This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/smoke.c

1666 lines
46 KiB
C

/*
* smoke.c
*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Daniel Genrich
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/smoke.c
* \ingroup bke
*/
/* Part of the code copied from elbeem fluid library, copyright by Nils Thuerey */
#include <GL/glew.h>
#include "MEM_guardedalloc.h"
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <string.h> /* memset */
#include "BLI_linklist.h"
#include "BLI_rand.h"
#include "BLI_jitter.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_edgehash.h"
#include "BLI_kdtree.h"
#include "BLI_kdopbvh.h"
#include "BLI_utildefines.h"
#include "BKE_bvhutils.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_customdata.h"
#include "BKE_DerivedMesh.h"
#include "BKE_effect.h"
#include "BKE_modifier.h"
#include "BKE_particle.h"
#include "BKE_pointcache.h"
#include "BKE_smoke.h"
#include "DNA_customdata_types.h"
#include "DNA_group_types.h"
#include "DNA_lamp_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "DNA_object_types.h"
#include "DNA_particle_types.h"
#include "DNA_scene_types.h"
#include "DNA_smoke_types.h"
#include "smoke_API.h"
#include "BKE_smoke.h"
#ifdef _WIN32
#include <time.h>
#include <stdio.h>
#include <conio.h>
#include <windows.h>
static LARGE_INTEGER liFrequency;
static LARGE_INTEGER liStartTime;
static LARGE_INTEGER liCurrentTime;
static void tstart ( void )
{
QueryPerformanceFrequency ( &liFrequency );
QueryPerformanceCounter ( &liStartTime );
}
static void tend ( void )
{
QueryPerformanceCounter ( &liCurrentTime );
}
static double tval( void )
{
return ((double)( (liCurrentTime.QuadPart - liStartTime.QuadPart)* (double)1000.0/(double)liFrequency.QuadPart ));
}
#else
#include <sys/time.h>
static struct timeval _tstart, _tend;
static struct timezone tz;
static void tstart ( void )
{
gettimeofday ( &_tstart, &tz );
}
static void tend ( void )
{
gettimeofday ( &_tend,&tz );
}
#if 0 // unused
static double tval()
{
double t1, t2;
t1 = ( double ) _tstart.tv_sec*1000 + ( double ) _tstart.tv_usec/ ( 1000 );
t2 = ( double ) _tend.tv_sec*1000 + ( double ) _tend.tv_usec/ ( 1000 );
return t2-t1;
}
#endif
#endif
struct Object;
struct Scene;
struct DerivedMesh;
struct SmokeModifierData;
// forward declerations
static void get_cell(float *p0, int res[3], float dx, float *pos, int *cell, int correct);
void calcTriangleDivs(Object *ob, MVert *verts, int numverts, MFace *tris, int numfaces, int numtris, int **tridivs, float cell_len);
static void fill_scs_points(Object *ob, DerivedMesh *dm, SmokeCollSettings *scs);
#define TRI_UVOFFSET (1./4.)
/* Stubs to use when smoke is disabled */
#ifndef WITH_SMOKE
struct WTURBULENCE *smoke_turbulence_init(int *UNUSED(res), int UNUSED(amplify), int UNUSED(noisetype)) { return NULL; }
struct FLUID_3D *smoke_init(int *UNUSED(res), float *UNUSED(p0)) { return NULL; }
void smoke_free(struct FLUID_3D *UNUSED(fluid)) {}
void smoke_turbulence_free(struct WTURBULENCE *UNUSED(wt)) {}
void smoke_initWaveletBlenderRNA(struct WTURBULENCE *UNUSED(wt), float *UNUSED(strength)) {}
void smoke_initBlenderRNA(struct FLUID_3D *UNUSED(fluid), float *UNUSED(alpha), float *UNUSED(beta), float *UNUSED(dt_factor), float *UNUSED(vorticity), int *UNUSED(border_colli)) {}
long long smoke_get_mem_req(int UNUSED(xres), int UNUSED(yres), int UNUSED(zres), int UNUSED(amplify)) { return 0; }
void smokeModifier_do(SmokeModifierData *UNUSED(smd), Scene *UNUSED(scene), Object *UNUSED(ob), DerivedMesh *UNUSED(dm)) {}
#endif // WITH_SMOKE
static int smokeModifier_init (SmokeModifierData *smd, Object *ob, Scene *scene, DerivedMesh *dm)
{
if((smd->type & MOD_SMOKE_TYPE_DOMAIN) && smd->domain && !smd->domain->fluid)
{
size_t i;
float min[3] = {FLT_MAX, FLT_MAX, FLT_MAX}, max[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX};
float size[3];
MVert *verts = dm->getVertArray(dm);
float scale = 0.0;
int res;
res = smd->domain->maxres;
// get BB of domain
for(i = 0; i < dm->getNumVerts(dm); i++)
{
float tmp[3];
VECCOPY(tmp, verts[i].co);
mul_m4_v3(ob->obmat, tmp);
// min BB
min[0] = MIN2(min[0], tmp[0]);
min[1] = MIN2(min[1], tmp[1]);
min[2] = MIN2(min[2], tmp[2]);
// max BB
max[0] = MAX2(max[0], tmp[0]);
max[1] = MAX2(max[1], tmp[1]);
max[2] = MAX2(max[2], tmp[2]);
}
VECCOPY(smd->domain->p0, min);
VECCOPY(smd->domain->p1, max);
// calc other res with max_res provided
VECSUB(size, max, min);
// printf("size: %f, %f, %f\n", size[0], size[1], size[2]);
// prevent crash when initializing a plane as domain
if((size[0] < FLT_EPSILON) || (size[1] < FLT_EPSILON) || (size[2] < FLT_EPSILON))
return 0;
if(size[0] > size[1])
{
if(size[0] > size[2])
{
scale = res / size[0];
smd->domain->dx = size[0] / res;
smd->domain->res[0] = res;
