This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/intern/cycles/blender/blender_util.h
Jacques Lucke 8a77019474 Cycles: modernize usage of rna iterators
Using rna iterators in range-based for loops is possible since {rBc4286ddb095d32714c9d5f10751a14f5871b3844}.

This patch only updates the places that are easy to update
without more changes in surrounding code.

Differential Revision: https://developer.blender.org/D10195
2021-01-25 16:25:27 +01:00

649 lines
19 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __BLENDER_UTIL_H__
#define __BLENDER_UTIL_H__
#include "render/mesh.h"
#include "util/util_algorithm.h"
#include "util/util_array.h"
#include "util/util_map.h"
#include "util/util_path.h"
#include "util/util_set.h"
#include "util/util_transform.h"
#include "util/util_types.h"
#include "util/util_vector.h"
/* Hacks to hook into Blender API
* todo: clean this up ... */
extern "C" {
void BKE_image_user_frame_calc(void *ima, void *iuser, int cfra);
void BKE_image_user_file_path(void *iuser, void *ima, char *path);
unsigned char *BKE_image_get_pixels_for_frame(void *image, int frame, int tile);
float *BKE_image_get_float_pixels_for_frame(void *image, int frame, int tile);
}
CCL_NAMESPACE_BEGIN
typedef BL::ShaderNodeAttribute::attribute_type_enum BlenderAttributeType;
BlenderAttributeType blender_attribute_name_split_type(ustring name, string *r_real_name);
void python_thread_state_save(void **python_thread_state);
void python_thread_state_restore(void **python_thread_state);
static inline BL::Mesh object_to_mesh(BL::BlendData & /*data*/,
BL::Object &object,
BL::Depsgraph & /*depsgraph*/,
bool /*calc_undeformed*/,
Mesh::SubdivisionType subdivision_type)
{
/* TODO: make this work with copy-on-write, modifiers are already evaluated. */
#if 0
bool subsurf_mod_show_render = false;
bool subsurf_mod_show_viewport = false;
if (subdivision_type != Mesh::SUBDIVISION_NONE) {
BL::Modifier subsurf_mod = object.modifiers[object.modifiers.length() - 1];
subsurf_mod_show_render = subsurf_mod.show_render();
subsurf_mod_show_viewport = subsurf_mod.show_viewport();
subsurf_mod.show_render(false);
subsurf_mod.show_viewport(false);
}
#endif
BL::Mesh mesh(PointerRNA_NULL);
if (object.type() == BL::Object::type_MESH) {
/* TODO: calc_undeformed is not used. */
mesh = BL::Mesh(object.data());
/* Make a copy to split faces if we use autosmooth, otherwise not needed.
* Also in edit mode do we need to make a copy, to ensure data layers like
* UV are not empty. */
if (mesh.is_editmode() ||
(mesh.use_auto_smooth() && subdivision_type == Mesh::SUBDIVISION_NONE)) {
BL::Depsgraph depsgraph(PointerRNA_NULL);
mesh = object.to_mesh(false, depsgraph);
}
}
else {
BL::Depsgraph depsgraph(PointerRNA_NULL);
mesh = object.to_mesh(false, depsgraph);
}
#if 0
if (subdivision_type != Mesh::SUBDIVISION_NONE) {
BL::Modifier subsurf_mod = object.modifiers[object.modifiers.length() - 1];
subsurf_mod.show_render(subsurf_mod_show_render);
subsurf_mod.show_viewport(subsurf_mod_show_viewport);
}
#endif
if ((bool)mesh && subdivision_type == Mesh::SUBDIVISION_NONE) {
if (mesh.use_auto_smooth()) {
mesh.split_faces(false);
}
mesh.calc_loop_triangles();
}
return mesh;
}
static inline void free_object_to_mesh(BL::BlendData & /*data*/,
BL::Object &object,
BL::Mesh &mesh)
{
/* Free mesh if we didn't just use the existing one. */
if (object.data().ptr.data != mesh.ptr.data) {
object.to_mesh_clear();
}
}
static inline void colorramp_to_array(BL::ColorRamp &ramp,
array<float3> &ramp_color,
array<float> &ramp_alpha,
int size)
