Corrects incorrect usage of contraction for 'it is', when possessive 'its' was required. Differential Revision: https://developer.blender.org/D9250 Reviewed by Campbell Barton
1442 lines
39 KiB
C
1442 lines
39 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*/
|
|
|
|
/** \file
|
|
* \ingroup bli
|
|
*
|
|
* A general (pointer -> pointer) chaining hash table
|
|
* for 'Abstract Data Types' (known as an ADT Hash Table).
|
|
*/
|
|
|
|
#include <limits.h>
|
|
#include <stdarg.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "BLI_mempool.h"
|
|
#include "BLI_sys_types.h" /* for intptr_t support */
|
|
#include "BLI_utildefines.h"
|
|
|
|
#define GHASH_INTERNAL_API
|
|
#include "BLI_ghash.h" /* own include */
|
|
|
|
/* keep last */
|
|
#include "BLI_strict_flags.h"
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Structs & Constants
|
|
* \{ */
|
|
|
|
#define GHASH_USE_MODULO_BUCKETS
|
|
|
|
/**
|
|
* Next prime after `2^n` (skipping 2 & 3).
|
|
*
|
|
* \note Also used by: `BLI_edgehash` & `BLI_smallhash`.
|
|
*/
|
|
extern const uint BLI_ghash_hash_sizes[]; /* Quiet warning, this is only used by smallhash.c */
|
|
const uint BLI_ghash_hash_sizes[] = {
|
|
5, 11, 17, 37, 67, 131, 257, 521, 1031,
|
|
2053, 4099, 8209, 16411, 32771, 65537, 131101, 262147, 524309,
|
|
1048583, 2097169, 4194319, 8388617, 16777259, 33554467, 67108879, 134217757, 268435459,
|
|
};
|
|
#define hashsizes BLI_ghash_hash_sizes
|
|
|
|
#ifdef GHASH_USE_MODULO_BUCKETS
|
|
# define GHASH_MAX_SIZE 27
|
|
BLI_STATIC_ASSERT(ARRAY_SIZE(hashsizes) == GHASH_MAX_SIZE, "Invalid 'hashsizes' size");
|
|
#else
|
|
# define GHASH_BUCKET_BIT_MIN 2
|
|
# define GHASH_BUCKET_BIT_MAX 28 /* About 268M of buckets... */
|
|
#endif
|
|
|
|
/**
|
|
* \note Max load #GHASH_LIMIT_GROW used to be 3. (pre 2.74).
|
|
* Python uses 0.6666, tommyhashlib even goes down to 0.5.
|
|
* Reducing our from 3 to 0.75 gives huge speedup
|
|
* (about twice quicker pure GHash insertions/lookup,
|
|
* about 25% - 30% quicker 'dynamic-topology' stroke drawing e.g.).
|
|
* Min load #GHASH_LIMIT_SHRINK is a quarter of max load, to avoid resizing to quickly.