smd->domain->res[1] = (int)(size[1] * scale + 0.5);
smd->domain->res[2] = (int)(size[2] * scale + 0.5);
}
else
{
scale = res / size[2];
smd->domain->dx = size[2] / res;
smd->domain->res[2] = res;
smd->domain->res[0] = (int)(size[0] * scale + 0.5);
smd->domain->res[1] = (int)(size[1] * scale + 0.5);
}
}
else
{
if(size[1] > size[2])
{
scale = res / size[1];
smd->domain->dx = size[1] / res;
smd->domain->res[1] = res;
smd->domain->res[0] = (int)(size[0] * scale + 0.5);
smd->domain->res[2] = (int)(size[2] * scale + 0.5);
}
else
{
scale = res / size[2];
smd->domain->dx = size[2] / res;
smd->domain->res[2] = res;
smd->domain->res[0] = (int)(size[0] * scale + 0.5);
smd->domain->res[1] = (int)(size[1] * scale + 0.5);
}
}
// printf("smd->domain->dx: %f\n", smd->domain->dx);
// TODO: put in failsafe if res<=0 - dg
// printf("res[0]: %d, res[1]: %d, res[2]: %d\n", smd->domain->res[0], smd->domain->res[1], smd->domain->res[2]);
// dt max is 0.1
smd->domain->fluid = smoke_init(smd->domain->res, smd->domain->p0);
smd->time = scene->r.cfra;
if(smd->domain->flags & MOD_SMOKE_HIGHRES)
{
smd->domain->wt = smoke_turbulence_init(smd->domain->res, smd->domain->amplify + 1, smd->domain->noise);
smd->domain->res_wt[0] = smd->domain->res[0] * (smd->domain->amplify + 1);
smd->domain->res_wt[1] = smd->domain->res[1] * (smd->domain->amplify + 1);
smd->domain->res_wt[2] = smd->domain->res[2] * (smd->domain->amplify + 1);
smd->domain->dx_wt = smd->domain->dx / (smd->domain->amplify + 1);
// printf("smd->domain->amplify: %d\n", smd->domain->amplify);
// printf("(smd->domain->flags & MOD_SMOKE_HIGHRES)\n");
}
if(!smd->domain->shadow)
smd->domain->shadow = MEM_callocN(sizeof(float) * smd->domain->res[0] * smd->domain->res[1] * smd->domain->res[2], "SmokeDomainShadow");
smoke_initBlenderRNA(smd->domain->fluid, &(smd->domain->alpha), &(smd->domain->beta), &(smd->domain->time_scale), &(smd->domain->vorticity), &(smd->domain->border_collisions));
if(smd->domain->wt)
{
smoke_initWaveletBlenderRNA(smd->domain->wt, &(smd->domain->strength));
// printf("smoke_initWaveletBlenderRNA\n");
}
return 1;
}
else if((smd->type & MOD_SMOKE_TYPE_FLOW) && smd->flow)
{
// handle flow object here
// XXX TODO
smd->time = scene->r.cfra;
// update particle lifetime to be one frame
// smd->flow->psys->part->lifetime = scene->r.efra + 1;
/*
if(!smd->flow->bvh)
{
// smd->flow->bvh = MEM_callocN(sizeof(BVHTreeFromMesh), "smoke_bvhfromfaces");
// bvhtree_from_mesh_faces(smd->flow->bvh, dm, 0.0, 2, 6);
// copy obmat
// copy_m4_m4(smd->flow->mat, ob->obmat);
// copy_m4_m4(smd->flow->mat_old, ob->obmat);
}
*/
return 1;
}
else if((smd->type & MOD_SMOKE_TYPE_COLL))
{
smd->time = scene->r.cfra;
// todo: delete this when loading colls work -dg
if(!smd->coll)
smokeModifier_createType(smd);
if(!smd->coll->points)
{
// init collision points
SmokeCollSettings *scs = smd->coll;
// copy obmat
copy_m4_m4(scs->mat, ob->obmat);
copy_m4_m4(scs->mat_old, ob->obmat);
fill_scs_points(ob, dm, scs);
}
if(!smd->coll->bvhtree)
{
smd->coll->bvhtree = NULL; // bvhtree_build_from_smoke ( ob->obmat, dm->getFaceArray(dm), dm->getNumFaces(dm), dm->getVertArray(dm), dm->getNumVerts(dm), 0.0 );
}
return 1;
}
return 2;
}
static void fill_scs_points(Object *ob, DerivedMesh *dm, SmokeCollSettings *scs)
{
MVert *mvert = dm->getVertArray(dm);
MFace *mface = dm->getFaceArray(dm);
int i = 0, divs = 0;
int *tridivs = NULL;
float cell_len = 1.0 / 50.0; // for res = 50
int newdivs = 0;
int quads = 0, facecounter = 0;
// count quads
for(i = 0; i < dm->getNumFaces(dm); i++)
{
if(mface[i].v4)
quads++;
}
calcTriangleDivs(ob, mvert, dm->getNumVerts(dm), mface, dm->getNumFaces(dm), dm->getNumFaces(dm) + quads, &tridivs, cell_len);
// count triangle divisions
for(i = 0; i < dm->getNumFaces(dm) + quads; i++)
{
divs += (tridivs[3 * i] + 1) * (tridivs[3 * i + 1] + 1) * (tridivs[3 * i + 2] + 1);
}
// printf("divs: %d\n", divs);
scs->points = MEM_callocN(sizeof(float) * (dm->getNumVerts(dm) + divs) * 3, "SmokeCollPoints");
for(i = 0; i < dm->getNumVerts(dm); i++)
{
float tmpvec[3];
VECCOPY(tmpvec, mvert[i].co);
mul_m4_v3(ob->obmat, tmpvec);
VECCOPY(&scs->points[i * 3], tmpvec);
}
for(i = 0, facecounter = 0; i < dm->getNumFaces(dm); i++)
{
int again = 0;
do
{
int j, k;
int divs1 = tridivs[3 * facecounter + 0];
int divs2 = tridivs[3 * facecounter + 1];
//int divs3 = tridivs[3 * facecounter + 2];
float side1[3], side2[3], trinormorg[3], trinorm[3];
if(again == 1 && mface[i].v4)
{
VECSUB(side1, mvert[ mface[i].v3 ].co, mvert[ mface[i].v1 ].co);
VECSUB(side2, mvert[ mface[i].v4 ].co, mvert[ mface[i].v1 ].co);
}
else
{
VECSUB(side1, mvert[ mface[i].v2 ].co, mvert[ mface[i].v1 ].co);
VECSUB(side2, mvert[ mface[i].v3 ].co, mvert[ mface[i].v1 ].co);
}
cross_v3_v3v3(trinormorg, side1, side2);
normalize_v3(trinormorg);
