
This support layout.separator_spacer() to be used by headers as a way to dynamically separate the ui buttons. Right now no UI file is changed, though we can use this right away in the timeline, and shortly after in the viewport header (moving settings from the topbar to it). Original design by William Reynish. Review: Campbell Barton D3468
690 lines
22 KiB
C
690 lines
22 KiB
C
/*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2015 by Blender Foundation.
|
|
* All rights reserved.
|
|
*
|
|
* Contributor(s): Blender Foundation 2002-2008, full recode.
|
|
* Bastien Montagne 2015, full recode.
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
/** \file blender/editors/interface/interface_align.c
|
|
* \ingroup edinterface
|
|
*/
|
|
|
|
#include "DNA_screen_types.h"
|
|
#include "DNA_userdef_types.h"
|
|
|
|
#include "BLI_alloca.h"
|
|
#include "BLI_math.h"
|
|
#include "BLI_rect.h"
|
|
|
|
#include "UI_interface.h"
|
|
|
|
#include "interface_intern.h"
|
|
|
|
#ifdef USE_UIBUT_SPATIAL_ALIGN
|
|
|
|
/**
|
|
* This struct stores a (simplified) 2D representation of all buttons of a same align group, with their
|
|
* immediate neighbors (if found), and needed value to compute 'stitching' of aligned buttons.
|
|
*
|
|
* \note This simplistic struct cannot fully represent complex layouts where buttons share some 'align space' with
|
|
* several others (see schema below), we'd need linked list and more complex code to handle that.
|
|
* However, looks like we can do without that for now, which is rather lucky!
|
|
*
|
|
* <pre>
|
|
* +-----------+-----------+
|
|
* | BUT 1 | BUT 2 | BUT 3 has two 'top' neighbors...
|
|
* |-----------------------| => In practice, we only store one of BUT 1 or 2 (which ones is not
|
|
* | BUT 3 | really deterministic), and assume the other stores a ref to BUT 3.
|
|
* +-----------------------+
|
|
* </pre>
|
|
*
|
|
* This will probably not work in all possible cases, but not sure we want to support such exotic cases anyway.
|
|
*/
|
|
typedef struct ButAlign {
|
|
uiBut *but;
|
|
|
|
/* Neighbor buttons */
|
|
struct ButAlign *neighbors[4];
|
|
|
|
/* Pointers to coordinates (rctf values) of the button. */
|
|
float *borders[4];
|
|
|
|
/* Distances to the neighbors. */
|
|
float dists[4];
|
|
|
|
/* Flags, used to mark whether we should 'stitch' the corners of this button with its neighbors' ones. */
|
|
char flags[4];
|
|
} ButAlign;
|
|
|
|
/* Side-related enums and flags. */
|
|
enum {
|
|
/* Sides (used as indices, order is **crucial**, this allows us to factorize code in a loop over the four sides). */
|
|
LEFT = 0,
|
|
TOP = 1,
|
|
RIGHT = 2,
|
|
DOWN = 3,
|
|
TOTSIDES = 4,
|
|
|
|
/* Stitch flags, built from sides values. */
|
|
STITCH_LEFT = 1 << LEFT,
|
|
STITCH_TOP = 1 << TOP,
|
|
STITCH_RIGHT = 1 << RIGHT,
|
|
STITCH_DOWN = 1 << DOWN,
|
|
};
|
|
|
|
/* Mapping between 'our' sides and 'public' UI_BUT_ALIGN flags, order must match enum above. */
|
|
#define SIDE_TO_UI_BUT_ALIGN {UI_BUT_ALIGN_LEFT, UI_BUT_ALIGN_TOP, UI_BUT_ALIGN_RIGHT, UI_BUT_ALIGN_DOWN}
|
|
|
|
/* Given one side, compute the three other ones */
|
|
#define SIDE1(_s) (((_s) + 1) % TOTSIDES)
|
|
#define OPPOSITE(_s) (((_s) + 2) % TOTSIDES)
|
|
#define SIDE2(_s) (((_s) + 3) % TOTSIDES)
|
|
|
|
/* 0: LEFT/RIGHT sides; 1 = TOP/DOWN sides. */
|
|
#define IS_COLUMN(_s) ((_s) % 2)
|
|
|
|
/* Stitch flag from side value. */
|
|
#define STITCH(_s) (1 << (_s))
|
|
|
|
/* Max distance between to buttons for them to be 'mergeable'. */
|
|
#define MAX_DELTA 0.45f * max_ii(UI_UNIT_Y, UI_UNIT_X)
|
|
|
|
bool ui_but_can_align(const uiBut *but)
|
|
{
|
|
const bool btype_can_align = !ELEM(but->type, UI_BTYPE_LABEL, UI_BTYPE_CHECKBOX, UI_BTYPE_CHECKBOX_N,
|
|
UI_BTYPE_TAB, UI_BTYPE_SEPR, UI_BTYPE_SEPR_LINE, UI_BTYPE_SEPR_SPACER);
|
|
return (btype_can_align && (BLI_rctf_size_x(&but->rect) > 0.0f) && (BLI_rctf_size_y(&but->rect) > 0.0f));
|
|
}
|
|
|
|
/**
|
|
* This function checks a pair of buttons (assumed in a same align group), and if they are neighbors,
|
|
* set needed data accordingly.