|
|
*/
|
|
#define GHASH_LIMIT_GROW(_nbkt) (((_nbkt)*3) / 4)
|
|
#define GHASH_LIMIT_SHRINK(_nbkt) (((_nbkt)*3) / 16)
|
|
|
|
/* WARNING! Keep in sync with ugly _gh_Entry in header!!! */
|
|
typedef struct Entry {
|
|
struct Entry *next;
|
|
|
|
void *key;
|
|
} Entry;
|
|
|
|
typedef struct GHashEntry {
|
|
Entry e;
|
|
|
|
void *val;
|
|
} GHashEntry;
|
|
|
|
typedef Entry GSetEntry;
|
|
|
|
#define GHASH_ENTRY_SIZE(_is_gset) ((_is_gset) ? sizeof(GSetEntry) : sizeof(GHashEntry))
|
|
|
|
struct GHash {
|
|
GHashHashFP hashfp;
|
|
GHashCmpFP cmpfp;
|
|
|
|
Entry **buckets;
|
|
struct BLI_mempool *entrypool;
|
|
uint nbuckets;
|
|
uint limit_grow, limit_shrink;
|
|
#ifdef GHASH_USE_MODULO_BUCKETS
|
|
uint cursize, size_min;
|
|
#else
|
|
uint bucket_mask, bucket_bit, bucket_bit_min;
|
|
#endif
|
|
|
|
uint nentries;
|
|
uint flag;
|
|
};
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Internal Utility API
|
|
* \{ */
|
|
|
|
BLI_INLINE void ghash_entry_copy(GHash *gh_dst,
|
|
Entry *dst,
|
|
GHash *gh_src,
|
|
Entry *src,
|
|
GHashKeyCopyFP keycopyfp,
|
|
GHashValCopyFP valcopyfp)
|
|
{
|
|
dst->key = (keycopyfp) ? keycopyfp(src->key) : src->key;
|
|
|
|
if ((gh_dst->flag & GHASH_FLAG_IS_GSET) == 0) {
|
|
if ((gh_src->flag & GHASH_FLAG_IS_GSET) == 0) {
|
|
((GHashEntry *)dst)->val = (valcopyfp) ? valcopyfp(((GHashEntry *)src)->val) :
|
|
((GHashEntry *)src)->val;
|
|
}
|
|
else {
|
|
((GHashEntry *)dst)->val = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Get the full hash for a key.
|
|
*/
|
|
BLI_INLINE uint ghash_keyhash(GHash *gh, const void *key)
|
|
{
|
|
return gh->hashfp(key);
|
|
}
|
|
|
|
/**
|
|
* Get the full hash for an entry.
|
|
*/
|
|
BLI_INLINE uint ghash_entryhash(GHash *gh, const Entry *e)
|
|
{
|
|
return gh->hashfp(e->key);
|
|
}
|
|
|
|
/**
|
|
* Get the bucket-index for an already-computed full hash.
|
|
*/
|
|
BLI_INLINE uint ghash_bucket_index(GHash *gh, const uint hash)
|
|
{
|
|
#ifdef GHASH_USE_MODULO_BUCKETS
|
|
return hash % gh->nbuckets;
|
|
#else
|
|
return hash & gh->bucket_mask;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Find the index of next used bucket, starting from \a curr_bucket (\a gh is assumed non-empty).
|
|
*/
|
|
BLI_INLINE uint ghash_find_next_bucket_index(GHash *gh, uint curr_bucket)
|
|
{
|
|
if (curr_bucket >= gh->nbuckets) {
|
|
curr_bucket = 0;
|
|
}
|
|
if (gh->buckets[curr_bucket]) {
|
|
return curr_bucket;
|
|
}
|
|
for (; curr_bucket < gh->nbuckets; curr_bucket++) {
|
|
if (gh->buckets[curr_bucket]) {
|
|
return curr_bucket;
|
|
}
|
|
}
|
|
for (curr_bucket = 0; curr_bucket < gh->nbuckets; curr_bucket++) {
|
|
if (gh->buckets[curr_bucket]) {
|
|
return curr_bucket;
|
|
}
|
|
}
|
|
BLI_assert(0);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Expand buckets to the next size up or down.