VECCOPY(trinorm, trinormorg);
mul_v3_fl(trinorm, 0.25 * cell_len);
for(j = 0; j <= divs1; j++)
{
for(k = 0; k <= divs2; k++)
{
float p1[3], p2[3], p3[3], p[3]={0,0,0};
const float uf = (float)(j + TRI_UVOFFSET) / (float)(divs1 + 0.0);
const float vf = (float)(k + TRI_UVOFFSET) / (float)(divs2 + 0.0);
float tmpvec[3];
if(uf+vf > 1.0)
{
// printf("bigger - divs1: %d, divs2: %d\n", divs1, divs2);
continue;
}
VECCOPY(p1, mvert[ mface[i].v1 ].co);
if(again == 1 && mface[i].v4)
{
VECCOPY(p2, mvert[ mface[i].v3 ].co);
VECCOPY(p3, mvert[ mface[i].v4 ].co);
}
else
{
VECCOPY(p2, mvert[ mface[i].v2 ].co);
VECCOPY(p3, mvert[ mface[i].v3 ].co);
}
mul_v3_fl(p1, (1.0-uf-vf));
mul_v3_fl(p2, uf);
mul_v3_fl(p3, vf);
VECADD(p, p1, p2);
VECADD(p, p, p3);
if(newdivs > divs)
printf("mem problem\n");
// mMovPoints.push_back(p + trinorm);
VECCOPY(tmpvec, p);
VECADD(tmpvec, tmpvec, trinorm);
mul_m4_v3(ob->obmat, tmpvec);
VECCOPY(&scs->points[3 * (dm->getNumVerts(dm) + newdivs)], tmpvec);
newdivs++;
if(newdivs > divs)
printf("mem problem\n");
// mMovPoints.push_back(p - trinorm);
VECCOPY(tmpvec, p);
VECSUB(tmpvec, tmpvec, trinorm);
mul_m4_v3(ob->obmat, tmpvec);
VECCOPY(&scs->points[3 * (dm->getNumVerts(dm) + newdivs)], tmpvec);
newdivs++;
}
}
if(again == 0 && mface[i].v4)
again++;
else
again = 0;
facecounter++;
} while(again!=0);
}
scs->numpoints = dm->getNumVerts(dm) + newdivs;
MEM_freeN(tridivs);
}
/*! init triangle divisions */
void calcTriangleDivs(Object *ob, MVert *verts, int UNUSED(numverts), MFace *faces, int numfaces, int numtris, int **tridivs, float cell_len)
{
// mTriangleDivs1.resize( faces.size() );
// mTriangleDivs2.resize( faces.size() );
// mTriangleDivs3.resize( faces.size() );
size_t i = 0, facecounter = 0;
float maxscale[3] = {1,1,1}; // = channelFindMaxVf(mcScale);
float maxpart = ABS(maxscale[0]);
float scaleFac = 0;
float fsTri = 0;
if(ABS(maxscale[1])>maxpart) maxpart = ABS(maxscale[1]);
if(ABS(maxscale[2])>maxpart) maxpart = ABS(maxscale[2]);
scaleFac = 1.0 / maxpart;
// featureSize = mLevel[mMaxRefine].nodeSize
fsTri = cell_len * 0.5 * scaleFac;
if(*tridivs)
MEM_freeN(*tridivs);
*tridivs = MEM_callocN(sizeof(int) * numtris * 3, "Smoke_Tridivs");
for(i = 0, facecounter = 0; i < numfaces; i++)
{
float p0[3], p1[3], p2[3];
float side1[3];
float side2[3];
float side3[3];
int divs1=0, divs2=0, divs3=0;
VECCOPY(p0, verts[faces[i].v1].co);
mul_m4_v3(ob->obmat, p0);
VECCOPY(p1, verts[faces[i].v2].co);
mul_m4_v3(ob->obmat, p1);
VECCOPY(p2, verts[faces[i].v3].co);
mul_m4_v3(ob->obmat, p2);
VECSUB(side1, p1, p0);
VECSUB(side2, p2, p0);
VECSUB(side3, p1, p2);
if(INPR(side1, side1) > fsTri*fsTri)
{
float tmp = normalize_v3(side1);
divs1 = (int)ceil(tmp/fsTri);
}
if(INPR(side2, side2) > fsTri*fsTri)
{
float tmp = normalize_v3(side2);
divs2 = (int)ceil(tmp/fsTri);
/*
// debug
if(i==0)
printf("b tmp: %f, fsTri: %f, divs2: %d\n", tmp, fsTri, divs2);
*/
}
(*tridivs)[3 * facecounter + 0] = divs1;
(*tridivs)[3 * facecounter + 1] = divs2;
(*tridivs)[3 * facecounter + 2] = divs3;
// TODO quad case
if(faces[i].v4)
{
divs1=0, divs2=0, divs3=0;
facecounter++;
VECCOPY(p0, verts[faces[i].v3].co);
mul_m4_v3(ob->obmat, p0);
VECCOPY(p1, verts[faces[i].v4].co);
mul_m4_v3(ob->obmat, p1);
VECCOPY(p2, verts[faces[i].v1].co);
mul_m4_v3(ob->obmat, p2);
VECSUB(side1, p1, p0);
VECSUB(side2, p2, p0);
VECSUB(side3, p1, p2);
if(INPR(side1, side1) > fsTri*fsTri)
{
float tmp = normalize_v3(side1);
divs1 = (int)ceil(tmp/fsTri);
}
if(INPR(side2, side2) > fsTri*fsTri)
{
float tmp = normalize_v3(side2);
divs2 = (int)ceil(tmp/fsTri);
}
(*tridivs)[3 * facecounter + 0] = divs1;
(*tridivs)[3 * facecounter + 1] = divs2;
(*tridivs)[3 * facecounter + 2] = divs3;
}
facecounter++;
}
}
static void smokeModifier_freeDomain(SmokeModifierData *smd)
{
if(smd->domain)
{
if(smd->domain->shadow)
MEM_freeN(smd->domain->shadow);
smd->domain->shadow = NULL;
if(smd->domain->fluid)
smoke_free(smd->domain->fluid);
if(smd->domain->wt)
smoke_turbulence_free(smd->domain->wt);
if(smd->domain->effector_weights)
MEM_freeN(smd->domain->effector_weights);
smd->domain->effector_weights = NULL;
BKE_ptcache_free_list(&(smd->domain->ptcaches[0]));
smd->domain->point_cache[0] = NULL;
MEM_freeN(smd->domain);
smd->domain = NULL;
}
}
static void smokeModifier_freeFlow(SmokeModifierData *smd)
{
if(smd->flow)
{
/*
if(smd->flow->bvh)
{
free_bvhtree_from_mesh(smd->flow->bvh);
MEM_freeN(smd->flow->bvh);
}
smd->flow->bvh = NULL;
*/
MEM_freeN(smd->flow);
smd->flow = NULL;
}
}
static void smokeModifier_freeCollision(SmokeModifierData *smd)
{
if(smd->coll)
{
if(smd->coll->points)
{
MEM_freeN(smd->coll->points);
smd->coll->points = NULL;
}
if(smd->coll->bvhtree)
{
BLI_bvhtree_free(smd->coll->bvhtree);
smd->coll->bvhtree = NULL;
}
if(smd->coll->dm)