|
|
*
|
|
* \note It is designed to be called in total random order of buttons. Order-based optimizations are done by caller.
|
|
*/
|
|
static void block_align_proximity_compute(ButAlign *butal, ButAlign *butal_other)
|
|
{
|
|
/* That's the biggest gap between two borders to consider them 'alignable'. */
|
|
const float max_delta = MAX_DELTA;
|
|
float delta, delta_side_opp;
|
|
int side, side_opp;
|
|
|
|
const bool butal_can_align = ui_but_can_align(butal->but);
|
|
const bool butal_other_can_align = ui_but_can_align(butal_other->but);
|
|
|
|
const bool buts_share[2] = {
|
|
/* Sharing same line? */
|
|
!((*butal->borders[DOWN] >= *butal_other->borders[TOP]) ||
|
|
(*butal->borders[TOP] <= *butal_other->borders[DOWN])),
|
|
/* Sharing same column? */
|
|
!((*butal->borders[LEFT] >= *butal_other->borders[RIGHT]) ||
|
|
(*butal->borders[RIGHT] <= *butal_other->borders[LEFT])),
|
|
};
|
|
|
|
/* Early out in case buttons share no column or line, or if none can align... */
|
|
if (!(buts_share[0] || buts_share[1]) || !(butal_can_align || butal_other_can_align)) {
|
|
return;
|
|
}
|
|
|
|
for (side = 0; side < RIGHT; side++) {
|
|
/* We are only interested in buttons which share a same line (LEFT/RIGHT sides) or column (TOP/DOWN sides). */
|
|
if (buts_share[IS_COLUMN(side)]) {
|
|
side_opp = OPPOSITE(side);
|
|
|
|
/* We check both opposite sides at once, because with very small buttons, delta could be below max_delta for
|
|
* the wrong side (that is, in horizontal case, the total width of two buttons can be below max_delta).
|
|
* We rely on exact zero value here as an 'already processed' flag, so ensure we never actually
|
|
* set a zero value at this stage. FLT_MIN is zero-enough for UI position computing. ;) */
|
|
delta = max_ff(fabsf(*butal->borders[side] - *butal_other->borders[side_opp]), FLT_MIN);
|
|
delta_side_opp = max_ff(fabsf(*butal->borders[side_opp] - *butal_other->borders[side]), FLT_MIN);
|
|
if (delta_side_opp < delta) {
|
|
SWAP(int, side, side_opp);
|
|
delta = delta_side_opp;
|
|
}
|
|
|
|
if (delta < max_delta) {
|
|
/* We are only interested in neighbors that are at least as close as already found ones. */
|
|
if (delta <= butal->dists[side]) {
|
|
{
|
|
/* We found an as close or closer neighbor.
|
|
* If both buttons are alignable, we set them as each other neighbors.
|
|
* Else, we have an unalignable one, we need to reset the others matching neighbor to NULL
|
|
* if its 'proximity distance' is really lower with current one.