|
|
*/
|
|
static void ghash_buckets_resize(GHash *gh, const uint nbuckets)
|
|
{
|
|
Entry **buckets_old = gh->buckets;
|
|
Entry **buckets_new;
|
|
const uint nbuckets_old = gh->nbuckets;
|
|
uint i;
|
|
|
|
BLI_assert((gh->nbuckets != nbuckets) || !gh->buckets);
|
|
// printf("%s: %d -> %d\n", __func__, nbuckets_old, nbuckets);
|
|
|
|
gh->nbuckets = nbuckets;
|
|
#ifdef GHASH_USE_MODULO_BUCKETS
|
|
#else
|
|
gh->bucket_mask = nbuckets - 1;
|
|
#endif
|
|
|
|
buckets_new = (Entry **)MEM_callocN(sizeof(*gh->buckets) * gh->nbuckets, __func__);
|
|
|
|
if (buckets_old) {
|
|
if (nbuckets > nbuckets_old) {
|
|
for (i = 0; i < nbuckets_old; i++) {
|
|
for (Entry *e = buckets_old[i], *e_next; e; e = e_next) {
|
|
const uint hash = ghash_entryhash(gh, e);
|
|
const uint bucket_index = ghash_bucket_index(gh, hash);
|
|
e_next = e->next;
|
|
e->next = buckets_new[bucket_index];
|
|
buckets_new[bucket_index] = e;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0; i < nbuckets_old; i++) {
|
|
#ifdef GHASH_USE_MODULO_BUCKETS
|
|
for (Entry *e = buckets_old[i], *e_next; e; e = e_next) {
|
|
const uint hash = ghash_entryhash(gh, e);
|
|
const uint bucket_index = ghash_bucket_index(gh, hash);
|
|
e_next = e->next;
|
|
e->next = buckets_new[bucket_index];
|
|
buckets_new[bucket_index] = e;
|
|
}
|
|
#else
|
|
/* No need to recompute hashes in this case, since our mask is just smaller,
|
|
* all items in old bucket 'i' will go in same new bucket (i & new_mask)! */
|
|
const uint bucket_index = ghash_bucket_index(gh, i);
|
|
BLI_assert(!buckets_old[i] ||
|
|
(bucket_index == ghash_bucket_index(gh, ghash_entryhash(gh, buckets_old[i]))));
|
|
Entry *e;
|
|
for (e = buckets_old[i]; e && e->next; e = e->next) {
|
|
/* pass */
|
|
}
|
|
if (e) {
|
|
e->next = buckets_new[bucket_index];
|
|
buckets_new[bucket_index] = buckets_old[i];
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
gh->buckets = buckets_new;
|
|
if (buckets_old) {
|
|
MEM_freeN(buckets_old);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Check if the number of items in the GHash is large enough to require more buckets,
|
|
* or small enough to require less buckets, and resize \a gh accordingly.
|
|
*/
|
|
static void ghash_buckets_expand(GHash *gh, const uint nentries, const bool user_defined)
|
|
{
|
|
uint new_nbuckets;
|
|
|
|
if (LIKELY(gh->buckets && (nentries < gh->limit_grow))) {
|
|
return;
|
|
}
|
|
|
|
new_nbuckets = gh->nbuckets;
|
|
|
|
#ifdef GHASH_USE_MODULO_BUCKETS
|
|
while ((nentries > gh->limit_grow) && (gh->cursize < GHASH_MAX_SIZE - 1)) {
|
|
new_nbuckets = hashsizes[++gh->cursize];
|
|
gh->limit_grow = GHASH_LIMIT_GROW(new_nbuckets);
|
|
}
|
|
#else
|
|
while ((nentries > gh->limit_grow) && (gh->bucket_bit < GHASH_BUCKET_BIT_MAX)) {
|
|
new_nbuckets = 1u << ++gh->bucket_bit;
|
|
gh->limit_grow = GHASH_LIMIT_GROW(new_nbuckets);
|
|
}
|
|
#endif
|
|
|
|
if (user_defined) {
|
|
#ifdef GHASH_USE_MODULO_BUCKETS
|
|
gh->size_min = gh->cursize;
|
|
#else
|
|
gh->bucket_bit_min = gh->bucket_bit;
|
|
#endif
|
|
}
|
|
|
|
