This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/BLI_mpq3.hh
Erik Abrahamsson 8180d478e1 Speedup exact boolean by avoiding some mallocs and frees.
This is from patch D11432 from Erik Abrahamsson. He found that
in some mpq3 functions called frequently from loops, passing in
buffers for termporary mpq3 values can save substantial time.
On my machine, his example in that patch went from 9.48s to 7.50s
for the boolean part of the calculation. On his machine, a running
time went from 17s to 10.3s.
2021-05-31 17:03:48 -04:00

298 lines
6.6 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#pragma once
/** \file
* \ingroup bli
*/
#ifdef WITH_GMP
# include <iostream>
# include "BLI_math.h"
# include "BLI_math_mpq.hh"
# include "BLI_span.hh"
namespace blender {
struct mpq3 {
mpq_class x, y, z;
mpq3() = default;
mpq3(const mpq_class *ptr) : x{ptr[0]}, y{ptr[1]}, z{ptr[2]}
{
}
mpq3(const mpq_class (*ptr)[3]) : mpq3((const mpq_class *)ptr)
{
}
explicit mpq3(mpq_class value) : x(value), y(value), z(value)
{
}
explicit mpq3(int value) : x(value), y(value), z(value)
{
}
mpq3(mpq_class x, mpq_class y, mpq_class z) : x{x}, y{y}, z{z}
{
}
operator const mpq_class *() const
{
return &x;
}
operator mpq_class *()
{
return &x;
}
/* Cannot do this exactly in rational arithmetic!
* Approximate by going in and out of doubles.
*/
mpq_class normalize_and_get_length()
{
double dv[3] = {x.get_d(), y.get_d(), z.get_d()};
double len = normalize_v3_db(dv);
this->x = mpq_class(dv[0]);
this->y = mpq_class(dv[1]);
this->z = mpq_class(dv[2]);
return len;
}
mpq3 normalized() const
{
double dv[3] = {x.get_d(), y.get_d(), z.get_d()};
double dr[3];
normalize_v3_v3_db(dr, dv);
return mpq3(mpq_class(dr[0]), mpq_class(dr[1]), mpq_class(dr[2]));
}
/* Cannot do this exactly in rational arithmetic!
* Approximate by going in and out of double.
*/
mpq_class length() const
{
mpq_class lsquared = this->length_squared();
double dsquared = lsquared.get_d();
double d = sqrt(dsquared);
return mpq_class(d);
}
mpq_class length_squared() const
{
return x * x + y * y + z * z;
}
void reflect(const mpq3 &normal)
{
*this = this->reflected(normal);
}
mpq3 reflected(const mpq3 &normal) const
{
mpq3 result;
const mpq_class dot2 = 2 * dot(*this, normal);
result.x = this->x - (dot2 * normal.x);
result.y = this->y - (dot2 * normal.y);
result.z = this->z - (dot2 * normal.z);
return result;
}
static mpq3 safe_divide(const mpq3 &a, const mpq3 &b)
{
mpq3 result;
result.x = (b.x == 0) ? mpq_class(0) : a.x / b.x;
result.y = (b.y == 0) ? mpq_class(0) : a.y / b.y;
result.z = (b.z == 0) ? mpq_class(0) : a.z / b.z;
return result;
}
void invert()
{
x = -x;
y = -y;
z = -z;
}
friend mpq3 operator+(const mpq3 &a, const mpq3 &b)
{
return mpq3(a.x + b.x, a.y + b.y, a.z + b.z);
}
void operator+=(const mpq3 &b)
{
this->x += b.x;
this->y += b.y;
this->z += b.z;
}
friend mpq3 operator-(const mpq3 &a, const mpq3 &b)
{
return mpq3(a.x - b.x, a.y - b.y, a.z - b.z);
}
friend mpq3 operator-(const mpq3 &a)
