This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/navmesh_conversion.c
Benoit Bolsee e6a9b68c79 Recast: upgrade library.
- Upgrade Recast library to latest portable version
- Implement recast_qsort based on FreeBSD qsort.c to have 
  portable thread safe quick sort for use in conversion routine.
- Better default value for the Build Navigation Mesh operator
2011-09-29 21:38:57 +00:00

513 lines
13 KiB
C

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <math.h>
#include <stdlib.h>
#include "MEM_guardedalloc.h"
#include "DNA_meshdata_types.h"
#include "BKE_navmesh_conversion.h"
#include "BKE_cdderivedmesh.h"
#include "BLI_utildefines.h"
#include "BLI_math.h"
#include "recast-capi.h"
BM_INLINE float area2(const float* a, const float* b, const float* c)
{
return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]);
}
BM_INLINE int left(const float* a, const float* b, const float* c)
{
return area2(a, b, c) < 0;
}
int polyNumVerts(const unsigned short* p, const int vertsPerPoly)
{
int i, nv = 0;
for (i=0; i<vertsPerPoly; i++)
{
if (p[i]==0xffff)
break;
nv++;
}
return nv;
}
int polyIsConvex(const unsigned short* p, const int vertsPerPoly, const float* verts)
{
int j, nv = polyNumVerts(p, vertsPerPoly);
if (nv<3)
return 0;
for (j=0; j<nv; j++)
{
const float* v = &verts[3*p[j]];
const float* v_next = &verts[3*p[(j+1)%nv]];
const float* v_prev = &verts[3*p[(nv+j-1)%nv]];
if (!left(v_prev, v, v_next))
return 0;
}
return 1;
}
float distPointToSegmentSq(const float* point, const float* a, const float* b)
{
float abx[3], dx[3];
float d, t;
sub_v3_v3v3(abx, b,a);
sub_v3_v3v3(dx, point,a);
d = abx[0]*abx[0]+abx[2]*abx[2];
t = abx[0]*dx[0]+abx[2]*dx[2];
if (d > 0)
t /= d;
if (t < 0)
t = 0;
else if (t > 1)
t = 1;
dx[0] = a[0] + t*abx[0] - point[0];
dx[2] = a[2] + t*abx[2] - point[2];
return dx[0]*dx[0] + dx[2]*dx[2];
}
int buildRawVertIndicesData(DerivedMesh* dm, int *nverts_r, float **verts_r,
int *ntris_r, unsigned short **tris_r, int **trisToFacesMap_r,
int **recastData)
{
int vi, fi, triIdx;
int nverts, ntris;
int *trisToFacesMap;
float *verts;
unsigned short *tris, *tri;
int nfaces;
MFace *faces;
nverts = dm->getNumVerts(dm);
if (nverts>=0xffff)
{
printf("Converting navmesh: Error! Too many vertices. Max number of vertices %d\n", 0xffff);
return 0;
}
verts = MEM_callocN(sizeof(float)*3*nverts, "buildRawVertIndicesData verts");
dm->getVertCos(dm, (float(*)[3])verts);
//flip coordinates
for (vi=0; vi<nverts; vi++)
{
SWAP(float, verts[3*vi+1], verts[3*vi+2]);
}
//calculate number of tris
nfaces = dm->getNumFaces(dm);
faces = dm->getFaceArray(dm);
ntris = nfaces;
for (fi=0; fi<nfaces; fi++)
{
MFace* face = &faces[fi];
if (face->v4)
ntris++;
}
//copy and transform to triangles (reorder on the run)
trisToFacesMap = MEM_callocN(sizeof(int)*ntris, "buildRawVertIndicesData trisToFacesMap");
tris = MEM_callocN(sizeof(unsigned short)*3*ntris, "buildRawVertIndicesData tris");
tri = tris;
triIdx = 0;
for (fi=0; fi<nfaces; fi++)