|
|
*
|
|
* NOTE: We cannot only execute that piece of code in case we found a **closer** neighbor,
|
|
* due to the limited way we represent neighbors (buttons only know **one** neighbor
|
|
* on each side, when they can actually have several ones), it would prevent
|
|
* some buttons to be properly 'neighborly-initialized'. */
|
|
if (butal_can_align && butal_other_can_align) {
|
|
butal->neighbors[side] = butal_other;
|
|
butal_other->neighbors[side_opp] = butal;
|
|
}
|
|
else if (butal_can_align && (delta < butal->dists[side])) {
|
|
butal->neighbors[side] = NULL;
|
|
}
|
|
else if (butal_other_can_align && (delta < butal_other->dists[side_opp])) {
|
|
butal_other->neighbors[side_opp] = NULL;
|
|
}
|
|
butal->dists[side] = butal_other->dists[side_opp] = delta;
|
|
}
|
|
|
|
if (butal_can_align && butal_other_can_align) {
|
|
const int side_s1 = SIDE1(side);
|
|
const int side_s2 = SIDE2(side);
|
|
|
|
const int stitch = STITCH(side);
|
|
const int stitch_opp = STITCH(side_opp);
|
|
|
|
if (butal->neighbors[side] == NULL) {
|
|
butal->neighbors[side] = butal_other;
|
|
}
|
|
if (butal_other->neighbors[side_opp] == NULL) {
|
|
butal_other->neighbors[side_opp] = butal;
|
|
}
|
|
|
|
/* We have a pair of neighbors, we have to check whether we can stitch their matching corners.
|
|
* E.g. if butal_other is on the left of butal (that is, side == LEFT),
|
|
* if both TOP (side_s1) coordinates of buttons are close enough, we can stitch
|
|
* their upper matching corners, and same for DOWN (side_s2) side. */
|
|
delta = fabsf(*butal->borders[side_s1] - *butal_other->borders[side_s1]);
|
|
if (delta < max_delta) {
|
|
butal->flags[side_s1] |= stitch;
|
|
butal_other->flags[side_s1] |= stitch_opp;
|
|
}
|
|
delta = fabsf(*butal->borders[side_s2] - *butal_other->borders[side_s2]);
|
|
if (delta < max_delta) {
|
|
butal->flags[side_s2] |= stitch;
|
|
butal_other->flags[side_s2] |= stitch_opp;
|
|
}
|
|
}
|
|
}
|
|
/* We assume two buttons can only share one side at most - for until we have sperical UI... */
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This function takes care of case described in this schema:
|
|
*
|
|
* <pre>
|
|
* +-----------+-----------+
|
|
* | BUT 1 | BUT 2 |
|
|
* |-----------------------+
|
|
* | BUT 3 |
|
|
* +-----------+
|
|
* </pre>
|
|
*
|
|
* Here, BUT 3 RIGHT side would not get 'dragged' to align with BUT 1 RIGHT side, since BUT 3 has not RIGHT neighbor.
|
|
* So, this function, when called with BUT 1, will 'walk' the whole column in \a side_s1 direction (TOP or DOWN when
|
|
* called for RIGHT side), and force buttons like BUT 3 to align as needed, if BUT 1 and BUT 3 were detected as needing
|
|
* top-right corner stitching in \a block_align_proximity_compute() step.
|
|
*
|
|
* \note To avoid doing this twice, some stitching flags are cleared to break the 'stitching connection'
|
|
* between neighbors.
|
|
*/
|
|
static void block_align_stitch_neighbors(
|
|
ButAlign *butal,
|
|
const int side, const int side_opp, const int side_s1, const int side_s2,
|
|
const int align, const int align_opp, const float co)
|
|
{
|
|
ButAlign *butal_neighbor;
|
|
|
|
const int stitch_s1 = STITCH(side_s1);
|
|
const int stitch_s2 = STITCH(side_s2);
|
|
|
|
/* We have to check stitching flags on both sides of the stitching, since we only clear one of them flags to break
|
|
* any future loop on same 'columns/side' case.