if ((new_nbuckets == gh->nbuckets) && gh->buckets) {
|
|
return;
|
|
}
|
|
|
|
gh->limit_grow = GHASH_LIMIT_GROW(new_nbuckets);
|
|
gh->limit_shrink = GHASH_LIMIT_SHRINK(new_nbuckets);
|
|
ghash_buckets_resize(gh, new_nbuckets);
|
|
}
|
|
|
|
static void ghash_buckets_contract(GHash *gh,
|
|
const uint nentries,
|
|
const bool user_defined,
|
|
const bool force_shrink)
|
|
{
|
|
uint new_nbuckets;
|
|
|
|
if (!(force_shrink || (gh->flag & GHASH_FLAG_ALLOW_SHRINK))) {
|
|
return;
|
|
}
|
|
|
|
if (LIKELY(gh->buckets && (nentries > gh->limit_shrink))) {
|
|
return;
|
|
}
|
|
|
|
new_nbuckets = gh->nbuckets;
|
|
|
|
#ifdef GHASH_USE_MODULO_BUCKETS
|
|
while ((nentries < gh->limit_shrink) && (gh->cursize > gh->size_min)) {
|
|
new_nbuckets = hashsizes[--gh->cursize];
|
|
gh->limit_shrink = GHASH_LIMIT_SHRINK(new_nbuckets);
|
|
}
|
|
#else
|
|
while ((nentries < gh->limit_shrink) && (gh->bucket_bit > gh->bucket_bit_min)) {
|
|
new_nbuckets = 1u << --gh->bucket_bit;
|
|
gh->limit_shrink = GHASH_LIMIT_SHRINK(new_nbuckets);
|
|
}
|
|
#endif
|
|
|
|
if (user_defined) {
|
|
#ifdef GHASH_USE_MODULO_BUCKETS
|
|
gh->size_min = gh->cursize;
|
|
#else
|
|
gh->bucket_bit_min = gh->bucket_bit;
|
|
#endif
|
|
}
|
|
|
|
if ((new_nbuckets == gh->nbuckets) && gh->buckets) {
|
|
return;
|
|
}
|
|
|
|
gh->limit_grow = GHASH_LIMIT_GROW(new_nbuckets);
|
|
gh->limit_shrink = GHASH_LIMIT_SHRINK(new_nbuckets);
|
|
ghash_buckets_resize(gh, new_nbuckets);
|
|
}
|
|
|
|
/**
|
|
* Clear and reset \a gh buckets, reserve again buckets for given number of entries.
|
|
*/
|
|
BLI_INLINE void ghash_buckets_reset(GHash *gh, const uint nentries)
|
|
{
|
|
MEM_SAFE_FREE(gh->buckets);
|
|
|
|
#ifdef GHASH_USE_MODULO_BUCKETS
|
|
gh->cursize = 0;
|
|
gh->size_min = 0;
|
|
gh->nbuckets = hashsizes[gh->cursize];
|
|
#else
|
|
gh->bucket_bit = GHASH_BUCKET_BIT_MIN;
|
|
gh->bucket_bit_min = GHASH_BUCKET_BIT_MIN;
|
|
gh->nbuckets = 1u << gh->bucket_bit;
|
|
gh->bucket_mask = gh->nbuckets - 1;
|
|
#endif
|
|
|
|
gh->limit_grow = GHASH_LIMIT_GROW(gh->nbuckets);
|
|
gh->limit_shrink = GHASH_LIMIT_SHRINK(gh->nbuckets);
|
|
|
|
gh->nentries = 0;
|
|
|
|
ghash_buckets_expand(gh, nentries, (nentries != 0));
|
|
}
|
|
|
|
/**
|
|
* Internal lookup function.
|
|
* Takes hash and bucket_index arguments to avoid calling #ghash_keyhash and #ghash_bucket_index
|
|
* multiple times.
|
|
*/
|
|
BLI_INLINE Entry *ghash_lookup_entry_ex(GHash *gh, const void *key, const uint bucket_index)
|
|
{
|
|
Entry *e;
|
|
/* If we do not store GHash, not worth computing it for each entry here!
|
|
* Typically, comparison function will be quicker, and since it's needed in the end anyway... */
|
|
for (e = gh->buckets[bucket_index]; e; e = e->next) {
|
|
if (UNLIKELY(gh->cmpfp(key, e->key) == false)) {
|
|
return e;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* Internal lookup function, returns previous entry of target one too.
|
|
* Takes bucket_index argument to avoid calling #ghash_keyhash and #ghash_bucket_index
|
|
* multiple times.
|
|
* Useful when modifying buckets somehow (like removing an entry...).