{
ramp_color.resize(size);
ramp_alpha.resize(size);
for (int i = 0; i < size; i++) {
float color[4];
ramp.evaluate((float)i / (float)(size - 1), color);
ramp_color[i] = make_float3(color[0], color[1], color[2]);
ramp_alpha[i] = color[3];
}
}
static inline void curvemap_minmax_curve(/*const*/ BL::CurveMap &curve, float *min_x, float *max_x)
{
*min_x = min(*min_x, curve.points[0].location()[0]);
*max_x = max(*max_x, curve.points[curve.points.length() - 1].location()[0]);
}
static inline void curvemapping_minmax(/*const*/ BL::CurveMapping &cumap,
bool rgb_curve,
float *min_x,
float *max_x)
{
/* const int num_curves = cumap.curves.length(); */ /* Gives linking error so far. */
const int num_curves = rgb_curve ? 4 : 3;
*min_x = FLT_MAX;
*max_x = -FLT_MAX;
for (int i = 0; i < num_curves; ++i) {
BL::CurveMap map(cumap.curves[i]);
curvemap_minmax_curve(map, min_x, max_x);
}
}
static inline void curvemapping_to_array(BL::CurveMapping &cumap, array<float> &data, int size)
{
cumap.update();
BL::CurveMap curve = cumap.curves[0];
data.resize(size);
for (int i = 0; i < size; i++) {
float t = (float)i / (float)(size - 1);
data[i] = cumap.evaluate(curve, t);
}
}
static inline void curvemapping_color_to_array(BL::CurveMapping &cumap,
array<float3> &data,
int size,
bool rgb_curve)
{
float min_x = 0.0f, max_x = 1.0f;
/* TODO(sergey): There is no easy way to automatically guess what is
* the range to be used here for the case when mapping is applied on
* top of another mapping (i.e. R curve applied on top of common
* one).
*
* Using largest possible range form all curves works correct for the
* cases like vector curves and should be good enough heuristic for
* the color curves as well.
*
* There might be some better estimations here tho.
*/
curvemapping_minmax(cumap, rgb_curve, &min_x, &max_x);
const float range_x = max_x - min_x;
cumap.update();
BL::CurveMap mapR = cumap.curves[0];
BL::CurveMap mapG = cumap.curves[1];
BL::CurveMap mapB = cumap.curves[2];
data.resize(size);
if (rgb_curve) {
BL::CurveMap mapI = cumap.curves[3];
for (int i = 0; i < size; i++) {
const float t = min_x + (float)i / (float)(size - 1) * range_x;
data[i] = make_float3(cumap.evaluate(mapR, cumap.evaluate(mapI, t)),
cumap.evaluate(mapG, cumap.evaluate(mapI, t)),
cumap.evaluate(mapB, cumap.evaluate(mapI, t)));
}
}
else {
for (int i = 0; i < size; i++) {
float t = min_x + (float)i / (float)(size - 1) * range_x;
data[i] = make_float3(
cumap.evaluate(mapR, t), cumap.evaluate(mapG, t), cumap.evaluate(mapB, t));
}
}
}
static inline bool BKE_object_is_modified(BL::Object &self, BL::Scene &scene, bool preview)
{
return self.is_modified(scene, (preview) ? (1 << 0) : (1 << 1)) ? true : false;
}
static inline bool BKE_object_is_deform_modified(BL::Object &self, BL::Scene &scene, bool preview)
{
return self.is_deform_modified(scene, (preview) ? (1 << 0) : (1 << 1)) ? true : false;
}
static inline int render_resolution_x(BL::RenderSettings &b_render)
{
return b_render.resolution_x() * b_render.resolution_percentage() / 100;
}
static inline int render_resolution_y(BL::RenderSettings &b_render)
{
return b_render.resolution_y() * b_render.resolution_percentage() / 100;
}
static inline string image_user_file_path(BL::ImageUser &iuser,
BL::Image &ima,
int cfra,
bool load_tiled)
{
char filepath[1024];
iuser.tile(0);
BKE_image_user_frame_calc(ima.ptr.data, iuser.ptr.data, cfra);
BKE_image_user_file_path(iuser.ptr.data, ima.ptr.data, filepath);
string filepath_str = string(filepath);
if (load_tiled && ima.source() == BL::Image::source_TILED) {
