1] + bdelta[2]*pdelta[2];
hsqr = ((pdelta[0]*pdelta[0]) + (pdelta[1]*pdelta[1]) + (pdelta[2]*pdelta[2]));
if (a < 0.0F){
/* If we're past the end of the bone, do a spherical field attenuation thing */
dist= ((b1[0]-vec[0])*(b1[0]-vec[0]) +(b1[1]-vec[1])*(b1[1]-vec[1]) +(b1[2]-vec[2])*(b1[2]-vec[2])) ;
rad= rad1;
}
else if (a > l){
/* If we're past the end of the bone, do a spherical field attenuation thing */
dist= ((b2[0]-vec[0])*(b2[0]-vec[0]) +(b2[1]-vec[1])*(b2[1]-vec[1]) +(b2[2]-vec[2])*(b2[2]-vec[2])) ;
rad= rad2;
}
else {
dist= (hsqr - (a*a));
if(l!=0.0f) {
rad= a/l;
rad= rad*rad2 + (1.0f-rad)*rad1;
}
else rad= rad1;
}
a= rad*rad;
if(dist < a)
return 1.0f;
else {
l= rad+rdist;
l*= l;
if(rdist==0.0f || dist >= l)
return 0.0f;
else {
a= (float)sqrt(dist)-rad;
return 1.0f-( a*a )/( rdist*rdist );
}
}
}
static void pchan_deform_mat_add(bPoseChannel *pchan, float weight, float bbonemat[][3], float mat[][3])
{
float wmat[3][3];
if(pchan->bone->segments>1)
copy_m3_m3(wmat, bbonemat);
else
copy_m3_m4(wmat, pchan->chan_mat);
mul_m3_fl(wmat, weight);
add_m3_m3m3(mat, mat, wmat);
}
static float dist_bone_deform(bPoseChannel *pchan, bPoseChanDeform *pdef_info, float *vec, DualQuat *dq, float mat[][3], float *co)
{
Bone *bone= pchan->bone;
float fac, contrib=0.0;
float cop[3], bbonemat[3][3];
DualQuat bbonedq;
if(bone==NULL) return 0.0f;
VECCOPY (cop, co);
fac= distfactor_to_bone(cop, bone->arm_head, bone->arm_tail, bone->rad_head, bone->rad_tail, bone->dist);
if (fac > 0.0f) {
fac*=bone->weight;
contrib= fac;
if(contrib > 0.0f) {
if(vec) {
if(bone->segments>1)
// applies on cop and bbonemat
b_bone_deform(pdef_info, bone, cop, NULL, (mat)?bbonemat:NULL);
else
mul_m4_v3(pchan->chan_mat, cop);
// Make this a delta from the base position
sub_v3_v3(cop, co);
madd_v3_v3fl(vec, cop, fac);
if(mat)
pchan_deform_mat_add(pchan, fac, bbonemat, mat);
}
else {
if(bone->segments>1) {
b_bone_deform(pdef_info, bone, cop, &bbonedq, NULL);
add_weighted_dq_dq(dq, &bbonedq, fac);
}
else
add_weighted_dq_dq(dq, pdef_info->dual_quat, fac);
}
}
}
return contrib;
}
static void pchan_bone_deform(bPoseChannel *pchan, bPoseChanDeform *pdef_info, float weight, float *vec, DualQuat *dq, float mat[][3], float *co, float *contrib)
{
float cop[3], bbonemat[3][3];
DualQuat bbonedq;
if (!weight)
return;
VECCOPY(cop, co);
if(vec) {
if(pchan->bone->segments>1)
// applies on cop and bbonemat
b_bone_deform(pdef_info, pchan->bone, cop, NULL, (mat)?bbonemat:NULL);
else
mul_m4_v3(pchan->chan_mat, cop);
vec[0]+=(cop[0]-co[0])*weight;
vec[1]+=(cop[1]-co[1])*weight;
vec[2]+=(cop[2]-co[2])*weight;
if(mat)
pchan_deform_mat_add(pchan, weight, bbonemat, mat);
}
else {
if(pchan->bone->segments>1) {
b_bone_deform(pdef_info, pchan->bone, cop, &bbonedq, NULL);
add_weighted_dq_dq(dq, &bbonedq, weight);
}
else
add_weighted_dq_dq(dq, pdef_info->dual_quat, weight);
}
(*contrib)+=weight;
}
void armature_deform_verts(Object *armOb, Object *target, DerivedMesh *dm,
float (*vertexCos)[3], float (*defMats)[3][3],
int numVerts, int deformflag,
float (*prevCos)[3], const char *defgrp_name)
{
bPoseChanDeform *pdef_info_array;
bPoseChanDeform *pdef_info= NULL;
bArmature *arm= armOb->data;
bPoseChannel *pchan, **defnrToPC = NULL;
int *defnrToPCIndex= NULL;
MDeformVert *dverts = NULL;
bDeformGroup *dg;
DualQuat *dualquats= NULL;
float obinv[4][4], premat[4][4], postmat[4][4];
const short use_envelope = deformflag & ARM_DEF_ENVELOPE;
const short use_quaternion = deformflag & ARM_DEF_QUATERNION;
const short invert_vgroup= deformflag & ARM_DEF_INVERT_VGROUP;
int numGroups = 0; /* safety for vertexgroup index overflow */
int i, target_totvert = 0; /* safety for vertexgroup overflow */
int use_dverts = 0;
int armature_def_nr;
int totchan;
if(arm->edbo) return;
invert_m4_m4(obinv, target->obmat);
copy_m4_m4(premat, target->obmat);
mul_m4_m4m4(postmat, armOb->obmat, obinv);
invert_m4_m4(premat, postmat);
/* bone defmats are already in the channels, chan_mat */
/* initialize B_bone matrices and dual quaternions */
totchan= BLI_countlist(&armOb->pose->chanbase);
if(use_quaternion) {
dualquats= MEM_callocN(sizeof(DualQuat)*totchan, "dualquats");
}
pdef_info_array= MEM_callocN(sizeof(bPoseChanDeform)*totchan, "bPoseChanDeform");
totchan= 0;
pdef_info= pdef_info_array;
for(pchan= armOb->pose->chanbase.first; pchan; pchan= pchan->next, pdef_info++) {
if(!(pchan->bone->flag & BONE_NO_DEFORM)) {
if(pchan->bone->segments > 1)
pchan_b_bone_defmats(pchan, pdef_info, use_quaternion);
if(use_quaternion) {
pdef_info->dual_quat= &dualquats[totchan++];
mat4_to_dquat( pdef_info->dual_quat,pchan->bone->arm_mat, pchan->chan_mat);
}
}
}
/* get the def_nr for the overall armature vertex group if present */
armature_def_nr= defgroup_name_index(target, defgrp_name);
if(ELEM(target->type, OB_MESH, OB_LATTICE)) {
numGroups = BLI_countlist(&target->defbase);
if(target->type==OB_MESH) {
Mesh *me= target->data;
dverts = me->dvert;
if(dverts)
target_totvert = me->totvert;
}
else {
Lattice *lt= target->data;
dverts = lt->dvert;
if(dverts)
target_totvert = lt->pntsu*lt->pntsv*lt->pntsw;
}
}
/* get a vertex-deform-index to posechannel array */
if(deformflag & ARM_DEF_VGROUP) {
if(ELEM(target->type, OB_MESH, OB_LATTICE)) {
/* if we have a DerivedMesh, only use dverts if it has them */
if(dm)
if(dm->getVertData(dm, 0, CD_MDEFORMVERT))
use_dverts = 1;
else use_dverts = 0;
else if(dverts) use_dverts = 1;
if(use_dverts) {
defnrToPC = MEM_callocN(sizeof(*defnrToPC) * numGroups, "defnrToBone");
defnrToPCIndex = MEM_callocN(sizeof(*defnrToPCIndex) * numGroups, "defnrToIndex");
for(i = 0, dg = target->defbase.first; dg;
i++, dg = dg->next) {
defnrToPC[i] = get_pose_channel(armOb->pose, dg->name);
/* exclude non-deforming bones */
if(defnrToPC[i]) {
if(defnrToPC[i]->bone->flag & BONE_NO_DEFORM) {
defnrToPC[i]= NULL;
}
else {
defnrToPCIndex[i]= BLI_findindex(&armOb->pose->chanbase, defnrToPC[i]);
}
}
}
}
}
}
for(i = 0; i < numVerts; i++) {
MDeformVert *dvert;
DualQuat sumdq, *dq = NULL;
float *co, dco[3];
float sumvec[3], summat[3][3];
float *vec = NULL, (*smat)[3] = NULL;
float contrib = 0.0f;
float armature_weight = 1.0f; /* default to 1 if no overall def group */
float prevco_weight = 1.0f; /* weight for optional cached vertexcos */
int j;
if(use_quaternion) {
memset(&sumdq, 0, sizeof(DualQuat));
dq= &sumdq;
}
else {
sumvec[0] = sumvec[1] = sumvec[2] = 0.0f;
vec= sumvec;
if(defMats) {
zero_m3(summat);
smat = summat;
}
}
if(use_dverts || armature_def_nr >= 0) {
if(dm) dvert = dm->getVertData(dm, i, CD_MDEFORMVERT);
else if(dverts && i < target_totvert) dvert = dverts + i;
else dvert = NULL;
} else
dvert = NULL;
if(armature_def_nr >= 0 && dvert) {
armature_weight= defvert_find_weight(dvert, armature_def_nr);
if(invert_vgroup) {
armature_weight= 1.0f-armature_weight;
}
/* hackish: the blending factor can be used for blending with prevCos too */
if(prevCos) {
prevco_weight= armature_weight;
armature_weight= 1.0f;
}
}
/* check if there's any point in calculating for this vert */
if(armature_weight == 0.0f) continue;
/* get the coord we work on */
co= prevCos?prevCos[i]:vertexCos[i];
/* Apply the object's matrix */
mul_m4_v3(premat, co);
if(use_dverts && dvert && dvert->totweight) { // use weight groups ?