{
MFace* face = &faces[fi];
tri[3*triIdx+0] = (unsigned short) face->v1;
tri[3*triIdx+1] = (unsigned short) face->v3;
tri[3*triIdx+2] = (unsigned short) face->v2;
trisToFacesMap[triIdx++]=fi;
if (face->v4)
{
tri[3*triIdx+0] = (unsigned short) face->v1;
tri[3*triIdx+1] = (unsigned short) face->v4;
tri[3*triIdx+2] = (unsigned short) face->v3;
trisToFacesMap[triIdx++]=fi;
}
}
//carefully, recast data is just reference to data in derived mesh
*recastData = (int*)CustomData_get_layer(&dm->faceData, CD_RECAST);
*nverts_r = nverts;
*verts_r = verts;
*ntris_r = ntris;
*tris_r = tris;
*trisToFacesMap_r = trisToFacesMap;
return 1;
}
int buildPolygonsByDetailedMeshes(const int vertsPerPoly, const int npolys,
unsigned short* polys, const unsigned short* dmeshes,
const float* verts, const unsigned short* dtris,
const int* dtrisToPolysMap)
{
int polyidx;
int capacity = vertsPerPoly;
unsigned short* newPoly = MEM_callocN(sizeof(unsigned short)*capacity, "buildPolygonsByDetailedMeshes newPoly");
memset(newPoly, 0xff, sizeof(unsigned short)*capacity);
for (polyidx=0; polyidx<npolys; polyidx++)
{
size_t i;
int j, k;
int nv = 0;
//search border
int tri, btri = -1;
int edge, bedge = -1;
int dtrisNum = dmeshes[polyidx*4+3];
int dtrisBase = dmeshes[polyidx*4+2];
unsigned char *traversedTris = MEM_callocN(sizeof(unsigned char)*dtrisNum, "buildPolygonsByDetailedMeshes traversedTris");
unsigned short* adjustedPoly;
int adjustedNv;
int allBorderTraversed;
for (j=0; j<dtrisNum && btri==-1;j++)
{
int curpolytri = dtrisBase+j;
for (k=0; k<3; k++)
{
unsigned short neighbortri = dtris[curpolytri*3*2+3+k];
if ( neighbortri==0xffff || dtrisToPolysMap[neighbortri]!=polyidx+1)
{
btri = curpolytri;
bedge = k;
break;
}
}
}
if (btri==-1 || bedge==-1)
{
//can't find triangle with border edge
MEM_freeN(traversedTris);
MEM_freeN(newPoly);
return 0;
}
newPoly[nv++] = dtris[btri*3*2+bedge];
tri = btri;
edge = (bedge+1)%3;
traversedTris[tri-dtrisBase] = 1;
while (tri!=btri || edge!=bedge)
{
int neighbortri = dtris[tri*3*2+3+edge];
if (neighbortri==0xffff || dtrisToPolysMap[neighbortri]!=polyidx+1)
{
if (nv==capacity)
{
unsigned short* newPolyBig;
capacity += vertsPerPoly;
newPolyBig = MEM_callocN(sizeof(unsigned short)*capacity, "buildPolygonsByDetailedMeshes newPolyBig");
memset(newPolyBig, 0xff, sizeof(unsigned short)*capacity);
memcpy(newPolyBig, newPoly, sizeof(unsigned short)*nv);
MEM_freeN(newPoly);
newPoly = newPolyBig;
}
newPoly[nv++] = dtris[tri*3*2+edge];
//move to next edge
edge = (edge+1)%3;
}
else
{
//move to next tri
int twinedge = -1;
for (k=0; k<3; k++)
{
if (dtris[neighbortri*3*2+3+k] == tri)
{
twinedge = k;
break;
}
}
if (twinedge==-1)
{
printf("Converting navmesh: Error! Can't find neighbor edge - invalid adjacency info\n");
MEM_freeN(traversedTris);
goto returnLabel;
}
tri = neighbortri;
edge = (twinedge+1)%3;
traversedTris[tri-dtrisBase] = 1;
}
}
adjustedPoly = MEM_callocN(sizeof(unsigned short)*nv, "buildPolygonsByDetailedMeshes adjustedPoly");