|
|
* Also, if butal is spanning over several rows or columns of neighbors, it may have both of its stitching flags
|
|
* set, but would not be the case of its immediate neighbor! */
|
|
while ((butal->flags[side] & stitch_s1) &&
|
|
(butal = butal->neighbors[side_s1]) &&
|
|
(butal->flags[side] & stitch_s2))
|
|
{
|
|
butal_neighbor = butal->neighbors[side];
|
|
|
|
/* If we actually do have a neighbor, we directly set its values accordingly, and clear its matching 'dist'
|
|
* to prevent it being set again later... */
|
|
if (butal_neighbor) {
|
|
butal->but->drawflag |= align;
|
|
butal_neighbor->but->drawflag |= align_opp;
|
|
*butal_neighbor->borders[side_opp] = co;
|
|
butal_neighbor->dists[side_opp] = 0.0f;
|
|
}
|
|
/* See definition of UI_BUT_ALIGN_STITCH_LEFT/TOP for reason of this... */
|
|
else if (side == LEFT) {
|
|
butal->but->drawflag |= UI_BUT_ALIGN_STITCH_LEFT;
|
|
}
|
|
else if (side == TOP) {
|
|
butal->but->drawflag |= UI_BUT_ALIGN_STITCH_TOP;
|
|
}
|
|
*butal->borders[side] = co;
|
|
butal->dists[side] = 0.0f;
|
|
/* Clearing one of the 'flags pair' here is enough to prevent this loop running on
|
|
* the same column, side and direction again. */
|
|
butal->flags[side] &= ~stitch_s2;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Helper to sort ButAlign items by:
|
|
* - Their align group.
|
|
* - Their vertical position.
|
|
* - Their horizontal position.
|
|
*/
|
|
static int ui_block_align_butal_cmp(const void *a, const void *b)
|
|
{
|
|
const ButAlign *butal = a;
|
|
const ButAlign *butal_other = b;
|
|
|
|
/* Sort by align group. */
|
|
if (butal->but->alignnr != butal_other->but->alignnr) {
|
|
return butal->but->alignnr - butal_other->but->alignnr;
|
|
}
|
|
|
|
/* Sort vertically.
|
|
* Note that Y of buttons is decreasing (first buttons have higher Y value than later ones). */
|
|
if (*butal->borders[TOP] != *butal_other->borders[TOP]) {
|
|
return (*butal_other->borders[TOP] > *butal->borders[TOP]) ? 1 : -1;
|
|
}
|
|
|
|
/* Sort horizontally. */
|
|
if (*butal->borders[LEFT] != *butal_other->borders[LEFT]) {
|
|
return (*butal->borders[LEFT] > *butal_other->borders[LEFT]) ? 1 : -1;
|
|
}
|
|
|
|
/* XXX We cannot actually assert here, since in some very compressed space cases, stupid UI code produces
|
|
* widgets which have the same TOP and LEFT positions...
|
|
* We do not care really, because this happens when UI is way too small to be usable anyway. */
|
|
/* BLI_assert(0); */
|
|
return 0;
|
|
}
|
|
|
|
static void ui_block_align_but_to_region(uiBut *but, const ARegion *region)
|
|
{
|
|
rctf *rect = &but->rect;
|
|
const float but_width = BLI_rctf_size_x(rect);
|
|
const float but_height = BLI_rctf_size_y(rect);
|
|
const float px = U.pixelsize;
|
|
|
|
switch (but->drawflag & UI_BUT_ALIGN) {
|
|
case UI_BUT_ALIGN_TOP:
|
|
rect->ymax = region->winy + px;
|
|
rect->ymin = but->rect.ymax - but_height;
|
|
break;
|
|
case UI_BUT_ALIGN_DOWN:
|
|
rect->ymin = -px;
|
|
rect->ymax = rect->ymin + but_height;
|
|
break;
|
|
case UI_BUT_ALIGN_LEFT:
|
|
rect->xmin = -px;
|
|
rect->xmax = rect->xmin + but_width;
|
|
break;
|
|
case UI_BUT_ALIGN_RIGHT:
|
|
rect->xmax = region->winx + px;
|
|
rect->xmin = rect->xmax - but_width;
|
|
break;
|
|
default:
|
|
BLI_assert(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Compute the alignment of all 'align groups' of buttons in given block.
|
|
*
|
|
* This is using an order-independent algorithm, i.e. alignment of buttons should be OK regardless of order in which
|
|
* they are added to the block.
|
|
*/
|
|
void ui_block_align_calc(uiBlock *block, const ARegion *region)
|
|
{
|
|
uiBut *but;
|
|
int num_buttons = 0;
|
|
|
|
const int sides_to_ui_but_align_flags[4] = SIDE_TO_UI_BUT_ALIGN;
|
|
|
|
ButAlign *butal_array;
|
|
ButAlign *butal, *butal_other;
|
|
int side;
|
|
int i, j;
|
|
|
|
/* First loop: we count number of buttons belonging to an align group, and clear their align flag.