int deformed = 0;
for(j = 0; j < dvert->totweight; j++){
int index = dvert->dw[j].def_nr;
if(index < numGroups && (pchan= defnrToPC[index])) {
float weight = dvert->dw[j].weight;
Bone *bone= pchan->bone;
pdef_info= pdef_info_array + defnrToPCIndex[index];
deformed = 1;
if(bone && bone->flag & BONE_MULT_VG_ENV) {
weight *= distfactor_to_bone(co, bone->arm_head,
bone->arm_tail,
bone->rad_head,
bone->rad_tail,
bone->dist);
}
pchan_bone_deform(pchan, pdef_info, weight, vec, dq, smat, co, &contrib);
}
}
/* if there are vertexgroups but not groups with bones
* (like for softbody groups)
*/
if(deformed == 0 && use_envelope) {
pdef_info= pdef_info_array;
for(pchan= armOb->pose->chanbase.first; pchan;
pchan= pchan->next, pdef_info++) {
if(!(pchan->bone->flag & BONE_NO_DEFORM))
contrib += dist_bone_deform(pchan, pdef_info, vec, dq, smat, co);
}
}
}
else if(use_envelope) {
pdef_info= pdef_info_array;
for(pchan = armOb->pose->chanbase.first; pchan;
pchan = pchan->next, pdef_info++) {
if(!(pchan->bone->flag & BONE_NO_DEFORM))
contrib += dist_bone_deform(pchan, pdef_info, vec, dq, smat, co);
}
}
/* actually should be EPSILON? weight values and contrib can be like 10e-39 small */
if(contrib > 0.0001f) {
if(use_quaternion) {
normalize_dq(dq, contrib);
if(armature_weight != 1.0f) {
VECCOPY(dco, co);
mul_v3m3_dq( dco, (defMats)? summat: NULL,dq);
sub_v3_v3(dco, co);
mul_v3_fl(dco, armature_weight);
add_v3_v3(co, dco);
}
else
mul_v3m3_dq( co, (defMats)? summat: NULL,dq);
smat = summat;
}
else {
mul_v3_fl(vec, armature_weight/contrib);
add_v3_v3v3(co, vec, co);
}
if(defMats) {
float pre[3][3], post[3][3], tmpmat[3][3];
copy_m3_m4(pre, premat);
copy_m3_m4(post, postmat);
copy_m3_m3(tmpmat, defMats[i]);
if(!use_quaternion) /* quaternion already is scale corrected */
mul_m3_fl(smat, armature_weight/contrib);
mul_serie_m3(defMats[i], tmpmat, pre, smat, post,
NULL, NULL, NULL, NULL);
}
}
/* always, check above code */
mul_m4_v3(postmat, co);
/* interpolate with previous modifier position using weight group */
if(prevCos) {
float mw= 1.0f - prevco_weight;
vertexCos[i][0]= prevco_weight*vertexCos[i][0] + mw*co[0];
vertexCos[i][1]= prevco_weight*vertexCos[i][1] + mw*co[1];
vertexCos[i][2]= prevco_weight*vertexCos[i][2] + mw*co[2];
}
}
if(dualquats) MEM_freeN(dualquats);
if(defnrToPC) MEM_freeN(defnrToPC);
if(defnrToPCIndex) MEM_freeN(defnrToPCIndex);
/* free B_bone matrices */
pdef_info= pdef_info_array;
for(pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
if(pdef_info->b_bone_mats) {
MEM_freeN(pdef_info->b_bone_mats);
}
if(pdef_info->b_bone_dual_quats) {
MEM_freeN(pdef_info->b_bone_dual_quats);
}
}
MEM_freeN(pdef_info_array);
}
/* ************ END Armature Deform ******************* */
void get_objectspace_bone_matrix (struct Bone* bone, float M_accumulatedMatrix[][4], int UNUSED(root), int UNUSED(posed))
{
copy_m4_m4(M_accumulatedMatrix, bone->arm_mat);
}
/* **************** Space to Space API ****************** */
/* Convert World-Space Matrix to Pose-Space Matrix */
void armature_mat_world_to_pose(Object *ob, float inmat[][4], float outmat[][4])
{
float obmat[4][4];
/* prevent crashes */
if (ob==NULL) return;
/* get inverse of (armature) object's matrix */
invert_m4_m4(obmat, ob->obmat);
/* multiply given matrix by object's-inverse to find pose-space matrix */
mul_m4_m4m4(outmat, obmat, inmat);
}
/* Convert Wolrd-Space Location to Pose-Space Location
* NOTE: this cannot be used to convert to pose-space location of the supplied
* pose-channel into its local space (i.e. 'visual'-keyframing)
*/
void armature_loc_world_to_pose(Object *ob, float *inloc, float *outloc)
{
float xLocMat[4][4]= MAT4_UNITY;
float nLocMat[4][4];
/* build matrix for location */
VECCOPY(xLocMat[3], inloc);
/* get bone-space cursor matrix and extract location */
armature_mat_world_to_pose(ob, xLocMat, nLocMat);
VECCOPY(outloc, nLocMat[3]);
}
/* Convert Pose-Space Matrix to Bone-Space Matrix
* NOTE: this cannot be used to convert to pose-space transforms of the supplied
* pose-channel into its local space (i.e. 'visual'-keyframing)
*/
void armature_mat_pose_to_bone(bPoseChannel *pchan, float inmat[][4], float outmat[][4])
{
float pc_trans[4][4], inv_trans[4][4];
float pc_posemat[4][4], inv_posemat[4][4];
float pose_mat[4][4];
/* paranoia: prevent crashes with no pose-channel supplied */
if (pchan==NULL) return;
/* default flag */
if((pchan->bone->flag & BONE_NO_LOCAL_LOCATION)==0) {
/* get the inverse matrix of the pchan's transforms */
switch(pchan->rotmode) {
case ROT_MODE_QUAT:
loc_quat_size_to_mat4(pc_trans, pchan->loc, pchan->quat, pchan->size);
break;
case ROT_MODE_AXISANGLE:
loc_axisangle_size_to_mat4(pc_trans, pchan->loc, pchan->rotAxis, pchan->rotAngle, pchan->size);
break;
default: /* euler */
loc_eul_size_to_mat4(pc_trans, pchan->loc, pchan->eul, pchan->size);
}
copy_m4_m4(pose_mat, pchan->pose_mat);
}
else {
/* local location, this is not default, different calculation
* note: only tested for location with pose bone snapping.