smd->coll->dm->release(smd->coll->dm);
smd->coll->dm = NULL;
MEM_freeN(smd->coll);
smd->coll = NULL;
}
}
void smokeModifier_reset_turbulence(struct SmokeModifierData *smd)
{
if(smd && smd->domain && smd->domain->wt)
{
smoke_turbulence_free(smd->domain->wt);
smd->domain->wt = NULL;
}
}
void smokeModifier_reset(struct SmokeModifierData *smd)
{
if(smd)
{
if(smd->domain)
{
if(smd->domain->shadow)
MEM_freeN(smd->domain->shadow);
smd->domain->shadow = NULL;
if(smd->domain->fluid)
{
smoke_free(smd->domain->fluid);
smd->domain->fluid = NULL;
}
smokeModifier_reset_turbulence(smd);
smd->time = -1;
// printf("reset domain end\n");
}
else if(smd->flow)
{
/*
if(smd->flow->bvh)
{
free_bvhtree_from_mesh(smd->flow->bvh);
MEM_freeN(smd->flow->bvh);
}
smd->flow->bvh = NULL;
*/
}
else if(smd->coll)
{
if(smd->coll->points)
{
MEM_freeN(smd->coll->points);
smd->coll->points = NULL;
}
if(smd->coll->bvhtree)
{
BLI_bvhtree_free(smd->coll->bvhtree);
smd->coll->bvhtree = NULL;
}
if(smd->coll->dm)
smd->coll->dm->release(smd->coll->dm);
smd->coll->dm = NULL;
}
}
}
void smokeModifier_free (SmokeModifierData *smd)
{
if(smd)
{
smokeModifier_freeDomain(smd);
smokeModifier_freeFlow(smd);
smokeModifier_freeCollision(smd);
}
}
void smokeModifier_createType(struct SmokeModifierData *smd)
{
if(smd)
{
if(smd->type & MOD_SMOKE_TYPE_DOMAIN)
{
if(smd->domain)
smokeModifier_freeDomain(smd);
smd->domain = MEM_callocN(sizeof(SmokeDomainSettings), "SmokeDomain");
smd->domain->smd = smd;
smd->domain->point_cache[0] = BKE_ptcache_add(&(smd->domain->ptcaches[0]));
smd->domain->point_cache[0]->flag |= PTCACHE_DISK_CACHE;
smd->domain->point_cache[0]->step = 1;
/* Deprecated */
smd->domain->point_cache[1] = NULL;
smd->domain->ptcaches[1].first = smd->domain->ptcaches[1].last = NULL;
/* set some standard values */
smd->domain->fluid = NULL;
smd->domain->wt = NULL;
smd->domain->eff_group = NULL;
smd->domain->fluid_group = NULL;
smd->domain->coll_group = NULL;
smd->domain->maxres = 32;
smd->domain->amplify = 1;
smd->domain->omega = 1.0;
smd->domain->alpha = -0.001;
smd->domain->beta = 0.1;
smd->domain->time_scale = 1.0;
smd->domain->vorticity = 2.0;
smd->domain->border_collisions = 1; // vertically non-colliding
smd->domain->flags = MOD_SMOKE_DISSOLVE_LOG | MOD_SMOKE_HIGH_SMOOTH;
smd->domain->strength = 2.0;
smd->domain->noise = MOD_SMOKE_NOISEWAVE;
smd->domain->diss_speed = 5;
// init 3dview buffer
smd->domain->viewsettings = MOD_SMOKE_VIEW_SHOWBIG;
smd->domain->effector_weights = BKE_add_effector_weights(NULL);
}
else if(smd->type & MOD_SMOKE_TYPE_FLOW)
{
if(smd->flow)
smokeModifier_freeFlow(smd);
smd->flow = MEM_callocN(sizeof(SmokeFlowSettings), "SmokeFlow");
smd->flow->smd = smd;
/* set some standard values */
smd->flow->density = 1.0;
smd->flow->temp = 1.0;
smd->flow->flags = MOD_SMOKE_FLOW_ABSOLUTE;
smd->flow->vel_multi = 1.0;
smd->flow->psys = NULL;
}
else if(smd->type & MOD_SMOKE_TYPE_COLL)
{
if(smd->coll)
smokeModifier_freeCollision(smd);
smd->coll = MEM_callocN(sizeof(SmokeCollSettings), "SmokeColl");
smd->coll->smd = smd;
smd->coll->points = NULL;
smd->coll->numpoints = 0;
smd->coll->bvhtree = NULL;
smd->coll->dm = NULL;
}
}
}
void smokeModifier_copy(struct SmokeModifierData *smd, struct SmokeModifierData *tsmd)
{
tsmd->type = smd->type;
tsmd->time = smd->time;
smokeModifier_createType(tsmd);
if (tsmd->domain) {
tsmd->domain->maxres = smd->domain->maxres;
tsmd->domain->amplify = smd->domain->amplify;
tsmd->domain->omega = smd->domain->omega;
tsmd->domain->alpha = smd->domain->alpha;
tsmd->domain->beta = smd->domain->beta;
tsmd->domain->flags = smd->domain->flags;
tsmd->domain->strength = smd->domain->strength;
tsmd->domain->noise = smd->domain->noise;
tsmd->domain->diss_speed = smd->domain->diss_speed;
tsmd->domain->viewsettings = smd->domain->viewsettings;
tsmd->domain->fluid_group = smd->domain->fluid_group;
tsmd->domain->coll_group = smd->domain->coll_group;
tsmd->domain->vorticity = smd->domain->vorticity;
tsmd->domain->time_scale = smd->domain->time_scale;
tsmd->domain->border_collisions = smd->domain->border_collisions;
MEM_freeN(tsmd->domain->effector_weights);
tsmd->domain->effector_weights = MEM_dupallocN(smd->domain->effector_weights);
} else if (tsmd->flow) {
tsmd->flow->density = smd->flow->density;
tsmd->flow->temp = smd->flow->temp;
tsmd->flow->psys = smd->flow->psys;
tsmd->flow->type = smd->flow->type;
tsmd->flow->flags = smd->flow->flags;
tsmd->flow->vel_multi = smd->flow->vel_multi;
} else if (tsmd->coll) {
;
/* leave it as initialised, collision settings is mostly caches */
}
}
// forward decleration
static void smoke_calc_transparency(float *result, float *input, float *p0, float *p1, int res[3], float dx, float *light, bresenham_callback cb, float correct);