|
|
*/
|
|
BLI_INLINE Entry *ghash_lookup_entry_prev_ex(GHash *gh,
|
|
const void *key,
|
|
Entry **r_e_prev,
|
|
const uint bucket_index)
|
|
{
|
|
/* If we do not store GHash, not worth computing it for each entry here!
|
|
* Typically, comparison function will be quicker, and since it's needed in the end anyway... */
|
|
for (Entry *e_prev = NULL, *e = gh->buckets[bucket_index]; e; e_prev = e, e = e->next) {
|
|
if (UNLIKELY(gh->cmpfp(key, e->key) == false)) {
|
|
*r_e_prev = e_prev;
|
|
return e;
|
|
}
|
|
}
|
|
|
|
*r_e_prev = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* Internal lookup function. Only wraps #ghash_lookup_entry_ex
|
|
*/
|
|
BLI_INLINE Entry *ghash_lookup_entry(GHash *gh, const void *key)
|
|
{
|
|
const uint hash = ghash_keyhash(gh, key);
|
|
const uint bucket_index = ghash_bucket_index(gh, hash);
|
|
return ghash_lookup_entry_ex(gh, key, bucket_index);
|
|
}
|
|
|
|
static GHash *ghash_new(GHashHashFP hashfp,
|
|
GHashCmpFP cmpfp,
|
|
const char *info,
|
|
const uint nentries_reserve,
|
|
const uint flag)
|
|
{
|
|
GHash *gh = MEM_mallocN(sizeof(*gh), info);
|
|
|
|
gh->hashfp = hashfp;
|
|
gh->cmpfp = cmpfp;
|
|
|
|
gh->buckets = NULL;
|
|
gh->flag = flag;
|
|
|
|
ghash_buckets_reset(gh, nentries_reserve);
|
|
gh->entrypool = BLI_mempool_create(
|
|
GHASH_ENTRY_SIZE(flag & GHASH_FLAG_IS_GSET), 64, 64, BLI_MEMPOOL_NOP);
|
|
|
|
return gh;
|
|
}
|
|
|
|
/**
|
|
* Internal insert function.
|
|
* Takes hash and bucket_index arguments to avoid calling #ghash_keyhash and #ghash_bucket_index
|
|
* multiple times.
|
|
*/
|
|
BLI_INLINE void ghash_insert_ex(GHash *gh, void *key, void *val, const uint bucket_index)
|
|
{
|
|
GHashEntry *e = BLI_mempool_alloc(gh->entrypool);
|
|
|
|
BLI_assert((gh->flag & GHASH_FLAG_ALLOW_DUPES) || (BLI_ghash_haskey(gh, key) == 0));
|
|
BLI_assert(!(gh->flag & GHASH_FLAG_IS_GSET));
|
|
|
|
e->e.next = gh->buckets[bucket_index];
|
|
e->e.key = key;
|
|
e->val = val;
|
|
gh->buckets[bucket_index] = (Entry *)e;
|
|
|
|
ghash_buckets_expand(gh, ++gh->nentries, false);
|
|
}
|
|
|
|
/**
|
|
* Insert function that takes a pre-allocated entry.