* If this is not useful in other cases the BONE_NO_LOCAL_LOCATION
* case may have to be split into its own function. */
unit_m4(pc_trans);
copy_v3_v3(pc_trans[3], pchan->loc);
/* use parents rotation/scale space + own absolute position */
if(pchan->parent) copy_m4_m4(pose_mat, pchan->parent->pose_mat);
else unit_m4(pose_mat);
copy_v3_v3(pose_mat[3], pchan->pose_mat[3]);
}
invert_m4_m4(inv_trans, pc_trans);
/* Remove the pchan's transforms from it's pose_mat.
* This should leave behind the effects of restpose +
* parenting + constraints
*/
mul_m4_m4m4(pc_posemat, inv_trans, pose_mat);
/* get the inverse of the leftovers so that we can remove
* that component from the supplied matrix
*/
invert_m4_m4(inv_posemat, pc_posemat);
/* get the new matrix */
mul_m4_m4m4(outmat, inmat, inv_posemat);
}
/* Convert Pose-Space Location to Bone-Space Location
* NOTE: this cannot be used to convert to pose-space location of the supplied
* pose-channel into its local space (i.e. 'visual'-keyframing)
*/
void armature_loc_pose_to_bone(bPoseChannel *pchan, float *inloc, float *outloc)
{
float xLocMat[4][4]= MAT4_UNITY;
float nLocMat[4][4];
/* build matrix for location */
VECCOPY(xLocMat[3], inloc);
/* get bone-space cursor matrix and extract location */
armature_mat_pose_to_bone(pchan, xLocMat, nLocMat);
VECCOPY(outloc, nLocMat[3]);
}
/* same as object_mat3_to_rot() */
void pchan_mat3_to_rot(bPoseChannel *pchan, float mat[][3], short use_compat)
{
switch(pchan->rotmode) {
case ROT_MODE_QUAT:
mat3_to_quat(pchan->quat, mat);
break;
case ROT_MODE_AXISANGLE:
mat3_to_axis_angle(pchan->rotAxis, &pchan->rotAngle, mat);
break;
default: /* euler */
if(use_compat) mat3_to_compatible_eulO(pchan->eul, pchan->eul, pchan->rotmode, mat);
else mat3_to_eulO(pchan->eul, pchan->rotmode, mat);
}
}
/* Apply a 4x4 matrix to the pose bone,
* similar to object_apply_mat4()
*/
void pchan_apply_mat4(bPoseChannel *pchan, float mat[][4], short use_compat)
{
float rot[3][3];
mat4_to_loc_rot_size(pchan->loc, rot, pchan->size, mat);
pchan_mat3_to_rot(pchan, rot, use_compat);
}
/* Remove rest-position effects from pose-transform for obtaining
* 'visual' transformation of pose-channel.
* (used by the Visual-Keyframing stuff)
*/
void armature_mat_pose_to_delta(float delta_mat[][4], float pose_mat[][4], float arm_mat[][4])
{
float imat[4][4];
invert_m4_m4(imat, arm_mat);
mul_m4_m4m4(delta_mat, pose_mat, imat);
}
/* **************** Rotation Mode Conversions ****************************** */
/* Used for Objects and Pose Channels, since both can have multiple rotation representations */
/* Called from RNA when rotation mode changes
* - the result should be that the rotations given in the provided pointers have had conversions
* applied (as appropriate), such that the rotation of the element hasn't 'visually' changed
*/
void BKE_rotMode_change_values (float quat[4], float eul[3], float axis[3], float *angle, short oldMode, short newMode)
{
/* check if any change - if so, need to convert data */
if (newMode > 0) { /* to euler */
if (oldMode == ROT_MODE_AXISANGLE) {
/* axis-angle to euler */
axis_angle_to_eulO( eul, newMode,axis, *angle);
}
else if (oldMode == ROT_MODE_QUAT) {
/* quat to euler */
normalize_qt(quat);
quat_to_eulO( eul, newMode,quat);
}
/* else { no conversion needed } */
}
else if (newMode == ROT_MODE_QUAT) { /* to quat */
if (oldMode == ROT_MODE_AXISANGLE) {
/* axis angle to quat */
axis_angle_to_quat(quat, axis, *angle);
}
else if (oldMode > 0) {
/* euler to quat */
eulO_to_quat( quat,eul, oldMode);
}
/* else { no conversion needed } */
}
else if (newMode == ROT_MODE_AXISANGLE) { /* to axis-angle */
if (oldMode > 0) {
/* euler to axis angle */
eulO_to_axis_angle( axis, angle,eul, oldMode);
}
else if (oldMode == ROT_MODE_QUAT) {
/* quat to axis angle */
normalize_qt(quat);
quat_to_axis_angle( axis, angle,quat);
}
/* when converting to axis-angle, we need a special exception for the case when there is no axis */
if (IS_EQF(axis[0], axis[1]) && IS_EQF(axis[1], axis[2])) {
/* for now, rotate around y-axis then (so that it simply becomes the roll) */
axis[1]= 1.0f;
}
}
}
/* **************** The new & simple (but OK!) armature evaluation ********* */
/* ****************** And how it works! ****************************************
This is the bone transformation trick; they're hierarchical so each bone(b)
is in the coord system of bone(b-1):
arm_mat(b)= arm_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b)
-> yoffs is just the y axis translation in parent's coord system
-> d_root is the translation of the bone root, also in parent's coord system
pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b)
we then - in init deform - store the deform in chan_mat, such that:
pose_mat(b)= arm_mat(b) * chan_mat(b)
*************************************************************************** */
/* Computes vector and roll based on a rotation. "mat" must
contain only a rotation, and no scaling. */
void mat3_to_vec_roll(float mat[][3], float *vec, float *roll)
{
if (vec)
copy_v3_v3(vec, mat[1]);
if (roll) {
float vecmat[3][3], vecmatinv[3][3], rollmat[3][3];
vec_roll_to_mat3(mat[1], 0.0f, vecmat);
invert_m3_m3(vecmatinv, vecmat);
mul_m3_m3m3(rollmat, vecmatinv, mat);
*roll= (float)atan2(rollmat[2][0], rollmat[2][2]);
}
}
/* Calculates the rest matrix of a bone based
On its vector and a roll around that vector */
void vec_roll_to_mat3(float *vec, float roll, float mat[][3])
{
float nor[3], axis[3], target[3]={0,1,0};
float theta;
float rMatrix[3][3], bMatrix[3][3];
normalize_v3_v3(nor, vec);
/* Find Axis & Amount for bone matrix*/
cross_v3_v3v3(axis,target,nor);
/* was 0.0000000000001, caused bug [#23954], smaller values give unstable
* roll when toggling editmode.
*
* was 0.00001, causes bug [#27675], with 0.00000495,
* so a value inbetween these is needed.