|
|
* Tabs get some special treatment here, they get aligned to region border. */
|
|
for (but = block->buttons.first; but; but = but->next) {
|
|
/* special case: tabs need to be aligned to a region border, drawflag tells which one */
|
|
if (but->type == UI_BTYPE_TAB) {
|
|
ui_block_align_but_to_region(but, region);
|
|
}
|
|
else {
|
|
/* Clear old align flags. */
|
|
but->drawflag &= ~UI_BUT_ALIGN_ALL;
|
|
}
|
|
|
|
if (but->alignnr != 0) {
|
|
num_buttons++;
|
|
}
|
|
}
|
|
|
|
if (num_buttons < 2) {
|
|
/* No need to go further if we have nothing to align... */
|
|
return;
|
|
}
|
|
|
|
butal_array = alloca(sizeof(*butal_array) * (size_t)num_buttons);
|
|
memset(butal_array, 0, sizeof(*butal_array) * (size_t)num_buttons);
|
|
|
|
/* Second loop: we initialize our ButAlign data for each button. */
|
|
for (but = block->buttons.first, butal = butal_array; but; but = but->next) {
|
|
if (but->alignnr != 0) {
|
|
butal->but = but;
|
|
butal->borders[LEFT] = &but->rect.xmin;
|
|
butal->borders[RIGHT] = &but->rect.xmax;
|
|
butal->borders[DOWN] = &but->rect.ymin;
|
|
butal->borders[TOP] = &but->rect.ymax;
|
|
copy_v4_fl(butal->dists, FLT_MAX);
|
|
butal++;
|
|
}
|
|
}
|
|
|
|
/* This will give us ButAlign items regrouped by align group, vertical and horizontal location.
|
|
* Note that, given how buttons are defined in UI code, butal_array shall already be "nearly sorted"... */
|
|
qsort(butal_array, (size_t)num_buttons, sizeof(*butal_array), ui_block_align_butal_cmp);
|
|
|
|
/* Third loop: for each pair of buttons in the same align group, we compute their potential proximity.
|
|
* Note that each pair is checked only once, and that we break early in case we know all remaining pairs will
|
|
* always be too far away. */
|
|
for (i = 0, butal = butal_array; i < num_buttons; i++, butal++) {
|
|
const short alignnr = butal->but->alignnr;
|
|
|
|
for (j = i + 1, butal_other = &butal_array[i + 1]; j < num_buttons; j++, butal_other++) {
|
|
const float max_delta = MAX_DELTA;
|
|
|
|
/* Since they are sorted, buttons after current butal can only be of same or higher group, and once
|
|
* they are not of same group, we know we can break this sub-loop and start checking with next butal. */
|
|
if (butal_other->but->alignnr != alignnr) {
|
|
break;
|
|
}
|
|
|
|
/* Since they are sorted vertically first, buttons after current butal can only be at same or lower height,
|
|
* and once they are lower than a given threshold, we know we can break this sub-loop and
|
|
* start checking with next butal. */
|
|
if ((*butal->borders[DOWN] - *butal_other->borders[TOP]) > max_delta) {
|
|
break;
|
|
}
|
|
|
|
block_align_proximity_compute(butal, butal_other);
|
|
}
|
|
}
|
|
|
|
/* Fourth loop: we have all our 'aligned' buttons as a 'map' in butal_array. We need to:
|
|
* - update their relevant coordinates to stitch them.
|
|
* - assign them valid flags.