static float calc_voxel_transp(float *result, float *input, int res[3], int *pixel, float *tRay, float correct);
#ifdef WITH_SMOKE
static int get_lamp(Scene *scene, float *light)
{
Base *base_tmp = NULL;
int found_lamp = 0;
// try to find a lamp, preferably local
for(base_tmp = scene->base.first; base_tmp; base_tmp= base_tmp->next) {
if(base_tmp->object->type == OB_LAMP) {
Lamp *la = base_tmp->object->data;
if(la->type == LA_LOCAL) {
copy_v3_v3(light, base_tmp->object->obmat[3]);
return 1;
}
else if(!found_lamp) {
copy_v3_v3(light, base_tmp->object->obmat[3]);
found_lamp = 1;
}
}
}
return found_lamp;
}
static void smoke_calc_domain(Scene *scene, Object *ob, SmokeModifierData *smd)
{
SmokeDomainSettings *sds = smd->domain;
GroupObject *go = NULL;
Base *base = NULL;
// do collisions, needs to be done before emission, so that smoke isn't emitted inside collision cells
if(1)
{
Object *otherobj = NULL;
ModifierData *md = NULL;
if(sds->coll_group) // we use groups since we have 2 domains
go = sds->coll_group->gobject.first;
else
base = scene->base.first;
while(base || go)
{
otherobj = NULL;
if(sds->coll_group)
{
if(go->ob)
otherobj = go->ob;
}
else
otherobj = base->object;
if(!otherobj)
{
if(sds->coll_group)
go = go->next;
else
base= base->next;
continue;
}
md = modifiers_findByType(otherobj, eModifierType_Smoke);
// check for active smoke modifier
if(md && md->mode & (eModifierMode_Realtime | eModifierMode_Render))
{
SmokeModifierData *smd2 = (SmokeModifierData *)md;
if((smd2->type & MOD_SMOKE_TYPE_COLL) && smd2->coll && smd2->coll->points)
{
// we got nice collision object
SmokeCollSettings *scs = smd2->coll;
size_t i, j;
unsigned char *obstacles = smoke_get_obstacle(smd->domain->fluid);
for(i = 0; i < scs->numpoints; i++)
{
int badcell = 0;
size_t index = 0;
int cell[3];
// 1. get corresponding cell
get_cell(smd->domain->p0, smd->domain->res, smd->domain->dx, &scs->points[3 * i], cell, 0);
// check if cell is valid (in the domain boundary)
for(j = 0; j < 3; j++)
if((cell[j] > sds->res[j] - 1) || (cell[j] < 0))
{
badcell = 1;
break;
}
if(badcell)
continue;
// 2. set cell values (heat, density and velocity)
index = smoke_get_index(cell[0], sds->res[0], cell[1], sds->res[1], cell[2]);
// printf("cell[0]: %d, cell[1]: %d, cell[2]: %d\n", cell[0], cell[1], cell[2]);
// printf("res[0]: %d, res[1]: %d, res[2]: %d, index: %d\n\n", sds->res[0], sds->res[1], sds->res[2], index);
obstacles[index] = 1;
// for moving gobstacles
/*
const LbmFloat maxVelVal = 0.1666;
const LbmFloat maxusqr = maxVelVal*maxVelVal*3. *1.5;
LbmVec objvel = vec2L((mMOIVertices[n]-mMOIVerticesOld[n]) /dvec);
{
const LbmFloat usqr = (objvel[0]*objvel[0]+objvel[1]*objvel[1]+objvel[2]*objvel[2])*1.5;
USQRMAXCHECK(usqr, objvel[0],objvel[1],objvel[2], mMaxVlen, mMxvx,mMxvy,mMxvz);
if(usqr>maxusqr) {
// cutoff at maxVelVal
for(int jj=0; jj<3; jj++) {
if(objvel[jj]>0.) objvel[jj] = maxVelVal;
if(objvel[jj]<0.) objvel[jj] = -maxVelVal;
}
}
}
const LbmFloat dp=dot(objvel, vec2L((*pNormals)[n]) );
const LbmVec oldov=objvel; // debug
objvel = vec2L((*pNormals)[n]) *dp;
*/
}
}
}
if(sds->coll_group)
go = go->next;
else
base= base->next;
}
}
// do flows and fluids
if(1)
{
Object *otherobj = NULL;
ModifierData *md = NULL;
if(sds->fluid_group) // we use groups since we have 2 domains
go = sds->fluid_group->gobject.first;
else
base = scene->base.first;
while(base || go)
{
otherobj = NULL;
if(sds->fluid_group)
{
if(go->ob)
otherobj = go->ob;
}
else
otherobj = base->object;
if(!otherobj)
{
if(sds->fluid_group)
go = go->next;
else
base= base->next;
continue;
}
md = modifiers_findByType(otherobj, eModifierType_Smoke);
// check for active smoke modifier
if(md && md->mode & (eModifierMode_Realtime | eModifierMode_Render))
{
SmokeModifierData *smd2 = (SmokeModifierData *)md;
// check for initialized smoke object
if((smd2->type & MOD_SMOKE_TYPE_FLOW) && smd2->flow)
{
// we got nice flow object
SmokeFlowSettings *sfs = smd2->flow;
if(sfs && sfs->psys && sfs->psys->part && sfs->psys->part->type==PART_EMITTER) // is particle system selected
{
ParticleSimulationData sim;
ParticleSystem *psys = sfs->psys;
int p = 0;
float *density = smoke_get_density(sds->fluid);
float *bigdensity = smoke_turbulence_get_density(sds->wt);
float *heat = smoke_get_heat(sds->fluid);
float *velocity_x = smoke_get_velocity_x(sds->fluid);
float *velocity_y = smoke_get_velocity_y(sds->fluid);
float *velocity_z = smoke_get_velocity_z(sds->fluid);
unsigned char *obstacle = smoke_get_obstacle(sds->fluid);
int bigres[3];
short absolute_flow = (sfs->flags & MOD_SMOKE_FLOW_ABSOLUTE);
short high_emission_smoothing = bigdensity ? (smd->domain->flags & MOD_SMOKE_HIGH_SMOOTH) : 0;
/*
* A temporary volume map used to store whole emissive
* area to be added to smoke density and interpolated
* for high resolution smoke.