*/
if (dot_v3v3(axis,axis) > 0.000001f) {
/* if nor is *not* a multiple of target ... */
normalize_v3(axis);
theta= angle_normalized_v3v3(target, nor);
/* Make Bone matrix*/
vec_rot_to_mat3( bMatrix,axis, theta);
}
else {
/* if nor is a multiple of target ... */
float updown;
/* point same direction, or opposite? */
updown = ( dot_v3v3(target,nor) > 0 ) ? 1.0f : -1.0f;
/* I think this should work ... */
bMatrix[0][0]=updown; bMatrix[0][1]=0.0; bMatrix[0][2]=0.0;
bMatrix[1][0]=0.0; bMatrix[1][1]=updown; bMatrix[1][2]=0.0;
bMatrix[2][0]=0.0; bMatrix[2][1]=0.0; bMatrix[2][2]=1.0;
}
/* Make Roll matrix*/
vec_rot_to_mat3( rMatrix,nor, roll);
/* Combine and output result*/
mul_m3_m3m3(mat, rMatrix, bMatrix);
}
/* recursive part, calculates restposition of entire tree of children */
/* used by exiting editmode too */
void where_is_armature_bone(Bone *bone, Bone *prevbone)
{
float vec[3];
/* Bone Space */
sub_v3_v3v3(vec, bone->tail, bone->head);
vec_roll_to_mat3(vec, bone->roll, bone->bone_mat);
bone->length= len_v3v3(bone->head, bone->tail);
/* this is called on old file reading too... */
if(bone->xwidth==0.0f) {
bone->xwidth= 0.1f;
bone->zwidth= 0.1f;
bone->segments= 1;
}
if(prevbone) {
float offs_bone[4][4]; // yoffs(b-1) + root(b) + bonemat(b)
/* bone transform itself */
copy_m4_m3(offs_bone, bone->bone_mat);
/* The bone's root offset (is in the parent's coordinate system) */
VECCOPY(offs_bone[3], bone->head);
/* Get the length translation of parent (length along y axis) */
offs_bone[3][1]+= prevbone->length;
/* Compose the matrix for this bone */
mul_m4_m4m4(bone->arm_mat, offs_bone, prevbone->arm_mat);
}
else {
copy_m4_m3(bone->arm_mat, bone->bone_mat);
VECCOPY(bone->arm_mat[3], bone->head);
}
/* and the kiddies */
prevbone= bone;
for(bone= bone->childbase.first; bone; bone= bone->next) {
where_is_armature_bone(bone, prevbone);
}
}
/* updates vectors and matrices on rest-position level, only needed
after editing armature itself, now only on reading file */
void where_is_armature (bArmature *arm)
{
Bone *bone;
/* hierarchical from root to children */
for(bone= arm->bonebase.first; bone; bone= bone->next) {
where_is_armature_bone(bone, NULL);
}
}
/* if bone layer is protected, copy the data from from->pose
* when used with linked libraries this copies from the linked pose into the local pose */
static void pose_proxy_synchronize(Object *ob, Object *from, int layer_protected)
{
bPose *pose= ob->pose, *frompose= from->pose;
bPoseChannel *pchan, *pchanp, pchanw;
bConstraint *con;
int error = 0;
if (frompose==NULL) return;
/* in some cases when rigs change, we cant synchronize
* to avoid crashing check for possible errors here */
for (pchan= pose->chanbase.first; pchan; pchan= pchan->next) {
if (pchan->bone->layer & layer_protected) {
if(get_pose_channel(frompose, pchan->name) == NULL) {
printf("failed to sync proxy armature because '%s' is missing pose channel '%s'\n", from->id.name, pchan->name);
error = 1;
}
}
}
if(error)
return;
/* clear all transformation values from library */
rest_pose(frompose);
/* copy over all of the proxy's bone groups */
/* TODO for later - implement 'local' bone groups as for constraints
* Note: this isn't trivial, as bones reference groups by index not by pointer,
* so syncing things correctly needs careful attention
*/
BLI_freelistN(&pose->agroups);
BLI_duplicatelist(&pose->agroups, &frompose->agroups);
pose->active_group= frompose->active_group;
for (pchan= pose->chanbase.first; pchan; pchan= pchan->next) {
pchanp= get_pose_channel(frompose, pchan->name);
if (pchan->bone->layer & layer_protected) {
ListBase proxylocal_constraints = {NULL, NULL};
/* copy posechannel to temp, but restore important pointers */
pchanw= *pchanp;
pchanw.prev= pchan->prev;
pchanw.next= pchan->next;
pchanw.parent= pchan->parent;
pchanw.child= pchan->child;
/* this is freed so copy a copy, else undo crashes */
if(pchanw.prop) {
pchanw.prop= IDP_CopyProperty(pchanw.prop);
/* use the values from the the existing props */
if(pchan->prop) {
IDP_SyncGroupValues(pchanw.prop, pchan->prop);
}
}
/* constraints - proxy constraints are flushed... local ones are added after
* 1. extract constraints not from proxy (CONSTRAINT_PROXY_LOCAL) from pchan's constraints
* 2. copy proxy-pchan's constraints on-to new
* 3. add extracted local constraints back on top
*
* note for copy_constraints: when copying constraints, disable 'do_extern' otherwise we get the libs direct linked in this blend.
*/
extract_proxylocal_constraints(&proxylocal_constraints, &pchan->constraints);
copy_constraints(&pchanw.constraints, &pchanp->constraints, FALSE);
BLI_movelisttolist(&pchanw.constraints, &proxylocal_constraints);
/* constraints - set target ob pointer to own object */
for (con= pchanw.constraints.first; con; con= con->next) {
bConstraintTypeInfo *cti= constraint_get_typeinfo(con);
ListBase targets = {NULL, NULL};
bConstraintTarget *ct;
if (cti && cti->get_constraint_targets) {
cti->get_constraint_targets(con, &targets);
for (ct= targets.first; ct; ct= ct->next) {
if (ct->tar == from)
ct->tar = ob;
}
if (cti->flush_constraint_targets)
cti->flush_constraint_targets(con, &targets, 0);
}
}
/* free stuff from current channel */
free_pose_channel(pchan);
/* the final copy */
*pchan= pchanw;
}
else {
/* always copy custom shape */
pchan->custom= pchanp->custom;
pchan->custom_tx= pchanp->custom_tx;
/* ID-Property Syncing */
{
IDProperty *prop_orig= pchan->prop;
if(pchanp->prop) {
pchan->prop= IDP_CopyProperty(pchanp->prop);
if(prop_orig) {
/* copy existing values across when types match */
IDP_SyncGroupValues(pchan->prop, prop_orig);
}
}
else {
pchan->prop= NULL;
}
if (prop_orig) {
IDP_FreeProperty(prop_orig);
MEM_freeN(prop_orig);
}
}
}
}
}
static int rebuild_pose_bone(bPose *pose, Bone *bone, bPoseChannel *parchan, int counter)
{
bPoseChannel *pchan = verify_pose_channel (pose, bone->name); // verify checks and/or adds
pchan->bone= bone;
pchan->parent= parchan;
counter++;
for(bone= bone->childbase.first; bone; bone= bone->next) {
counter= rebuild_pose_bone(pose, bone, pchan, counter);
/* for quick detecting of next bone in chain, only b-bone uses it now */
if(bone->flag & BONE_CONNECTED)
pchan->child= get_pose_channel(pose, bone->name);
}
return counter;
}
/* only after leave editmode, duplicating, validating older files, library syncing */
/* NOTE: pose->flag is set for it */
void armature_rebuild_pose(Object *ob, bArmature *arm)
{
Bone *bone;
bPose *pose;
bPoseChannel *pchan, *next;