|
|
*/
|
|
for (i = 0; i < num_buttons; i++) {
|
|
butal = &butal_array[i];
|
|
|
|
for (side = 0; side < TOTSIDES; side++) {
|
|
butal_other = butal->neighbors[side];
|
|
|
|
if (butal_other) {
|
|
const int side_opp = OPPOSITE(side);
|
|
const int side_s1 = SIDE1(side);
|
|
const int side_s2 = SIDE2(side);
|
|
|
|
const int align = sides_to_ui_but_align_flags[side];
|
|
const int align_opp = sides_to_ui_but_align_flags[side_opp];
|
|
|
|
float co;
|
|
|
|
butal->but->drawflag |= align;
|
|
butal_other->but->drawflag |= align_opp;
|
|
if (butal->dists[side]) {
|
|
float *delta = &butal->dists[side];
|
|
|
|
if (*butal->borders[side] < *butal_other->borders[side_opp]) {
|
|
*delta *= 0.5f;
|
|
}
|
|
else {
|
|
*delta *= -0.5f;
|
|
}
|
|
co = (*butal->borders[side] += *delta);
|
|
|
|
if (butal_other->dists[side_opp]) {
|
|
BLI_assert(butal_other->dists[side_opp] * 0.5f == fabsf(*delta));
|
|
*butal_other->borders[side_opp] = co;
|
|
butal_other->dists[side_opp] = 0.0f;
|
|
}
|
|
*delta = 0.0f;
|
|
}
|
|
else {
|
|
co = *butal->borders[side];
|
|
}
|
|
|
|
block_align_stitch_neighbors(butal, side, side_opp, side_s1, side_s2, align, align_opp, co);
|
|
block_align_stitch_neighbors(butal, side, side_opp, side_s2, side_s1, align, align_opp, co);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef SIDE_TO_UI_BUT_ALIGN
|
|
#undef SIDE1
|
|
#undef OPPOSITE
|
|
#undef SIDE2
|
|
#undef IS_COLUMN
|
|
#undef STITCH
|
|
#undef MAX_DELTA
|
|
|
|
#else
|
|
|
|
bool ui_but_can_align(uiBut *but)
|
|
{
|
|
return !ELEM(but->type, UI_BTYPE_LABEL, UI_BTYPE_CHECKBOX, UI_BTYPE_CHECKBOX_N,
|
|
UI_BTYPE_SEPR, UI_BTYPE_SEPR_LINE, UI_BTYPE_SEPR_SPACER);
|
|
}
|
|
|
|
static bool buts_are_horiz(uiBut *but1, uiBut *but2)
|
|
{
|
|
float dx, dy;
|
|
|
|
/* simple case which can fail if buttons shift apart
|
|
* with proportional layouts, see: [#38602] */
|
|
if ((but1->rect.ymin == but2->rect.ymin) &&
|
|
(but1->rect.xmin != but2->rect.xmin))
|
|
{
|
|
return true;
|
|
}
|
|
|
|
dx = fabsf(but1->rect.xmax - but2->rect.xmin);
|
|
dy = fabsf(but1->rect.ymin - but2->rect.ymax);
|
|
|
|
return (dx <= dy);
|
|
}
|
|
|
|
static void ui_block_align_calc_but(uiBut *first, short nr)
|
|
{
|
|
uiBut *prev, *but = NULL, *next;
|
|
int flag = 0, cols = 0, rows = 0;
|
|
|
|
/* auto align */
|
|
|
|
for (but = first; but && but->alignnr == nr; but = but->next) {
|
|
if (but->next && but->next->alignnr == nr) {
|
|
if (buts_are_horiz(but, but->next)) cols++;
|
|
else rows++;
|
|
}
|
|
}
|
|
|
|
/* rows == 0: 1 row, cols == 0: 1 column */
|
|
|
|
/* note; how it uses 'flag' in loop below (either set it, or OR it) is confusing */
|
|
for (but = first, prev = NULL; but && but->alignnr == nr; prev = but, but = but->next) {
|
|
next = but->next;
|
|
if (next && next->alignnr != nr)
|
|
next = NULL;
|
|
|
|
/* clear old flag */
|
|
but->drawflag &= ~UI_BUT_ALIGN;
|
|
|
|
if (flag == 0) { /* first case */
|
|
if (next) {
|
|
if (buts_are_horiz(but, next)) {
|
|
if (rows == 0)
|
|
flag = UI_BUT_ALIGN_RIGHT;
|
|
else
|
|
flag = UI_BUT_ALIGN_DOWN | UI_BUT_ALIGN_RIGHT;
|
|
}
|
|
else {
|
|
flag = UI_BUT_ALIGN_DOWN;
|
|
}
|
|
}