*/
float *temp_emission_map = NULL;
sim.scene = scene;
sim.ob = otherobj;
sim.psys = psys;
// initialize temp emission map
if(!(sfs->type & MOD_SMOKE_FLOW_TYPE_OUTFLOW))
{
int i;
temp_emission_map = MEM_callocN(sizeof(float) * sds->res[0]*sds->res[1]*sds->res[2], "SmokeTempEmission");
// set whole volume to 0.0f
for (i=0; i<sds->res[0]*sds->res[1]*sds->res[2]; i++) {
temp_emission_map[i] = 0.0f;
}
}
// mostly copied from particle code
for(p=0; p<psys->totpart; p++)
{
int cell[3];
size_t i = 0;
size_t index = 0;
int badcell = 0;
ParticleKey state;
if(psys->particles[p].flag & (PARS_NO_DISP|PARS_UNEXIST))
continue;
state.time = smd->time;
if(psys_get_particle_state(&sim, p, &state, 0) == 0)
continue;
// VECCOPY(pos, pa->state.co);
// mul_m4_v3(ob->imat, pos);
// 1. get corresponding cell
get_cell(smd->domain->p0, smd->domain->res, smd->domain->dx, state.co, cell, 0);
// check if cell is valid (in the domain boundary)
for(i = 0; i < 3; i++)
{
if((cell[i] > sds->res[i] - 1) || (cell[i] < 0))
{
badcell = 1;
break;
}
}
if(badcell)
continue;
// 2. set cell values (heat, density and velocity)
index = smoke_get_index(cell[0], sds->res[0], cell[1], sds->res[1], cell[2]);
if(!(sfs->type & MOD_SMOKE_FLOW_TYPE_OUTFLOW) && !(obstacle[index])) // this is inflow
{
// heat[index] += sfs->temp * 0.1;
// density[index] += sfs->density * 0.1;
heat[index] = sfs->temp;
// Add emitter density to temp emission map
temp_emission_map[index] = sfs->density;
// Uses particle velocity as initial velocity for smoke
if(sfs->flags & MOD_SMOKE_FLOW_INITVELOCITY && (psys->part->phystype != PART_PHYS_NO))
{
velocity_x[index] = state.vel[0]*sfs->vel_multi;
velocity_y[index] = state.vel[1]*sfs->vel_multi;
velocity_z[index] = state.vel[2]*sfs->vel_multi;
}
}
else if(sfs->type & MOD_SMOKE_FLOW_TYPE_OUTFLOW) // outflow
{
heat[index] = 0.f;
density[index] = 0.f;
velocity_x[index] = 0.f;
velocity_y[index] = 0.f;
velocity_z[index] = 0.f;
// we need different handling for the high-res feature
if(bigdensity)
{
// init all surrounding cells according to amplification, too
int i, j, k;
smoke_turbulence_get_res(smd->domain->wt, bigres);
for(i = 0; i < smd->domain->amplify + 1; i++)
for(j = 0; j < smd->domain->amplify + 1; j++)
for(k = 0; k < smd->domain->amplify + 1; k++)
{
index = smoke_get_index((smd->domain->amplify + 1)* cell[0] + i, bigres[0], (smd->domain->amplify + 1)* cell[1] + j, bigres[1], (smd->domain->amplify + 1)* cell[2] + k);
bigdensity[index] = 0.f;
}
}
}
} // particles loop
// apply emission values
if(!(sfs->type & MOD_SMOKE_FLOW_TYPE_OUTFLOW)) {
// initialize variables
int ii, jj, kk, x, y, z, block_size;
size_t index, index_big;
smoke_turbulence_get_res(smd->domain->wt, bigres);
block_size = smd->domain->amplify + 1; // high res block size
// loop through every low res cell
for(x = 0; x < sds->res[0]; x++)
for(y = 0; y < sds->res[1]; y++)
for(z = 0; z < sds->res[2]; z++)
{
// neighbour cell emission densities (for high resolution smoke smooth interpolation)
float c000, c001, c010, c011, c100, c101, c110, c111;
c000 = (x>0 && y>0 && z>0) ? temp_emission_map[smoke_get_index(x-1, sds->res[0], y-1, sds->res[1], z-1)] : 0;
c001 = (x>0 && y>0) ? temp_emission_map[smoke_get_index(x-1, sds->res[0], y-1, sds->res[1], z)] : 0;
c010 = (x>0 && z>0) ? temp_emission_map[smoke_get_index(x-1, sds->res[0], y, sds->res[1], z-1)] : 0;
c011 = (x>0) ? temp_emission_map[smoke_get_index(x-1, sds->res[0], y, sds->res[1], z)] : 0;
c100 = (y>0 && z>0) ? temp_emission_map[smoke_get_index(x, sds->res[0], y-1, sds->res[1], z-1)] : 0;
c101 = (y>0) ? temp_emission_map[smoke_get_index(x, sds->res[0], y-1, sds->res[1], z)] : 0;
c110 = (z>0) ? temp_emission_map[smoke_get_index(x, sds->res[0], y, sds->res[1], z-1)] : 0;
c111 = temp_emission_map[smoke_get_index(x, sds->res[0], y, sds->res[1], z)]; // this cell
// get cell index
index = smoke_get_index(x, sds->res[0], y, sds->res[1], z);
// add emission to low resolution density
if (absolute_flow) {if (temp_emission_map[index]>0) density[index] = temp_emission_map[index];}
else {
density[index] += temp_emission_map[index];
if (density[index]>1) density[index]=1.0f;
}
smoke_turbulence_get_res(smd->domain->wt, bigres);
/*
loop through high res blocks if high res enabled
*/
if (bigdensity)
for(ii = 0; ii < block_size; ii++)
for(jj = 0; jj < block_size; jj++)
for(kk = 0; kk < block_size; kk++)
{
float fx,fy,fz, interpolated_value;
int shift_x, shift_y, shift_z;
/*
* Do volume interpolation if emitter smoothing
* is enabled
*/
if (high_emission_smoothing) {
// convert block position to relative
// for interpolation smoothing
fx = (float)ii/block_size + 0.5f/block_size;
fy = (float)jj/block_size + 0.5f/block_size;
fz = (float)kk/block_size + 0.5f/block_size;
// calculate trilinear interpolation
interpolated_value = c000 * (1-fx) * (1-fy) * (1-fz) +
c100 * fx * (1-fy) * (1-fz) +
c010 * (1-fx) * fy * (1-fz) +
c001 * (1-fx) * (1-fy) * fz +
c101 * fx * (1-fy) * fz +
c011 * (1-fx) * fy * fz +
c110 * fx * fy * (1-fz) +
c111 * fx * fy * fz;
// add some contrast / sharpness
// depending on hi-res block size
interpolated_value = (interpolated_value-0.4f*sfs->density)*(block_size/2) + 0.4f*sfs->density;
if (interpolated_value<0.0f) interpolated_value = 0.0f;
if (interpolated_value>1.0f) interpolated_value = 1.0f;
// shift smoke block index
// (because pixel center is actually
// in halfway of the low res block)
shift_x = (x < 1) ? 0 : block_size/2;
shift_y = (y < 1) ? 0 : block_size/2;
shift_z = (z < 1) ? 0 : block_size/2;
}
else {
// without interpolation use same low resolution
// block value for all hi-res blocks
interpolated_value = c111;
shift_x = 0;
shift_y = 0;
shift_z = 0;
}
// get shifted index for current high resolution block
index_big = smoke_get_index(block_size * x + ii - shift_x, bigres[0], block_size * y + jj - shift_y, bigres[1], block_size * z + kk - shift_z);
// add emission data to high resolution density
if (absolute_flow) {if (interpolated_value > 0) bigdensity[index_big] = interpolated_value;}
else {
bigdensity[index_big] += interpolated_value;
if (bigdensity[index_big]>1) bigdensity[index_big]=1.0f;
}
} // end of hires loop
} // end of low res loop
// free temporary emission map
if (temp_emission_map) MEM_freeN(temp_emission_map);
} // end emission
}
else
{
/*
for()
{
// no psys
BVHTreeNearest nearest;
nearest.index = -1;
nearest.dist = FLT_MAX;
BLI_bvhtree_find_nearest(sfs->bvh->tree, pco, &nearest, sfs->bvh->nearest_callback, sfs->bvh);
}*/
}
}
}
if(sds->fluid_group)
go = go->next;
else
base= base->next;
}
}
// do effectors
{
ListBase *effectors = pdInitEffectors(scene, ob, NULL, sds->effector_weights);
if(effectors)
{
float *density = smoke_get_density(sds->fluid);
float *force_x = smoke_get_force_x(sds->fluid);
float *force_y = smoke_get_force_y(sds->fluid);
float *force_z = smoke_get_force_z(sds->fluid);
float *velocity_x = smoke_get_velocity_x(sds->fluid);
float *velocity_y = smoke_get_velocity_y(sds->fluid);
float *velocity_z = smoke_get_velocity_z(sds->fluid);
int x, y, z;
// precalculate wind forces
for(x = 0; x < sds->res[0]; x++)
for(y = 0; y < sds->res[1]; y++)
for(z = 0; z < sds->res[2]; z++)
{
EffectedPoint epoint;
float voxelCenter[3] = {0,0,0} , vel[3] = {0,0,0} , retvel[3] = {0,0,0};
unsigned int index = smoke_get_index(x, sds->res[0], y, sds->res[1], z);
if(density[index] < FLT_EPSILON)
continue;
vel[0] = velocity_x[index];
vel[1] = velocity_y[index];
vel[2] = velocity_z[index];
voxelCenter[0] = sds->p0[0] + sds->dx * x + sds->dx * 0.5;
voxelCenter[1] = sds->p0[1] + sds->dx * y + sds->dx * 0.5;
voxelCenter[2] = sds->p0[2] + sds->dx * z + sds->dx * 0.5;
pd_point_from_loc(scene, voxelCenter, vel, index, &epoint);
pdDoEffectors(effectors, NULL, sds->effector_weights, &epoint, retvel, NULL);
// TODO dg - do in force!