int counter=0;
/* only done here */
if(ob->pose==NULL) {
/* create new pose */
ob->pose= MEM_callocN(sizeof(bPose), "new pose");
/* set default settings for animviz */
animviz_settings_init(&ob->pose->avs);
}
pose= ob->pose;
/* clear */
for(pchan= pose->chanbase.first; pchan; pchan= pchan->next) {
pchan->bone= NULL;
pchan->child= NULL;
}
/* first step, check if all channels are there */
for(bone= arm->bonebase.first; bone; bone= bone->next) {
counter= rebuild_pose_bone(pose, bone, NULL, counter);
}
/* and a check for garbage */
for(pchan= pose->chanbase.first; pchan; pchan= next) {
next= pchan->next;
if(pchan->bone==NULL) {
free_pose_channel(pchan);
free_pose_channels_hash(pose);
BLI_freelinkN(&pose->chanbase, pchan);
}
}
// printf("rebuild pose %s, %d bones\n", ob->id.name, counter);
/* synchronize protected layers with proxy */
if(ob->proxy) {
object_copy_proxy_drivers(ob, ob->proxy);
pose_proxy_synchronize(ob, ob->proxy, arm->layer_protected);
}
update_pose_constraint_flags(ob->pose); // for IK detection for example
/* the sorting */
if(counter>1)
DAG_pose_sort(ob);
ob->pose->flag &= ~POSE_RECALC;
ob->pose->flag |= POSE_WAS_REBUILT;
make_pose_channels_hash(ob->pose);
}
/* ********************** SPLINE IK SOLVER ******************* */
/* Temporary evaluation tree data used for Spline IK */
typedef struct tSplineIK_Tree {
struct tSplineIK_Tree *next, *prev;
int type; /* type of IK that this serves (CONSTRAINT_TYPE_KINEMATIC or ..._SPLINEIK) */
short free_points; /* free the point positions array */
short chainlen; /* number of bones in the chain */
float *points; /* parametric positions for the joints along the curve */
bPoseChannel **chain; /* chain of bones to affect using Spline IK (ordered from the tip) */
bPoseChannel *root; /* bone that is the root node of the chain */
bConstraint *con; /* constraint for this chain */
bSplineIKConstraint *ikData; /* constraint settings for this chain */
} tSplineIK_Tree;
/* ----------- */
/* Tag the bones in the chain formed by the given bone for IK */
static void splineik_init_tree_from_pchan(Scene *scene, Object *UNUSED(ob), bPoseChannel *pchan_tip)
{
bPoseChannel *pchan, *pchanRoot=NULL;
bPoseChannel *pchanChain[255];
bConstraint *con = NULL;
bSplineIKConstraint *ikData = NULL;
float boneLengths[255], *jointPoints;
float totLength = 0.0f;
short free_joints = 0;
int segcount = 0;
/* find the SplineIK constraint */
for (con= pchan_tip->constraints.first; con; con= con->next) {
if (con->type == CONSTRAINT_TYPE_SPLINEIK) {
ikData= con->data;
/* target can only be curve */
if ((ikData->tar == NULL) || (ikData->tar->type != OB_CURVE))
continue;
/* skip if disabled */
if ( (con->enforce == 0.0f) || (con->flag & (CONSTRAINT_DISABLE|CONSTRAINT_OFF)) )
continue;
/* otherwise, constraint is ok... */
break;
}
}
if (con == NULL)
return;
/* make sure that the constraint targets are ok
* - this is a workaround for a depsgraph bug...
*/
if (ikData->tar) {
Curve *cu= ikData->tar->data;
/* note: when creating constraints that follow path, the curve gets the CU_PATH set now,
* currently for paths to work it needs to go through the bevlist/displist system (ton)
*/
/* only happens on reload file, but violates depsgraph still... fix! */
if ((cu->path==NULL) || (cu->path->data==NULL))
makeDispListCurveTypes(scene, ikData->tar, 0);
}
/* find the root bone and the chain of bones from the root to the tip
* NOTE: this assumes that the bones are connected, but that may not be true...
*/
for (pchan= pchan_tip; pchan && (segcount < ikData->chainlen); pchan= pchan->parent, segcount++) {
/* store this segment in the chain */
pchanChain[segcount]= pchan;
/* if performing rebinding, calculate the length of the bone */
boneLengths[segcount]= pchan->bone->length;
totLength += boneLengths[segcount];
}
if (segcount == 0)
return;
else
pchanRoot= pchanChain[segcount-1];
/* perform binding step if required */
if ((ikData->flag & CONSTRAINT_SPLINEIK_BOUND) == 0) {
float segmentLen= (1.0f / (float)segcount);
int i;
/* setup new empty array for the points list */
if (ikData->points)
MEM_freeN(ikData->points);
ikData->numpoints= ikData->chainlen+1;
ikData->points= MEM_callocN(sizeof(float)*ikData->numpoints, "Spline IK Binding");
/* bind 'tip' of chain (i.e. first joint = tip of bone with the Spline IK Constraint) */
ikData->points[0] = 1.0f;
/* perform binding of the joints to parametric positions along the curve based
* proportion of the total length that each bone occupies
*/
for (i = 0; i < segcount; i++) {
/* 'head' joints, travelling towards the root of the chain
* - 2 methods; the one chosen depends on whether we've got usable lengths
*/
if ((ikData->flag & CONSTRAINT_SPLINEIK_EVENSPLITS) || (totLength == 0.0f)) {
/* 1) equi-spaced joints */
ikData->points[i+1]= ikData->points[i] - segmentLen;
}
else {
/* 2) to find this point on the curve, we take a step from the previous joint
* a distance given by the proportion that this bone takes
*/
ikData->points[i+1]= ikData->points[i] - (boneLengths[i] / totLength);
}
}
/* spline has now been bound */
ikData->flag |= CONSTRAINT_SPLINEIK_BOUND;
}
/* apply corrections for sensitivity to scaling on a copy of the bind points,
* since it's easier to determine the positions of all the joints beforehand this way
*/
if ((ikData->flag & CONSTRAINT_SPLINEIK_SCALE_LIMITED) && (totLength != 0.0f)) {
Curve *cu= (Curve *)ikData->tar->data;
float splineLen, maxScale;
int i;
/* make a copy of the points array, that we'll store in the tree
* - although we could just multiply the points on the fly, this approach means that
* we can introduce per-segment stretchiness later if it is necessary
*/
jointPoints= MEM_dupallocN(ikData->points);
free_joints= 1;
/* get the current length of the curve */
// NOTE: this is assumed to be correct even after the curve was resized
splineLen= cu->path->totdist;
/* calculate the scale factor to multiply all the path values by so that the
* bone chain retains its current length, such that
* maxScale * splineLen = totLength
*/
maxScale = totLength / splineLen;
/* apply scaling correction to all of the temporary points */
// TODO: this is really not adequate enough on really short chains
for (i = 0; i < segcount; i++)
jointPoints[i] *= maxScale;
}
else {
/* just use the existing points array */
jointPoints= ikData->points;
free_joints= 0;
}
/* make a new Spline-IK chain, and store it in the IK chains */
// TODO: we should check if there is already an IK chain on this, since that would take presidence...