string_replace(filepath_str, "1001", "<UDIM>");
}
return filepath_str;
}
static inline int image_user_frame_number(BL::ImageUser &iuser, BL::Image &ima, int cfra)
{
BKE_image_user_frame_calc(ima.ptr.data, iuser.ptr.data, cfra);
return iuser.frame_current();
}
static inline unsigned char *image_get_pixels_for_frame(BL::Image &image, int frame, int tile)
{
return BKE_image_get_pixels_for_frame(image.ptr.data, frame, tile);
}
static inline float *image_get_float_pixels_for_frame(BL::Image &image, int frame, int tile)
{
return BKE_image_get_float_pixels_for_frame(image.ptr.data, frame, tile);
}
static inline void render_add_metadata(BL::RenderResult &b_rr, string name, string value)
{
b_rr.stamp_data_add_field(name.c_str(), value.c_str());
}
/* Utilities */
static inline Transform get_transform(const BL::Array<float, 16> &array)
{
ProjectionTransform projection;
/* We assume both types to be just 16 floats, and transpose because blender
* use column major matrix order while we use row major. */
memcpy((void *)&projection, &array, sizeof(float) * 16);
projection = projection_transpose(projection);
/* Drop last row, matrix is assumed to be affine transform. */
return projection_to_transform(projection);
}
static inline float2 get_float2(const BL::Array<float, 2> &array)
{
return make_float2(array[0], array[1]);
}
static inline float3 get_float3(const BL::Array<float, 2> &array)
{
return make_float3(array[0], array[1], 0.0f);
}
static inline float3 get_float3(const BL::Array<float, 3> &array)
{
return make_float3(array[0], array[1], array[2]);
}
static inline float3 get_float3(const BL::Array<float, 4> &array)
{
return make_float3(array[0], array[1], array[2]);
}
static inline float4 get_float4(const BL::Array<float, 4> &array)
{
return make_float4(array[0], array[1], array[2], array[3]);
}
static inline int3 get_int3(const BL::Array<int, 3> &array)
{
return make_int3(array[0], array[1], array[2]);
}
static inline int4 get_int4(const BL::Array<int, 4> &array)
{
return make_int4(array[0], array[1], array[2], array[3]);
}
static inline float3 get_float3(PointerRNA &ptr, const char *name)
{
float3 f;
RNA_float_get_array(&ptr, name, &f.x);
return f;
}
static inline void set_float3(PointerRNA &ptr, const char *name, float3 value)
{
RNA_float_set_array(&ptr, name, &value.x);
}
static inline float4 get_float4(PointerRNA &ptr, const char *name)
{
float4 f;
RNA_float_get_array(&ptr, name, &f.x);
return f;
}
static inline void set_float4(PointerRNA &ptr, const char *name, float4 value)
{
RNA_float_set_array(&ptr, name, &value.x);
}
static inline bool get_boolean(PointerRNA &ptr, const char *name)
{
return RNA_boolean_get(&ptr, name) ? true : false;
}
static inline void set_boolean(PointerRNA &ptr, const char *name, bool value)
{
RNA_boolean_set(&ptr, name, (int)value);
}
static inline float get_float(PointerRNA &ptr, const char *name)
{
return RNA_float_get(&ptr, name);
}
static inline void set_float(PointerRNA &ptr, const char *name, float value)
{
RNA_float_set(&ptr, name, value);
}
static inline int get_int(PointerRNA &ptr, const char *name)
{
return RNA_int_get(&ptr, name);
}
static inline void set_int(PointerRNA &ptr, const char *name, int value)
{
RNA_int_set(&ptr, name, value);
}
/* Get a RNA enum value with sanity check: if the RNA value is above num_values
* the function will return a fallback default value.
*
* NOTE: This function assumes that RNA enum values are a continuous sequence
* from 0 to num_values-1. Be careful to use it with enums where some values are
* deprecated!