force_x[index] = MIN2(MAX2(-1.0, retvel[0] * 0.2), 1.0);
force_y[index] = MIN2(MAX2(-1.0, retvel[1] * 0.2), 1.0);
force_z[index] = MIN2(MAX2(-1.0, retvel[2] * 0.2), 1.0);
}
}
pdEndEffectors(&effectors);
}
}
void smokeModifier_do(SmokeModifierData *smd, Scene *scene, Object *ob, DerivedMesh *dm)
{
if((smd->type & MOD_SMOKE_TYPE_FLOW))
{
if(scene->r.cfra >= smd->time)
smokeModifier_init(smd, ob, scene, dm);
if(scene->r.cfra > smd->time)
{
// XXX TODO
smd->time = scene->r.cfra;
// rigid movement support
/*
copy_m4_m4(smd->flow->mat_old, smd->flow->mat);
copy_m4_m4(smd->flow->mat, ob->obmat);
*/
}
else if(scene->r.cfra < smd->time)
{
smd->time = scene->r.cfra;
smokeModifier_reset(smd);
}
}
else if(smd->type & MOD_SMOKE_TYPE_COLL)
{
if(scene->r.cfra >= smd->time)
smokeModifier_init(smd, ob, scene, dm);
if(scene->r.cfra > smd->time)
{
// XXX TODO
smd->time = scene->r.cfra;
if(smd->coll->dm)
smd->coll->dm->release(smd->coll->dm);
smd->coll->dm = CDDM_copy(dm);
// rigid movement support
copy_m4_m4(smd->coll->mat_old, smd->coll->mat);
copy_m4_m4(smd->coll->mat, ob->obmat);
}
else if(scene->r.cfra < smd->time)
{
smd->time = scene->r.cfra;
smokeModifier_reset(smd);
}
}
else if(smd->type & MOD_SMOKE_TYPE_DOMAIN)
{
SmokeDomainSettings *sds = smd->domain;
float light[3];
PointCache *cache = NULL;
PTCacheID pid;
int startframe, endframe, framenr;
float timescale;
framenr = scene->r.cfra;
//printf("time: %d\n", scene->r.cfra);
cache = sds->point_cache[0];
BKE_ptcache_id_from_smoke(&pid, ob, smd);
BKE_ptcache_id_time(&pid, scene, framenr, &startframe, &endframe, &timescale);
if(!smd->domain->fluid || framenr == startframe)
{
BKE_ptcache_id_reset(scene, &pid, PTCACHE_RESET_OUTDATED);
BKE_ptcache_validate(cache, framenr);
cache->flag &= ~PTCACHE_REDO_NEEDED;
}
if(!smd->domain->fluid && (framenr != startframe) && (smd->domain->flags & MOD_SMOKE_FILE_LOAD)==0 && (cache->flag & PTCACHE_BAKED)==0)
return;
smd->domain->flags &= ~MOD_SMOKE_FILE_LOAD;
CLAMP(framenr, startframe, endframe);
/* If already viewing a pre/after frame, no need to reload */
if ((smd->time == framenr) && (framenr != scene->r.cfra))
return;
// printf("startframe: %d, framenr: %d\n", startframe, framenr);
if(smokeModifier_init(smd, ob, scene, dm)==0)
{
printf("bad smokeModifier_init\n");
return;
}
/* try to read from cache */
if(BKE_ptcache_read(&pid, (float)framenr) == PTCACHE_READ_EXACT) {
BKE_ptcache_validate(cache, framenr);
smd->time = framenr;
return;
}
/* only calculate something when we advanced a single frame */
if(framenr != (int)smd->time+1)
return;
/* don't simulate if viewing start frame, but scene frame is not real start frame */
if (framenr != scene->r.cfra)
return;
tstart();
smoke_calc_domain(scene, ob, smd);
/* if on second frame, write cache for first frame */
if((int)smd->time == startframe && (cache->flag & PTCACHE_OUTDATED || cache->last_exact==0)) {
// create shadows straight after domain initialization so we get nice shadows for startframe, too
if(get_lamp(scene, light))
smoke_calc_transparency(sds->shadow, smoke_get_density(sds->fluid), sds->p0, sds->p1, sds->res, sds->dx, light, calc_voxel_transp, -7.0*sds->dx);
if(sds->wt)
{
if(sds->flags & MOD_SMOKE_DISSOLVE)
smoke_dissolve_wavelet(sds->wt, sds->diss_speed, sds->flags & MOD_SMOKE_DISSOLVE_LOG);
smoke_turbulence_step(sds->wt, sds->fluid);
}
BKE_ptcache_write(&pid, startframe);
}
// set new time
smd->time = scene->r.cfra;
/* do simulation */
// low res
// simulate the actual smoke (c++ code in intern/smoke)
// DG: interesting commenting this line + deactivating loading of noise files
if(framenr!=startframe)
{
if(sds->flags & MOD_SMOKE_DISSOLVE)
smoke_dissolve(sds->fluid, sds->diss_speed, sds->flags & MOD_SMOKE_DISSOLVE_LOG);
smoke_step(sds->fluid, smd->time, scene->r.frs_sec / scene->r.frs_sec_base);
}
// create shadows before writing cache so they get stored
if(get_lamp(scene, light))
smoke_calc_transparency(sds->shadow, smoke_get_density(sds->fluid), sds->p0, sds->p1, sds->res, sds->dx, light, calc_voxel_transp, -7.0*sds->dx);
if(sds->wt)
{
if(sds->flags & MOD_SMOKE_DISSOLVE)
smoke_dissolve_wavelet(sds->wt, sds->diss_speed, sds->flags & MOD_SMOKE_DISSOLVE_LOG);
smoke_turbulence_step(sds->wt, sds->fluid);
}
BKE_ptcache_validate(cache, framenr);