|
|
*/
|
|
BLI_INLINE void ghash_insert_ex_keyonly_entry(GHash *gh,
|
|
void *key,
|
|
const uint bucket_index,
|
|
Entry *e)
|
|
{
|
|
BLI_assert((gh->flag & GHASH_FLAG_ALLOW_DUPES) || (BLI_ghash_haskey(gh, key) == 0));
|
|
|
|
e->next = gh->buckets[bucket_index];
|
|
e->key = key;
|
|
gh->buckets[bucket_index] = e;
|
|
|
|
ghash_buckets_expand(gh, ++gh->nentries, false);
|
|
}
|
|
|
|
/**
|
|
* Insert function that doesn't set the value (use for GSet)
|
|
*/
|
|
BLI_INLINE void ghash_insert_ex_keyonly(GHash *gh, void *key, const uint bucket_index)
|
|
{
|
|
Entry *e = BLI_mempool_alloc(gh->entrypool);
|
|
|
|
BLI_assert((gh->flag & GHASH_FLAG_ALLOW_DUPES) || (BLI_ghash_haskey(gh, key) == 0));
|
|
BLI_assert((gh->flag & GHASH_FLAG_IS_GSET) != 0);
|
|
|
|
e->next = gh->buckets[bucket_index];
|
|
e->key = key;
|
|
gh->buckets[bucket_index] = e;
|
|
|
|
ghash_buckets_expand(gh, ++gh->nentries, false);
|
|
}
|
|
|
|
BLI_INLINE void ghash_insert(GHash *gh, void *key, void *val)
|
|
{
|
|
const uint hash = ghash_keyhash(gh, key);
|
|
const uint bucket_index = ghash_bucket_index(gh, hash);
|
|
|
|
ghash_insert_ex(gh, key, val, bucket_index);
|
|
}
|
|
|
|
BLI_INLINE bool ghash_insert_safe(GHash *gh,
|
|
void *key,
|
|
void *val,
|
|
const bool override,
|
|
GHashKeyFreeFP keyfreefp,
|
|
GHashValFreeFP valfreefp)
|
|
{
|
|
const uint hash = ghash_keyhash(gh, key);
|
|
const uint bucket_index = ghash_bucket_index(gh, hash);
|
|
GHashEntry *e = (GHashEntry *)ghash_lookup_entry_ex(gh, key, bucket_index);
|
|
|
|
BLI_assert(!(gh->flag & GHASH_FLAG_IS_GSET));
|
|
|
|
if (e) {
|
|
if (override) {
|
|
if (keyfreefp) {
|
|
keyfreefp(e->e.key);
|
|
}
|
|
if (valfreefp) {
|
|
valfreefp(e->val);
|
|
}
|
|
e->e.key = key;
|
|
e->val = val;
|
|
}
|
|
return false;
|
|
}
|
|
ghash_insert_ex(gh, key, val, bucket_index);
|
|
return true;
|
|
}
|
|
|
|
BLI_INLINE bool ghash_insert_safe_keyonly(GHash *gh,
|
|
void *key,
|
|
const bool override,
|
|
GHashKeyFreeFP keyfreefp)
|
|
{
|
|
const uint hash = ghash_keyhash(gh, key);
|
|
const uint bucket_index = ghash_bucket_index(gh, hash);
|
|
Entry *e = ghash_lookup_entry_ex(gh, key, bucket_index);
|
|
|
|
BLI_assert((gh->flag & GHASH_FLAG_IS_GSET) != 0);
|
|
|
|
if (e) {
|
|
if (override) {
|
|
if (keyfreefp) {
|
|
keyfreefp(e->key);
|
|
}
|
|
e->key = key;
|
|
}
|
|
return false;
|
|
}
|
|
ghash_insert_ex_keyonly(gh, key, bucket_index);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Remove the entry and return it, caller must free from gh->entrypool.
|
|
*/
|
|
static Entry *ghash_remove_ex(GHash *gh,
|
|
const void *key,
|
|
GHashKeyFreeFP keyfreefp,
|
|
GHashValFreeFP valfreefp,
|
|
const uint bucket_index)
|
|
{
|
|
Entry *e_prev;
|
|
Entry *e = ghash_lookup_entry_prev_ex(gh, key, &e_prev, bucket_index);
|
|
|
|
BLI_assert(!valfreefp || !(gh->flag & GHASH_FLAG_IS_GSET));
|
|
|
|
if (e) {
|
|
if (keyfreefp) {
|
|
keyfreefp(e->key);
|
|
}
|
|
if (valfreefp) {
|
|
valfreefp(((GHashEntry *)e)->val);
|
|
}
|
|
|
|
if (e_prev) {
|
|
e_prev->next = e->next;
|
|
}
|
|
else {
|
|
gh->buckets[bucket_index] = e->next;
|
|
}
|
|
|
|
ghash_buckets_contract(gh, --gh->nentries, false, false);
|
|
}
|
|
|
|
return e;
|
|
}
|
|
|
|
/**
|
|
* Remove a random entry and return it (or NULL if empty), caller must free from gh->entrypool.