{
/* make new tree */
tSplineIK_Tree *tree= MEM_callocN(sizeof(tSplineIK_Tree), "SplineIK Tree");
tree->type= CONSTRAINT_TYPE_SPLINEIK;
tree->chainlen= segcount;
/* copy over the array of links to bones in the chain (from tip to root) */
tree->chain= MEM_callocN(sizeof(bPoseChannel*)*segcount, "SplineIK Chain");
memcpy(tree->chain, pchanChain, sizeof(bPoseChannel*)*segcount);
/* store reference to joint position array */
tree->points= jointPoints;
tree->free_points= free_joints;
/* store references to different parts of the chain */
tree->root= pchanRoot;
tree->con= con;
tree->ikData= ikData;
/* AND! link the tree to the root */
BLI_addtail(&pchanRoot->iktree, tree);
}
/* mark root channel having an IK tree */
pchanRoot->flag |= POSE_IKSPLINE;
}
/* Tag which bones are members of Spline IK chains */
static void splineik_init_tree(Scene *scene, Object *ob, float UNUSED(ctime))
{
bPoseChannel *pchan;
/* find the tips of Spline IK chains, which are simply the bones which have been tagged as such */
for (pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
if (pchan->constflag & PCHAN_HAS_SPLINEIK)
splineik_init_tree_from_pchan(scene, ob, pchan);
}
}
/* ----------- */
/* Evaluate spline IK for a given bone */
static void splineik_evaluate_bone(tSplineIK_Tree *tree, Scene *scene, Object *ob, bPoseChannel *pchan, int index, float ctime)
{
bSplineIKConstraint *ikData= tree->ikData;
float poseHead[3], poseTail[3], poseMat[4][4];
float splineVec[3], scaleFac, radius=1.0f;
/* firstly, calculate the bone matrix the standard way, since this is needed for roll control */
where_is_pose_bone(scene, ob, pchan, ctime, 1);
VECCOPY(poseHead, pchan->pose_head);
VECCOPY(poseTail, pchan->pose_tail);
/* step 1: determine the positions for the endpoints of the bone */
{
float vec[4], dir[3], rad;
float tailBlendFac= 1.0f;
/* determine if the bone should still be affected by SplineIK */
if (tree->points[index+1] >= 1.0f) {
/* spline doesn't affect the bone anymore, so done... */
pchan->flag |= POSE_DONE;
return;
}
else if ((tree->points[index] >= 1.0f) && (tree->points[index+1] < 1.0f)) {
/* blending factor depends on the amount of the bone still left on the chain */
tailBlendFac= (1.0f - tree->points[index+1]) / (tree->points[index] - tree->points[index+1]);
}
/* tail endpoint */
if ( where_on_path(ikData->tar, tree->points[index], vec, dir, NULL, &rad, NULL) ) {
/* apply curve's object-mode transforms to the position
* unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
*/
if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
mul_m4_v3(ikData->tar->obmat, vec);
/* convert the position to pose-space, then store it */
mul_m4_v3(ob->imat, vec);
interp_v3_v3v3(poseTail, pchan->pose_tail, vec, tailBlendFac);
/* set the new radius */
radius= rad;
}
/* head endpoint */
if ( where_on_path(ikData->tar, tree->points[index+1], vec, dir, NULL, &rad, NULL) ) {
/* apply curve's object-mode transforms to the position
* unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
*/
if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
mul_m4_v3(ikData->tar->obmat, vec);
/* store the position, and convert it to pose space */
mul_m4_v3(ob->imat, vec);
VECCOPY(poseHead, vec);
/* set the new radius (it should be the average value) */
radius = (radius+rad) / 2;
}
}
/* step 2: determine the implied transform from these endpoints
* - splineVec: the vector direction that the spline applies on the bone
* - scaleFac: the factor that the bone length is scaled by to get the desired amount
*/
sub_v3_v3v3(splineVec, poseTail, poseHead);
scaleFac= len_v3(splineVec) / pchan->bone->length;
/* step 3: compute the shortest rotation needed to map from the bone rotation to the current axis
* - this uses the same method as is used for the Damped Track Constraint (see the code there for details)
*/
{
float dmat[3][3], rmat[3][3], tmat[3][3];
float raxis[3], rangle;
/* compute the raw rotation matrix from the bone's current matrix by extracting only the
* orientation-relevant axes, and normalising them
*/
VECCOPY(rmat[0], pchan->pose_mat[0]);
VECCOPY(rmat[1], pchan->pose_mat[1]);
VECCOPY(rmat[2], pchan->pose_mat[2]);
normalize_m3(rmat);
/* also, normalise the orientation imposed by the bone, now that we've extracted the scale factor */
normalize_v3(splineVec);
/* calculate smallest axis-angle rotation necessary for getting from the
* current orientation of the bone, to the spline-imposed direction
*/
cross_v3_v3v3(raxis, rmat[1], splineVec);
rangle= dot_v3v3(rmat[1], splineVec);
rangle= acos( MAX2(-1.0f, MIN2(1.0f, rangle)) );
/* multiply the magnitude of the angle by the influence of the constraint to
* control the influence of the SplineIK effect
*/
rangle *= tree->con->enforce;
/* construct rotation matrix from the axis-angle rotation found above
* - this call takes care to make sure that the axis provided is a unit vector first
*/
axis_angle_to_mat3(dmat, raxis, rangle);
/* combine these rotations so that the y-axis of the bone is now aligned as the spline dictates,
* while still maintaining roll control from the existing bone animation
*/
mul_m3_m3m3(tmat, dmat, rmat); // m1, m3, m2
normalize_m3(tmat); /* attempt to reduce shearing, though I doubt this'll really help too much now... */
copy_m4_m3(poseMat, tmat);
}
/* step 4: set the scaling factors for the axes */
{
/* only multiply the y-axis by the scaling factor to get nice volume-preservation */
mul_v3_fl(poseMat[1], scaleFac);
/* set the scaling factors of the x and z axes from... */
switch (ikData->xzScaleMode) {
case CONSTRAINT_SPLINEIK_XZS_ORIGINAL:
{
/* original scales get used */
float scale;
/* x-axis scale */
scale= len_v3(pchan->pose_mat[0]);
mul_v3_fl(poseMat[0], scale);
/* z-axis scale */
scale= len_v3(pchan->pose_mat[2]);
mul_v3_fl(poseMat[2], scale);
}
break;
case CONSTRAINT_SPLINEIK_XZS_VOLUMETRIC:
{
/* 'volume preservation' */
float scale;
/* calculate volume preservation factor which is
* basically the inverse of the y-scaling factor
*/
if (fabsf(scaleFac) != 0.0f) {
scale= 1.0f / fabsf(scaleFac);
/* we need to clamp this within sensible values */
// NOTE: these should be fine for now, but should get sanitised in future
CLAMP(scale, 0.0001f, 100000.0f);
}
else
scale= 1.0f;
/* apply the scaling */
mul_v3_fl(poseMat[0], scale);
mul_v3_fl(poseMat[2], scale);
}
break;
}
/* finally, multiply the x and z scaling by the radius of the curve too,
* to allow automatic scales to get tweaked still
*/
if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_CURVERAD) == 0) {
mul_v3_fl(poseMat[0], radius);
mul_v3_fl(poseMat[2], radius);
}
}
/* step 5: set the location of the bone in the matrix */
if (ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) {
/* when the 'no-root' option is affected, the chain can retain
* the shape but be moved elsewhere
*/
VECCOPY(poseHead, pchan->pose_head);
}
else if (tree->con->enforce < 1.0f) {
/* when the influence is too low
* - blend the positions for the 'root' bone
* - stick to the parent for any other
*/
if (pchan->parent) {
VECCOPY(poseHead, pchan->pose_head);
}
else {