adjustedNv = 0;
for (i=0; i<nv; i++)
{
unsigned short prev = newPoly[(nv+i-1)%nv];
unsigned short cur = newPoly[i];
unsigned short next = newPoly[(i+1)%nv];
float distSq = distPointToSegmentSq(&verts[3*cur], &verts[3*prev], &verts[3*next]);
static const float tolerance = 0.001f;
if (distSq>tolerance)
adjustedPoly[adjustedNv++] = cur;
}
memcpy(newPoly, adjustedPoly, adjustedNv*sizeof(unsigned short));
MEM_freeN(adjustedPoly);
nv = adjustedNv;
allBorderTraversed = 1;
for (i=0; i<dtrisNum; i++)
{
if (traversedTris[i]==0)
{
//check whether it has border edges
int curpolytri = dtrisBase+i;
for (k=0; k<3; k++)
{
unsigned short neighbortri = dtris[curpolytri*3*2+3+k];
if ( neighbortri==0xffff || dtrisToPolysMap[neighbortri]!=polyidx+1)
{
allBorderTraversed = 0;
break;
}
}
}
}
if (nv<=vertsPerPoly && allBorderTraversed)
{
for (i=0; i<nv; i++)
{
polys[polyidx*vertsPerPoly*2+i] = newPoly[i];
}
}
MEM_freeN(traversedTris);
}
returnLabel:
MEM_freeN(newPoly);
return 1;
}
struct SortContext
{
const int* recastData;
const int* trisToFacesMap;
};
static int compareByData(void *ctx, const void * a, const void * b)
{
return (((struct SortContext *)ctx)->recastData[((struct SortContext *)ctx)->trisToFacesMap[*(int*)a]] -
((struct SortContext *)ctx)->recastData[((struct SortContext *)ctx)->trisToFacesMap[*(int*)b]] );
}
int buildNavMeshData(const int nverts, const float* verts,
const int ntris, const unsigned short *tris,
const int* recastData, const int* trisToFacesMap,
int *ndtris_r, unsigned short **dtris_r,
int *npolys_r, unsigned short **dmeshes_r, unsigned short **polys_r,
int *vertsPerPoly_r, int **dtrisToPolysMap_r, int **dtrisToTrisMap_r)
{
int *trisMapping = MEM_callocN(sizeof(int)*ntris, "buildNavMeshData trisMapping");
int i;
struct SortContext context;
int validTriStart, prevPolyIdx, curPolyIdx, newPolyIdx, prevpolyidx;
unsigned short *dmesh;
int ndtris, npolys, vertsPerPoly;
unsigned short *dtris, *dmeshes, *polys;
int *dtrisToPolysMap, *dtrisToTrisMap;
if (!recastData)
{
printf("Converting navmesh: Error! Can't find recast custom data\n");
return 0;
}
//sort the triangles by polygon idx
for (i=0; i<ntris; i++)
trisMapping[i]=i;
context.recastData = recastData;
context.trisToFacesMap = trisToFacesMap;
recast_qsort(trisMapping, ntris, sizeof(int), &context, compareByData);
//search first valid triangle - triangle of convex polygon
validTriStart = -1;
for (i=0; i< ntris; i++)
{
if (recastData[trisToFacesMap[trisMapping[i]]]>0)
{
validTriStart = i;
break;
}
}
if (validTriStart<0)
{
printf("Converting navmesh: Error! No valid polygons in mesh\n");
MEM_freeN(trisMapping);
return 0;
}
ndtris = ntris-validTriStart;
//fill dtris to faces mapping
dtrisToTrisMap = MEM_callocN(sizeof(int)*ndtris, "buildNavMeshData dtrisToTrisMap");
memcpy(dtrisToTrisMap, &trisMapping[validTriStart], ndtris*sizeof(int));
MEM_freeN(trisMapping);
//create detailed mesh triangles - copy only valid triangles
//and reserve memory for adjacency info