*/
static inline int get_enum(PointerRNA &ptr,
const char *name,
int num_values = -1,
int default_value = -1)
{
int value = RNA_enum_get(&ptr, name);
if (num_values != -1 && value >= num_values) {
assert(default_value != -1);
value = default_value;
}
return value;
}
static inline string get_enum_identifier(PointerRNA &ptr, const char *name)
{
PropertyRNA *prop = RNA_struct_find_property(&ptr, name);
const char *identifier = "";
int value = RNA_property_enum_get(&ptr, prop);
RNA_property_enum_identifier(NULL, &ptr, prop, value, &identifier);
return string(identifier);
}
static inline void set_enum(PointerRNA &ptr, const char *name, int value)
{
RNA_enum_set(&ptr, name, value);
}
static inline void set_enum(PointerRNA &ptr, const char *name, const string &identifier)
{
RNA_enum_set_identifier(NULL, &ptr, name, identifier.c_str());
}
static inline string get_string(PointerRNA &ptr, const char *name)
{
char cstrbuf[1024];
char *cstr = RNA_string_get_alloc(&ptr, name, cstrbuf, sizeof(cstrbuf));
string str(cstr);
if (cstr != cstrbuf)
MEM_freeN(cstr);
return str;
}
static inline void set_string(PointerRNA &ptr, const char *name, const string &value)
{
RNA_string_set(&ptr, name, value.c_str());
}
/* Relative Paths */
static inline string blender_absolute_path(BL::BlendData &b_data, BL::ID &b_id, const string &path)
{
if (path.size() >= 2 && path[0] == '/' && path[1] == '/') {
string dirname;
if (b_id.library()) {
BL::ID b_library_id(b_id.library());
dirname = blender_absolute_path(b_data, b_library_id, b_id.library().filepath());
}
else
dirname = b_data.filepath();
return path_join(path_dirname(dirname), path.substr(2));
}
return path;
}
static inline string get_text_datablock_content(const PointerRNA &ptr)
{
if (ptr.data == NULL) {
return "";
}
string content;
BL::Text::lines_iterator iter;
for (iter.begin(ptr); iter; ++iter) {
content += iter->body() + "\n";
}
return content;
}
/* Texture Space */
static inline void mesh_texture_space(BL::Mesh &b_mesh, float3 &loc, float3 &size)
{
loc = get_float3(b_mesh.texspace_location());
size = get_float3(b_mesh.texspace_size());
if (size.x != 0.0f)
size.x = 0.5f / size.x;
if (size.y != 0.0f)
size.y = 0.5f / size.y;
if (size.z != 0.0f)
size.z = 0.5f / size.z;
loc = loc * size - make_float3(0.5f, 0.5f, 0.5f);
}
/* Object motion steps, returns 0 if no motion blur needed. */
static inline uint object_motion_steps(BL::Object &b_parent,
BL::Object &b_ob,
const int max_steps = INT_MAX)
{
/* Get motion enabled and steps from object itself. */
PointerRNA cobject = RNA_pointer_get(&b_ob.ptr, "cycles");
bool use_motion = get_boolean(cobject, "use_motion_blur");
if (!use_motion) {
return 0;
}
int steps = max(1, get_int(cobject, "motion_steps"));
/* Also check parent object, so motion blur and steps can be
* controlled by dupligroup duplicator for linked groups. */
if (b_parent.ptr.data != b_ob.ptr.data) {
PointerRNA parent_cobject = RNA_pointer_get(&b_parent.ptr, "cycles");
use_motion &= get_boolean(parent_cobject, "use_motion_blur");
if (!use_motion) {
return 0;
}
steps = max(steps, get_int(parent_cobject, "motion_steps"));
}
/* Use uneven number of steps so we get one keyframe at the current frame,
* and use 2^(steps - 1) so objects with more/fewer steps still have samples
* at the same times, to avoid sampling at many different times. */
return min((2 << (steps - 1)) + 1, max_steps);
}
/* object uses deformation motion blur */
static inline bool object_use_deform_motion(BL::Object &b_parent, BL::Object &b_ob)
{
PointerRNA cobject = RNA_pointer_get(&b_ob.ptr, "cycles");
bool use_deform_motion = get_boolean(cobject, "use_deform_motion");
/* If motion blur is enabled for the object we also check
* whether it's enabled for the parent object as well.