if(framenr != startframe)
BKE_ptcache_write(&pid, framenr);
tend();
//printf ( "Frame: %d, Time: %f\n", (int)smd->time, ( float ) tval() );
}
}
static float calc_voxel_transp(float *result, float *input, int res[3], int *pixel, float *tRay, float correct)
{
const size_t index = smoke_get_index(pixel[0], res[0], pixel[1], res[1], pixel[2]);
// T_ray *= T_vox
*tRay *= exp(input[index]*correct);
if(result[index] < 0.0f)
{
#pragma omp critical
result[index] = *tRay;
}
return *tRay;
}
long long smoke_get_mem_req(int xres, int yres, int zres, int amplify)
{
int totalCells = xres * yres * zres;
int amplifiedCells = totalCells * amplify * amplify * amplify;
// print out memory requirements
long long int coarseSize = sizeof(float) * totalCells * 22 +
sizeof(unsigned char) * totalCells;
long long int fineSize = sizeof(float) * amplifiedCells * 7 + // big grids
sizeof(float) * totalCells * 8 + // small grids
sizeof(float) * 128 * 128 * 128; // noise tile
long long int totalMB = (coarseSize + fineSize) / (1024 * 1024);
return totalMB;
}
static void bresenham_linie_3D(int x1, int y1, int z1, int x2, int y2, int z2, float *tRay, bresenham_callback cb, float *result, float *input, int res[3], float correct)
{
int dx, dy, dz, i, l, m, n, x_inc, y_inc, z_inc, err_1, err_2, dx2, dy2, dz2;
int pixel[3];
pixel[0] = x1;
pixel[1] = y1;
pixel[2] = z1;
dx = x2 - x1;
dy = y2 - y1;
dz = z2 - z1;
x_inc = (dx < 0) ? -1 : 1;
l = abs(dx);
y_inc = (dy < 0) ? -1 : 1;
m = abs(dy);
z_inc = (dz < 0) ? -1 : 1;
n = abs(dz);
dx2 = l << 1;
dy2 = m << 1;
dz2 = n << 1;
if ((l >= m) && (l >= n)) {
err_1 = dy2 - l;
err_2 = dz2 - l;
for (i = 0; i < l; i++) {
if(cb(result, input, res, pixel, tRay, correct) <= FLT_EPSILON)
break;
if (err_1 > 0) {
pixel[1] += y_inc;
err_1 -= dx2;
}
if (err_2 > 0) {
pixel[2] += z_inc;
err_2 -= dx2;
}
err_1 += dy2;
err_2 += dz2;
pixel[0] += x_inc;
}
} else if ((m >= l) && (m >= n)) {
err_1 = dx2 - m;
err_2 = dz2 - m;
for (i = 0; i < m; i++) {
if(cb(result, input, res, pixel, tRay, correct) <= FLT_EPSILON)
break;
if (err_1 > 0) {
pixel[0] += x_inc;
err_1 -= dy2;
}
if (err_2 > 0) {
pixel[2] += z_inc;
err_2 -= dy2;
}
err_1 += dx2;
err_2 += dz2;
pixel[1] += y_inc;
}
} else {
err_1 = dy2 - n;
err_2 = dx2 - n;
for (i = 0; i < n; i++) {
if(cb(result, input, res, pixel, tRay, correct) <= FLT_EPSILON)
break;
if (err_1 > 0) {
pixel[1] += y_inc;
err_1 -= dz2;
}
if (err_2 > 0) {
pixel[0] += x_inc;
err_2 -= dz2;
}
err_1 += dy2;
err_2 += dx2;
pixel[2] += z_inc;
}
}
cb(result, input, res, pixel, tRay, correct);
}
static void get_cell(float *p0, int res[3], float dx, float *pos, int *cell, int correct)
{
float tmp[3];
VECSUB(tmp, pos, p0);
mul_v3_fl(tmp, 1.0 / dx);
if(correct)
{
cell[0] = MIN2(res[0] - 1, MAX2(0, (int)floor(tmp[0])));
cell[1] = MIN2(res[1] - 1, MAX2(0, (int)floor(tmp[1])));
cell[2] = MIN2(res[2] - 1, MAX2(0, (int)floor(tmp[2])));
}
else
{
cell[0] = (int)floor(tmp[0]);
cell[1] = (int)floor(tmp[1]);
cell[2] = (int)floor(tmp[2]);
}
}
static void smoke_calc_transparency(float *result, float *input, float *p0, float *p1, int res[3], float dx, float *light, bresenham_callback cb, float correct)
{
float bv[6];
int a, z, slabsize=res[0]*res[1], size= res[0]*res[1]*res[2];
for(a=0; a<size; a++)
result[a]= -1.0f;
bv[0] = p0[0];
bv[1] = p1[0];
// y
bv[2] = p0[1];
bv[3] = p1[1];
// z
bv[4] = p0[2];
bv[5] = p1[2];
#pragma omp parallel for schedule(static,1)
for(z = 0; z < res[2]; z++)
{
size_t index = z*slabsize;
int x,y;
for(y = 0; y < res[1]; y++)
for(x = 0; x < res[0]; x++, index++)
{
float voxelCenter[3];
float pos[3];
int cell[3];
float tRay = 1.0;
if(result[index] >= 0.0f)
continue;
voxelCenter[0] = p0[0] + dx * x + dx * 0.5;
voxelCenter[1] = p0[1] + dx * y + dx * 0.5;
voxelCenter[2] = p0[2] + dx * z + dx * 0.5;
// get starting position (in voxel coords)
if(BLI_bvhtree_bb_raycast(bv, light, voxelCenter, pos) > FLT_EPSILON)
{
// we're ouside
get_cell(p0, res, dx, pos, cell, 1);
}
else
{
// we're inside
get_cell(p0, res, dx, light, cell, 1);
}
bresenham_linie_3D(cell[0], cell[1], cell[2], x, y, z, &tRay, cb, result, input, res, correct);
// convention -> from a RGBA float array, use G value for tRay
// #pragma omp critical
result[index] = tRay;
}
}
}
#endif // WITH_SMOKE