// FIXME: this introduces popping artifacts when we reach 0.0
interp_v3_v3v3(poseHead, pchan->pose_head, poseHead, tree->con->enforce);
}
}
VECCOPY(poseMat[3], poseHead);
/* finally, store the new transform */
copy_m4_m4(pchan->pose_mat, poseMat);
VECCOPY(pchan->pose_head, poseHead);
/* recalculate tail, as it's now outdated after the head gets adjusted above! */
where_is_pose_bone_tail(pchan);
/* done! */
pchan->flag |= POSE_DONE;
}
/* Evaluate the chain starting from the nominated bone */
static void splineik_execute_tree(Scene *scene, Object *ob, bPoseChannel *pchan_root, float ctime)
{
tSplineIK_Tree *tree;
/* for each pose-tree, execute it if it is spline, otherwise just free it */
for (tree= pchan_root->iktree.first; tree; tree= pchan_root->iktree.first) {
/* only evaluate if tagged for Spline IK */
if (tree->type == CONSTRAINT_TYPE_SPLINEIK) {
int i;
/* walk over each bone in the chain, calculating the effects of spline IK
* - the chain is traversed in the opposite order to storage order (i.e. parent to children)
* so that dependencies are correct
*/
for (i= tree->chainlen-1; i >= 0; i--) {
bPoseChannel *pchan= tree->chain[i];
splineik_evaluate_bone(tree, scene, ob, pchan, i, ctime);
}
/* free the tree info specific to SplineIK trees now */
if (tree->chain) MEM_freeN(tree->chain);
if (tree->free_points) MEM_freeN(tree->points);
}
/* free this tree */
BLI_freelinkN(&pchan_root->iktree, tree);
}
}
/* ********************** THE POSE SOLVER ******************* */
/* loc/rot/size to given mat4 */
void pchan_to_mat4(bPoseChannel *pchan, float chan_mat[4][4])
{
float smat[3][3];
float rmat[3][3];
float tmat[3][3];
/* get scaling matrix */
size_to_mat3(smat, pchan->size);
/* rotations may either be quats, eulers (with various rotation orders), or axis-angle */
if (pchan->rotmode > 0) {
/* euler rotations (will cause gimble lock, but this can be alleviated a bit with rotation orders) */
eulO_to_mat3(rmat, pchan->eul, pchan->rotmode);
}
else if (pchan->rotmode == ROT_MODE_AXISANGLE) {
/* axis-angle - not really that great for 3D-changing orientations */
axis_angle_to_mat3(rmat, pchan->rotAxis, pchan->rotAngle);
}
else {
/* quats are normalised before use to eliminate scaling issues */
float quat[4];
/* NOTE: we now don't normalise the stored values anymore, since this was kindof evil in some cases
* but if this proves to be too problematic, switch back to the old system of operating directly on
* the stored copy
*/
normalize_qt_qt(quat, pchan->quat);
quat_to_mat3(rmat, quat);
}
/* calculate matrix of bone (as 3x3 matrix, but then copy the 4x4) */
mul_m3_m3m3(tmat, rmat, smat);
copy_m4_m3(chan_mat, tmat);
/* prevent action channels breaking chains */
/* need to check for bone here, CONSTRAINT_TYPE_ACTION uses this call */
if ((pchan->bone==NULL) || !(pchan->bone->flag & BONE_CONNECTED)) {
VECCOPY(chan_mat[3], pchan->loc);
}
}
/* loc/rot/size to mat4 */
/* used in constraint.c too */
void pchan_calc_mat(bPoseChannel *pchan)
{
/* this is just a wrapper around the copy of this function which calculates the matrix
* and stores the result in any given channel
*/
pchan_to_mat4(pchan, pchan->chan_mat);
}
/* NLA strip modifiers */
static void do_strip_modifiers(Scene *scene, Object *armob, Bone *bone, bPoseChannel *pchan)
{
bActionModifier *amod;
bActionStrip *strip, *strip2;
float scene_cfra= (float)scene->r.cfra;
int do_modif;
for (strip=armob->nlastrips.first; strip; strip=strip->next) {
do_modif=0;
if (scene_cfra>=strip->start && scene_cfra<=strip->end)
do_modif=1;
if ((scene_cfra > strip->end) && (strip->flag & ACTSTRIP_HOLDLASTFRAME)) {
do_modif=1;
/* if there are any other strips active, ignore modifiers for this strip -
* 'hold' option should only hold action modifiers if there are
* no other active strips */
for (strip2=strip->next; strip2; strip2=strip2->next) {
if (strip2 == strip) continue;
if (scene_cfra>=strip2->start && scene_cfra<=strip2->end) {
if (!(strip2->flag & ACTSTRIP_MUTE))
do_modif=0;
}
}
/* if there are any later, activated, strips with 'hold' set, they take precedence,
* so ignore modifiers for this strip */
for (strip2=strip->next; strip2; strip2=strip2->next) {
if (scene_cfra < strip2->start) continue;
if ((strip2->flag & ACTSTRIP_HOLDLASTFRAME) && !(strip2->flag & ACTSTRIP_MUTE)) {
do_modif=0;
}
}
}
if (do_modif) {
/* temporal solution to prevent 2 strips accumulating */
if(scene_cfra==strip->end && strip->next && strip->next->start==scene_cfra)
continue;
for(amod= strip->modifiers.first; amod; amod= amod->next) {
switch (amod->type) {
case ACTSTRIP_MOD_DEFORM:
{
/* validate first */
if(amod->ob && amod->ob->type==OB_CURVE && amod->channel[0]) {
if( strcmp(pchan->name, amod->channel)==0 ) {
float mat4[4][4], mat3[3][3];
curve_deform_vector(scene, amod->ob, armob, bone->arm_mat[3], pchan->pose_mat[3], mat3, amod->no_rot_axis);
copy_m4_m4(mat4, pchan->pose_mat);
mul_m4_m3m4(pchan->pose_mat, mat3, mat4);
}
}
}
break;
case ACTSTRIP_MOD_NOISE:
{
if( strcmp(pchan->name, amod->channel)==0 ) {
float nor[3], loc[3], ofs;
float eul[3], size[3], eulo[3], sizeo[3];
/* calculate turbulance */
ofs = amod->turbul / 200.0f;
/* make a copy of starting conditions */
VECCOPY(loc, pchan->pose_mat[3]);
mat4_to_eul( eul,pchan->pose_mat);
mat4_to_size( size,pchan->pose_mat);
VECCOPY(eulo, eul);
VECCOPY(sizeo, size);
/* apply noise to each set of channels */
if (amod->channels & 4) {
/* for scaling */
nor[0] = BLI_gNoise(amod->noisesize, size[0]+ofs, size[1], size[2], 0, 0) - ofs;
nor[1] = BLI_gNoise(amod->noisesize, size[0], size[1]+ofs, size[2], 0, 0) - ofs;
nor[2] = BLI_gNoise(amod->noisesize, size[0], size[1], size[2]+ofs, 0, 0) - ofs;
add_v3_v3(size, nor);
if (sizeo[0] != 0)
mul_v3_fl(pchan->pose_mat[0], size[0] / sizeo[0]);
if (sizeo[1] != 0)
mul_v3_fl(pchan->pose_mat[1], size[1] / sizeo[1]);
if (sizeo[2] != 0)
mul_v3_fl(pchan->pose_mat[2], size[2] / sizeo[2]);
}
if (amod->channels & 2) {
/* for rotation */
nor[0] = BLI_gNoise(amod->noisesize, eul[0]+ofs, eul[1], eul[2], 0, 0) - ofs;
nor[1] = BLI_gNoise(amod->noisesize, eul[0], eul[1]+ofs, eul[2], 0, 0) - ofs;
nor[2] = BLI_gNoise(amod->noisesize, eul[0], eul[1], eul[2]+ofs, 0, 0) - ofs;
compatible_eul(nor, eulo);
add_v3_v3(eul, nor);
compatible_eul(eul, eulo);
loc_eul_size_to_mat4(pchan->pose_mat, loc, eul, size);
}
if (amod->channels & 1) {
/* for location */
nor[0] = BLI_gNoise(amod->noisesize, loc[0]+ofs, loc[1], loc[2], 0, 0) - ofs;
nor[1] = BLI_gNoise(amod->noisesize, loc[0], loc[1]+ofs, loc[2], 0, 0) - ofs;
nor[2] = BLI_gNoise(amod->noisesize, loc[0], loc[1], loc[2]+ofs, 0, 0) - ofs;
add_v3_v3v3(pchan->pose_mat[3], loc, nor);
}
}
}
break;
}
}
}
}
}
/* calculate tail of posechannel */
void where_is_pose_bone_tail(bPoseChannel *pchan)
{
float vec[3];
VECCOPY(vec, pchan->pose_mat[1]);
mul_v3_fl(vec, pchan->bone->length);
add_v3_v3v3(pchan->pose_tail, pchan->pose_head, vec);
}
/* The main armature solver, does all constraints excluding IK */
/* pchan is validated, as having bone and parent pointer
* 'do_extra': when zero skips loc/size/rot, constraints and strip modifiers.