*
* This way we can control motion blur from the dupligroup
* duplicator much easier.
*/
if (use_deform_motion && b_parent.ptr.data != b_ob.ptr.data) {
PointerRNA parent_cobject = RNA_pointer_get(&b_parent.ptr, "cycles");
use_deform_motion &= get_boolean(parent_cobject, "use_deform_motion");
}
return use_deform_motion;
}
static inline BL::FluidDomainSettings object_fluid_liquid_domain_find(BL::Object &b_ob)
{
for (BL::Modifier &b_mod : b_ob.modifiers) {
if (b_mod.is_a(&RNA_FluidModifier)) {
BL::FluidModifier b_mmd(b_mod);
if (b_mmd.fluid_type() == BL::FluidModifier::fluid_type_DOMAIN &&
b_mmd.domain_settings().domain_type() == BL::FluidDomainSettings::domain_type_LIQUID) {
return b_mmd.domain_settings();
}
}
}
return BL::FluidDomainSettings(PointerRNA_NULL);
}
static inline BL::FluidDomainSettings object_fluid_gas_domain_find(BL::Object &b_ob)
{
for (BL::Modifier &b_mod : b_ob.modifiers) {
if (b_mod.is_a(&RNA_FluidModifier)) {
BL::FluidModifier b_mmd(b_mod);
if (b_mmd.fluid_type() == BL::FluidModifier::fluid_type_DOMAIN &&
b_mmd.domain_settings().domain_type() == BL::FluidDomainSettings::domain_type_GAS) {
return b_mmd.domain_settings();
}
}
}
return BL::FluidDomainSettings(PointerRNA_NULL);
}
static inline Mesh::SubdivisionType object_subdivision_type(BL::Object &b_ob,
bool preview,
bool experimental)
{
PointerRNA cobj = RNA_pointer_get(&b_ob.ptr, "cycles");
if (cobj.data && b_ob.modifiers.length() > 0 && experimental) {
BL::Modifier mod = b_ob.modifiers[b_ob.modifiers.length() - 1];
bool enabled = preview ? mod.show_viewport() : mod.show_render();
if (enabled && mod.type() == BL::Modifier::type_SUBSURF &&
RNA_boolean_get(&cobj, "use_adaptive_subdivision")) {
BL::SubsurfModifier subsurf(mod);
if (subsurf.subdivision_type() == BL::SubsurfModifier::subdivision_type_CATMULL_CLARK) {
return Mesh::SUBDIVISION_CATMULL_CLARK;
}
else {
return Mesh::SUBDIVISION_LINEAR;
}
}
}
return Mesh::SUBDIVISION_NONE;
}
static inline uint object_ray_visibility(BL::Object &b_ob)
{
PointerRNA cvisibility = RNA_pointer_get(&b_ob.ptr, "cycles_visibility");
uint flag = 0;
flag |= get_boolean(cvisibility, "camera") ? PATH_RAY_CAMERA : 0;
flag |= get_boolean(cvisibility, "diffuse") ? PATH_RAY_DIFFUSE : 0;
flag |= get_boolean(cvisibility, "glossy") ? PATH_RAY_GLOSSY : 0;
flag |= get_boolean(cvisibility, "transmission") ? PATH_RAY_TRANSMIT : 0;
flag |= get_boolean(cvisibility, "shadow") ? PATH_RAY_SHADOW : 0;
flag |= get_boolean(cvisibility, "scatter") ? PATH_RAY_VOLUME_SCATTER : 0;
return flag;
}
class EdgeMap {
public:
EdgeMap()
{
}
void clear()
{
edges_.clear();
}
void insert(int v0, int v1)
{
get_sorted_verts(v0, v1);
edges_.insert(std::pair<int, int>(v0, v1));
}
bool exists(int v0, int v1)
{
get_sorted_verts(v0, v1);
return edges_.find(std::pair<int, int>(v0, v1)) != edges_.end();
}
protected:
void get_sorted_verts(int &v0, int &v1)
{
if (v0 > v1) {
swap(v0, v1);
}
}
set<std::pair<int, int>> edges_;
};
CCL_NAMESPACE_END
#endif /* __BLENDER_UTIL_H__ */