|
|
*/
|
|
static Entry *ghash_pop(GHash *gh, GHashIterState *state)
|
|
{
|
|
uint curr_bucket = state->curr_bucket;
|
|
if (gh->nentries == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
/* Note: using first_bucket_index here allows us to avoid potential
|
|
* huge number of loops over buckets,
|
|
* in case we are popping from a large ghash with few items in it... */
|
|
curr_bucket = ghash_find_next_bucket_index(gh, curr_bucket);
|
|
|
|
Entry *e = gh->buckets[curr_bucket];
|
|
BLI_assert(e);
|
|
|
|
ghash_remove_ex(gh, e->key, NULL, NULL, curr_bucket);
|
|
|
|
state->curr_bucket = curr_bucket;
|
|
return e;
|
|
}
|
|
|
|
/**
|
|
* Run free callbacks for freeing entries.
|
|
*/
|
|
static void ghash_free_cb(GHash *gh, GHashKeyFreeFP keyfreefp, GHashValFreeFP valfreefp)
|
|
{
|
|
uint i;
|
|
|
|
BLI_assert(keyfreefp || valfreefp);
|
|
BLI_assert(!valfreefp || !(gh->flag & GHASH_FLAG_IS_GSET));
|
|
|
|
for (i = 0; i < gh->nbuckets; i++) {
|
|
Entry *e;
|
|
|
|
for (e = gh->buckets[i]; e; e = e->next) {
|
|
if (keyfreefp) {
|
|
keyfreefp(e->key);
|
|
}
|
|
if (valfreefp) {
|
|
valfreefp(((GHashEntry *)e)->val);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Copy the GHash.
|
|
*/
|
|
static GHash *ghash_copy(GHash *gh, GHashKeyCopyFP keycopyfp, GHashValCopyFP valcopyfp)
|
|
{
|
|
GHash *gh_new;
|
|
uint i;
|
|
/* This allows us to be sure to get the same number of buckets in gh_new as in ghash. */
|
|
const uint reserve_nentries_new = MAX2(GHASH_LIMIT_GROW(gh->nbuckets) - 1, gh->nentries);
|
|
|
|
BLI_assert(!valcopyfp || !(gh->flag & GHASH_FLAG_IS_GSET));
|
|
|
|
gh_new = ghash_new(gh->hashfp, gh->cmpfp, __func__, 0, gh->flag);
|
|
ghash_buckets_expand(gh_new, reserve_nentries_new, false);
|
|
|
|
BLI_assert(gh_new->nbuckets == gh->nbuckets);
|
|
|
|
for (i = 0; i < gh->nbuckets; i++) {
|
|
Entry *e;
|
|
|
|
for (e = gh->buckets[i]; e; e = e->next) {
|
|
Entry *e_new = BLI_mempool_alloc(gh_new->entrypool);
|
|
ghash_entry_copy(gh_new, e_new, gh, e, keycopyfp, valcopyfp);
|
|
|
|
/* Warning!
|
|
* This means entries in buckets in new copy will be in reversed order!
|
|
* This shall not be an issue though, since order should never be assumed in ghash. */
|
|
|
|
/* Note: We can use 'i' here, since we are sure that
|
|
* 'gh' and 'gh_new' have the same number of buckets! */
|
|
e_new->next = gh_new->buckets[i];
|
|
gh_new->buckets[i] = e_new;
|
|
}
|
|
}
|
|
gh_new->nentries = gh->nentries;
|
|
|
|
return gh_new;
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name GHash Public API
|
|
* \{ */
|
|
|
|
/**
|
|
* Creates a new, empty GHash.
|
|
*
|
|
* \param hashfp: Hash callback.
|
|
* \param cmpfp: Comparison callback.
|
|
* \param info: Identifier string for the GHash.
|
|
* \param nentries_reserve: Optionally reserve the number of members that the hash will hold.
|
|
* Use this to avoid resizing buckets if the size is known or can be closely approximated.
|
|
* \return An empty GHash.