{
return mpq3(-a.x, -a.y, -a.z);
}
void operator-=(const mpq3 &b)
{
this->x -= b.x;
this->y -= b.y;
this->z -= b.z;
}
void operator*=(mpq_class scalar)
{
this->x *= scalar;
this->y *= scalar;
this->z *= scalar;
}
void operator*=(const mpq3 &other)
{
this->x *= other.x;
this->y *= other.y;
this->z *= other.z;
}
friend mpq3 operator*(const mpq3 &a, const mpq3 &b)
{
return {a.x * b.x, a.y * b.y, a.z * b.z};
}
friend mpq3 operator*(const mpq3 &a, const mpq_class &b)
{
return mpq3(a.x * b, a.y * b, a.z * b);
}
friend mpq3 operator*(const mpq_class &a, const mpq3 &b)
{
return mpq3(a * b.x, a * b.y, a * b.z);
}
friend mpq3 operator/(const mpq3 &a, const mpq_class &b)
{
BLI_assert(b != 0);
return mpq3(a.x / b, a.y / b, a.z / b);
}
friend bool operator==(const mpq3 &a, const mpq3 &b)
{
return a.x == b.x && a.y == b.y && a.z == b.z;
}
friend bool operator!=(const mpq3 &a, const mpq3 &b)
{
return a.x != b.x || a.y != b.y || a.z != b.z;
}
friend std::ostream &operator<<(std::ostream &stream, const mpq3 &v)
{
stream << "(" << v.x << ", " << v.y << ", " << v.z << ")";
return stream;
}
static mpq_class dot(const mpq3 &a, const mpq3 &b)
{
return a.x * b.x + a.y * b.y + a.z * b.z;
}
static mpq_class dot_with_buffer(const mpq3 &a, const mpq3 &b, mpq3 &buffer)
{
buffer = a;
buffer *= b;
buffer.x += buffer.y;
buffer.x += buffer.z;
return buffer.x;
}
static mpq3 cross(const mpq3 &a, const mpq3 &b)
{
return mpq3(a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0]);
}
static mpq3 cross_high_precision(const mpq3 &a, const mpq3 &b)
{
return cross(a, b);
}
static mpq3 project(const mpq3 &a, const mpq3 &b)
{
const mpq_class mul = mpq3::dot(a, b) / mpq3::dot(b, b);
return mpq3(mul * b[0], mul * b[1], mul * b[2]);
}
static mpq_class distance(const mpq3 &a, const mpq3 &b)
{
mpq3 diff(a.x - b.x, a.y - b.y, a.z - b.z);
return diff.length();
}
static mpq_class distance_squared(const mpq3 &a, const mpq3 &b)
{
mpq3 diff(a.x - b.x, a.y - b.y, a.z - b.z);
return mpq3::dot(diff, diff);
}
static mpq_class distance_squared_with_buffer(const mpq3 &a, const mpq3 &b, mpq3 &buffer)
{
buffer = a;
buffer -= b;
return mpq3::dot(buffer, buffer);
}
static mpq3 interpolate(const mpq3 &a, const mpq3 &b, mpq_class t)
{
mpq_class s = 1 - t;
return mpq3(a.x * s + b.x * t, a.y * s + b.y * t, a.z * s + b.z * t);
}
static mpq3 abs(const mpq3 &a)
{
mpq_class abs_x = (a.x >= 0) ? a.x : -a.x;
mpq_class abs_y = (a.y >= 0) ? a.y : -a.y;
mpq_class abs_z = (a.z >= 0) ? a.z : -a.z;
return mpq3(abs_x, abs_y, abs_z);
}
static int dominant_axis(const mpq3 &a)
{
mpq_class x = (a.x >= 0) ? a.x : -a.x;
mpq_class y = (a.y >= 0) ? a.y : -a.y;
mpq_class z = (a.z >= 0) ? a.z : -a.z;
return ((x > y) ? ((x > z) ? 0 : 2) : ((y > z) ? 1 : 2));
}
static mpq3 cross_poly(Span<mpq3> poly);
/** There is a sensible use for hashing on exact arithmetic types. */
uint64_t hash() const;
};
uint64_t hash_mpq_class(const mpq_class &value);
} // namespace blender
#endif /* WITH_GMP */