dtris = MEM_callocN(sizeof(unsigned short)*3*2*ndtris, "buildNavMeshData dtris");
memset(dtris, 0xffff, sizeof(unsigned short)*3*2*ndtris);
for (i=0; i<ndtris; i++)
{
memcpy(dtris+3*2*i, tris+3*dtrisToTrisMap[i], sizeof(unsigned short)*3);
}
//create new recast data corresponded to dtris and renumber for continuous indices
prevPolyIdx = -1;
newPolyIdx = 0;
dtrisToPolysMap = MEM_callocN(sizeof(int)*ndtris, "buildNavMeshData dtrisToPolysMap");
for (i=0; i<ndtris; i++)
{
curPolyIdx = recastData[trisToFacesMap[dtrisToTrisMap[i]]];
if (curPolyIdx!=prevPolyIdx)
{
newPolyIdx++;
prevPolyIdx=curPolyIdx;
}
dtrisToPolysMap[i] = newPolyIdx;
}
//build adjacency info for detailed mesh triangles
recast_buildMeshAdjacency(dtris, ndtris, nverts, 3);
//create detailed mesh description for each navigation polygon
npolys = dtrisToPolysMap[ndtris-1];
dmeshes = MEM_callocN(sizeof(unsigned short)*npolys*4, "buildNavMeshData dmeshes");
memset(dmeshes, 0, npolys*4*sizeof(unsigned short));
dmesh = NULL;
prevpolyidx = 0;
for (i=0; i<ndtris; i++)
{
int curpolyidx = dtrisToPolysMap[i];
if (curpolyidx!=prevpolyidx)
{
if (curpolyidx!=prevpolyidx+1)
{
printf("Converting navmesh: Error! Wrong order of detailed mesh faces\n");
return 0;
}
dmesh = dmesh==NULL ? dmeshes : dmesh+4;
dmesh[2] = (unsigned short)i; //tbase
dmesh[3] = 0; //tnum
prevpolyidx = curpolyidx;
}
dmesh[3]++;
}
//create navigation polygons
vertsPerPoly = 6;
polys = MEM_callocN(sizeof(unsigned short)*npolys*vertsPerPoly*2, "buildNavMeshData polys");
memset(polys, 0xff, sizeof(unsigned short)*vertsPerPoly*2*npolys);
buildPolygonsByDetailedMeshes(vertsPerPoly, npolys, polys, dmeshes, verts, dtris, dtrisToPolysMap);
*ndtris_r = ndtris;
*npolys_r = npolys;
*vertsPerPoly_r = vertsPerPoly;
*dtris_r = dtris;
*dmeshes_r = dmeshes;
*polys_r = polys;
*dtrisToPolysMap_r = dtrisToPolysMap;
*dtrisToTrisMap_r = dtrisToTrisMap;
return 1;
}
int buildNavMeshDataByDerivedMesh(DerivedMesh *dm, int *vertsPerPoly,
int *nverts, float **verts,
int *ndtris, unsigned short **dtris,
int *npolys, unsigned short **dmeshes,
unsigned short **polys, int **dtrisToPolysMap,
int **dtrisToTrisMap, int **trisToFacesMap)
{
int res = 1;
int ntris = 0, *recastData=NULL;
unsigned short *tris=NULL;
res = buildRawVertIndicesData(dm, nverts, verts, &ntris, &tris, trisToFacesMap, &recastData);
if (!res)
{
printf("Converting navmesh: Error! Can't get vertices and indices from mesh\n");
goto exit;
}
res = buildNavMeshData(*nverts, *verts, ntris, tris, recastData, *trisToFacesMap,
ndtris, dtris, npolys, dmeshes,polys, vertsPerPoly,
dtrisToPolysMap, dtrisToTrisMap);
if (!res)
{
printf("Converting navmesh: Error! Can't get vertices and indices from mesh\n");
goto exit;
}
exit:
if (tris)
MEM_freeN(tris);
return res;
}
int polyFindVertex(const unsigned short* p, const int vertsPerPoly, unsigned short vertexIdx)
{
int i, res = -1;
for(i=0; i<vertsPerPoly; i++)
{
if (p[i]==0xffff)
break;
if (p[i]==vertexIdx)
{
res = i;
break;
}
}
return res;
}