*/
void where_is_pose_bone(Scene *scene, Object *ob, bPoseChannel *pchan, float ctime, int do_extra)
{
Bone *bone, *parbone;
bPoseChannel *parchan;
float vec[3];
/* set up variables for quicker access below */
bone= pchan->bone;
parbone= bone->parent;
parchan= pchan->parent;
/* this gives a chan_mat with actions (ipos) results */
if(do_extra) pchan_calc_mat(pchan);
else unit_m4(pchan->chan_mat);
/* construct the posemat based on PoseChannels, that we do before applying constraints */
/* pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b) */
if(parchan) {
float offs_bone[4][4]; // yoffs(b-1) + root(b) + bonemat(b)
/* bone transform itself */
copy_m4_m3(offs_bone, bone->bone_mat);
/* The bone's root offset (is in the parent's coordinate system) */
VECCOPY(offs_bone[3], bone->head);
/* Get the length translation of parent (length along y axis) */
offs_bone[3][1]+= parbone->length;
/* Compose the matrix for this bone */
if((bone->flag & BONE_HINGE) && (bone->flag & BONE_NO_SCALE)) { // uses restposition rotation, but actual position
float tmat[4][4];
/* the rotation of the parent restposition */
copy_m4_m4(tmat, parbone->arm_mat);
mul_serie_m4(pchan->pose_mat, tmat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
}
else if(bone->flag & BONE_HINGE) { // same as above but apply parent scale
float tmat[4][4];
/* apply the parent matrix scale */
float tsmat[4][4], tscale[3];
/* the rotation of the parent restposition */
copy_m4_m4(tmat, parbone->arm_mat);
/* extract the scale of the parent matrix */
mat4_to_size(tscale, parchan->pose_mat);
size_to_mat4(tsmat, tscale);
mul_m4_m4m4(tmat, tmat, tsmat);
mul_serie_m4(pchan->pose_mat, tmat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
}
else if(bone->flag & BONE_NO_SCALE) {
float orthmat[4][4];
/* do transform, with an ortho-parent matrix */
copy_m4_m4(orthmat, parchan->pose_mat);
normalize_m4(orthmat);
mul_serie_m4(pchan->pose_mat, orthmat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
}
else
mul_serie_m4(pchan->pose_mat, parchan->pose_mat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
/* in these cases we need to compute location separately */
if(bone->flag & (BONE_HINGE|BONE_NO_SCALE|BONE_NO_LOCAL_LOCATION)) {
float bone_loc[3], chan_loc[3];
mul_v3_m4v3(bone_loc, parchan->pose_mat, offs_bone[3]);
copy_v3_v3(chan_loc, pchan->chan_mat[3]);
/* no local location is not transformed by bone matrix */
if(!(bone->flag & BONE_NO_LOCAL_LOCATION))
mul_mat3_m4_v3(offs_bone, chan_loc);
/* for hinge we use armature instead of pose mat */
if(bone->flag & BONE_HINGE) mul_mat3_m4_v3(parbone->arm_mat, chan_loc);
else mul_mat3_m4_v3(parchan->pose_mat, chan_loc);
add_v3_v3v3(pchan->pose_mat[3], bone_loc, chan_loc);
}
}
else {
mul_m4_m4m4(pchan->pose_mat, pchan->chan_mat, bone->arm_mat);
/* optional location without arm_mat rotation */
if(bone->flag & BONE_NO_LOCAL_LOCATION)
add_v3_v3v3(pchan->pose_mat[3], bone->arm_mat[3], pchan->chan_mat[3]);
/* only rootbones get the cyclic offset (unless user doesn't want that) */
if ((bone->flag & BONE_NO_CYCLICOFFSET) == 0)
add_v3_v3(pchan->pose_mat[3], ob->pose->cyclic_offset);
}
if(do_extra) {
/* do NLA strip modifiers - i.e. curve follow */
do_strip_modifiers(scene, ob, bone, pchan);
/* Do constraints */
if (pchan->constraints.first) {
bConstraintOb *cob;
/* make a copy of location of PoseChannel for later */
VECCOPY(vec, pchan->pose_mat[3]);
/* prepare PoseChannel for Constraint solving
* - makes a copy of matrix, and creates temporary struct to use
*/
cob= constraints_make_evalob(scene, ob, pchan, CONSTRAINT_OBTYPE_BONE);
/* Solve PoseChannel's Constraints */
solve_constraints(&pchan->constraints, cob, ctime); // ctime doesnt alter objects
/* cleanup after Constraint Solving
* - applies matrix back to pchan, and frees temporary struct used
*/
constraints_clear_evalob(cob);
/* prevent constraints breaking a chain */
if(pchan->bone->flag & BONE_CONNECTED) {
VECCOPY(pchan->pose_mat[3], vec);
}
}
}
/* calculate head */
VECCOPY(pchan->pose_head, pchan->pose_mat[3]);
/* calculate tail */
where_is_pose_bone_tail(pchan);
}
/* This only reads anim data from channels, and writes to channels */
/* This is the only function adding poses */
void where_is_pose (Scene *scene, Object *ob)
{
bArmature *arm;
Bone *bone;
bPoseChannel *pchan;
float imat[4][4];
float ctime;
if(ob->type!=OB_ARMATURE) return;
arm = ob->data;
if(ELEM(NULL, arm, scene)) return;
if((ob->pose==NULL) || (ob->pose->flag & POSE_RECALC))
armature_rebuild_pose(ob, arm);
ctime= bsystem_time(scene, ob, (float)scene->r.cfra, 0.0); /* not accurate... */
/* In editmode or restposition we read the data from the bones */
if(arm->edbo || (arm->flag & ARM_RESTPOS)) {
for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
bone= pchan->bone;
if(bone) {
copy_m4_m4(pchan->pose_mat, bone->arm_mat);
VECCOPY(pchan->pose_head, bone->arm_head);
VECCOPY(pchan->pose_tail, bone->arm_tail);
}
}
}
else {
invert_m4_m4(ob->imat, ob->obmat); // imat is needed
/* 1. clear flags */
for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
pchan->flag &= ~(POSE_DONE|POSE_CHAIN|POSE_IKTREE|POSE_IKSPLINE);
}
/* 2a. construct the IK tree (standard IK) */
BIK_initialize_tree(scene, ob, ctime);
/* 2b. construct the Spline IK trees
* - this is not integrated as an IK plugin, since it should be able
* to function in conjunction with standard IK
*/
splineik_init_tree(scene, ob, ctime);
/* 3. the main loop, channels are already hierarchical sorted from root to children */
for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
/* 4a. if we find an IK root, we handle it separated */
if(pchan->flag & POSE_IKTREE) {
BIK_execute_tree(scene, ob, pchan, ctime);
}
/* 4b. if we find a Spline IK root, we handle it separated too */
else if(pchan->flag & POSE_IKSPLINE) {
splineik_execute_tree(scene, ob, pchan, ctime);
}
/* 5. otherwise just call the normal solver */
else if(!(pchan->flag & POSE_DONE)) {
where_is_pose_bone(scene, ob, pchan, ctime, 1);
}
}
/* 6. release the IK tree */
BIK_release_tree(scene, ob, ctime);
}
/* calculating deform matrices */
for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
if(pchan->bone) {
invert_m4_m4(imat, pchan->bone->arm_mat);
mul_m4_m4m4(pchan->chan_mat, imat, pchan->pose_mat);
}
}
}
/* Returns total selected vgroups,
* wpi.defbase_sel is assumed malloc'd, all values are set */
int get_selected_defgroups(Object *ob, char *dg_selection, int defbase_len)
{
bDeformGroup *defgroup;
unsigned int i;
Object *armob= object_pose_armature_get(ob);
int dg_flags_sel_tot= 0;
if(armob) {
bPose *pose= armob->pose;
for (i= 0, defgroup= ob->defbase.first; i < defbase_len && defgroup; defgroup = defgroup->next, i++) {
bPoseChannel *pchan= get_pose_channel(pose, defgroup->name);
if(pchan && (pchan->bone->flag & BONE_SELECTED)) {
dg_selection[i]= TRUE;
dg_flags_sel_tot++;
}
else {
dg_selection[i]= FALSE;
}
}
}
else {
memset(dg_selection, FALSE, sizeof(char) * defbase_len);
}
return dg_flags_sel_tot;
}