|
|
}
|
|
else if (next == NULL) { /* last case */
|
|
if (prev) {
|
|
if (buts_are_horiz(prev, but)) {
|
|
if (rows == 0)
|
|
flag = UI_BUT_ALIGN_LEFT;
|
|
else
|
|
flag = UI_BUT_ALIGN_TOP | UI_BUT_ALIGN_LEFT;
|
|
}
|
|
else {
|
|
flag = UI_BUT_ALIGN_TOP;
|
|
}
|
|
}
|
|
}
|
|
else if (buts_are_horiz(but, next)) {
|
|
/* check if this is already second row */
|
|
if (prev && buts_are_horiz(prev, but) == 0) {
|
|
flag &= ~UI_BUT_ALIGN_LEFT;
|
|
flag |= UI_BUT_ALIGN_TOP;
|
|
/* exception case: bottom row */
|
|
if (rows > 0) {
|
|
uiBut *bt = but;
|
|
while (bt && bt->alignnr == nr) {
|
|
if (bt->next && bt->next->alignnr == nr && buts_are_horiz(bt, bt->next) == 0) {
|
|
break;
|
|
}
|
|
bt = bt->next;
|
|
}
|
|
if (bt == NULL || bt->alignnr != nr) flag = UI_BUT_ALIGN_TOP | UI_BUT_ALIGN_RIGHT;
|
|
}
|
|
}
|
|
else {
|
|
flag |= UI_BUT_ALIGN_LEFT;
|
|
}
|
|
}
|
|
else {
|
|
if (cols == 0) {
|
|
flag |= UI_BUT_ALIGN_TOP;
|
|
}
|
|
else { /* next button switches to new row */
|
|
|
|
if (prev && buts_are_horiz(prev, but))
|
|
flag |= UI_BUT_ALIGN_LEFT;
|
|
else {
|
|
flag &= ~UI_BUT_ALIGN_LEFT;
|
|
flag |= UI_BUT_ALIGN_TOP;
|
|
}
|
|
|
|
if ((flag & UI_BUT_ALIGN_TOP) == 0) { /* still top row */
|
|
if (prev) {
|
|
if (next && buts_are_horiz(but, next))
|
|
flag = UI_BUT_ALIGN_DOWN | UI_BUT_ALIGN_LEFT | UI_BUT_ALIGN_RIGHT;
|
|
else {
|
|
/* last button in top row */
|
|
flag = UI_BUT_ALIGN_DOWN | UI_BUT_ALIGN_LEFT;
|
|
}
|
|
}
|
|
else
|
|
flag |= UI_BUT_ALIGN_DOWN;
|
|
}
|
|
else
|
|
flag |= UI_BUT_ALIGN_TOP;
|
|
}
|
|
}
|
|
|
|
but->drawflag |= flag;
|
|
|
|
/* merge coordinates */
|
|
if (prev) {
|
|
/* simple cases */
|
|
if (rows == 0) {
|
|
but->rect.xmin = (prev->rect.xmax + but->rect.xmin) / 2.0f;
|
|
prev->rect.xmax = but->rect.xmin;
|
|
}
|
|
else if (cols == 0) {
|
|
but->rect.ymax = (prev->rect.ymin + but->rect.ymax) / 2.0f;
|
|
prev->rect.ymin = but->rect.ymax;
|
|
}
|
|
else {
|
|
if (buts_are_horiz(prev, but)) {
|
|
but->rect.xmin = (prev->rect.xmax + but->rect.xmin) / 2.0f;
|
|
prev->rect.xmax = but->rect.xmin;
|
|
/* copy height too */
|
|
but->rect.ymax = prev->rect.ymax;
|
|
}
|
|
else if (prev->prev && buts_are_horiz(prev->prev, prev) == 0) {
|
|
/* the previous button is a single one in its row */
|
|
but->rect.ymax = (prev->rect.ymin + but->rect.ymax) / 2.0f;
|
|
prev->rect.ymin = but->rect.ymax;
|
|
|
|
but->rect.xmin = prev->rect.xmin;
|
|
if (next && buts_are_horiz(but, next) == 0)
|
|
but->rect.xmax = prev->rect.xmax;
|
|
}
|
|
else {
|
|
/* the previous button is not a single one in its row */
|
|
but->rect.ymax = prev->rect.ymin;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ui_block_align_calc(uiBlock *block)
|
|
{
|
|
uiBut *but;
|
|
short nr;
|
|
|
|
/* align buttons with same align nr */
|
|
for (but = block->buttons.first; but; ) {
|
|
if (but->alignnr) {
|
|
nr = but->alignnr;
|
|
ui_block_align_calc_but(but, nr);
|
|
|
|
/* skip with same number */
|
|
for (; but && but->alignnr == nr; but = but->next) {
|
|
/* pass */
|
|
}
|
|
|
|
if (!but) {
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
but = but->next;
|
|
}
|
|
}
|
|
}
|
|
#endif
|