|
|
*/
|
|
GHash *BLI_ghash_new_ex(GHashHashFP hashfp,
|
|
GHashCmpFP cmpfp,
|
|
const char *info,
|
|
const uint nentries_reserve)
|
|
{
|
|
return ghash_new(hashfp, cmpfp, info, nentries_reserve, 0);
|
|
}
|
|
|
|
/**
|
|
* Wraps #BLI_ghash_new_ex with zero entries reserved.
|
|
*/
|
|
GHash *BLI_ghash_new(GHashHashFP hashfp, GHashCmpFP cmpfp, const char *info)
|
|
{
|
|
return BLI_ghash_new_ex(hashfp, cmpfp, info, 0);
|
|
}
|
|
|
|
/**
|
|
* Copy given GHash. Keys and values are also copied if relevant callback is provided,
|
|
* else pointers remain the same.
|
|
*/
|
|
GHash *BLI_ghash_copy(GHash *gh, GHashKeyCopyFP keycopyfp, GHashValCopyFP valcopyfp)
|
|
{
|
|
return ghash_copy(gh, keycopyfp, valcopyfp);
|
|
}
|
|
|
|
/**
|
|
* Reserve given amount of entries (resize \a gh accordingly if needed).
|
|
*/
|
|
void BLI_ghash_reserve(GHash *gh, const uint nentries_reserve)
|
|
{
|
|
ghash_buckets_expand(gh, nentries_reserve, true);
|
|
ghash_buckets_contract(gh, nentries_reserve, true, false);
|
|
}
|
|
|
|
/**
|
|
* \return size of the GHash.
|
|
*/
|
|
uint BLI_ghash_len(GHash *gh)
|
|
{
|
|
return gh->nentries;
|
|
}
|
|
|
|
/**
|
|
* Insert a key/value pair into the \a gh.
|
|
*
|
|
* \note Duplicates are not checked,
|
|
* the caller is expected to ensure elements are unique unless
|
|
* GHASH_FLAG_ALLOW_DUPES flag is set.
|
|
*/
|
|
void BLI_ghash_insert(GHash *gh, void *key, void *val)
|
|
{
|
|
ghash_insert(gh, key, val);
|
|
}
|
|
|
|
/**
|
|
* Inserts a new value to a key that may already be in ghash.
|
|
*
|
|
* Avoids #BLI_ghash_remove, #BLI_ghash_insert calls (double lookups)
|
|
*
|
|
* \returns true if a new key has been added.
|
|
*/
|
|
bool BLI_ghash_reinsert(
|
|
GHash *gh, void *key, void *val, GHashKeyFreeFP keyfreefp, GHashValFreeFP valfreefp)
|
|
{
|
|
return ghash_insert_safe(gh, key, val, true, keyfreefp, valfreefp);
|
|
}
|
|
|
|
/**
|
|
* Replaces the key of an item in the \a gh.
|
|
*
|
|
* Use when a key is re-allocated or its memory location is changed.
|
|
*
|
|
* \returns The previous key or NULL if not found, the caller may free if it's needed.
|
|
*/
|
|
void *BLI_ghash_replace_key(GHash *gh, void *key)
|
|
{
|
|
const uint hash = ghash_keyhash(gh, key);
|
|
const uint bucket_index = ghash_bucket_index(gh, hash);
|
|
GHashEntry *e = (GHashEntry *)ghash_lookup_entry_ex(gh, key, bucket_index);
|
|
if (e != NULL) {
|
|
void *key_prev = e->e.key;
|
|
e->e.key = key;
|
|
return key_prev;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* Lookup the value of \a key in \a gh.
|
|
*
|
|
* \param key: The key to lookup.
|
|
* \returns the value for \a key or NULL.
|
|
*
|
|
* \note When NULL is a valid value, use #BLI_ghash_lookup_p to differentiate a missing key
|
|
* from a key with a NULL value. (Avoids calling #BLI_ghash_haskey before #BLI_ghash_lookup)
|
|
*/
|
|
void *BLI_ghash_lookup(GHash *gh, const void *key)
|
|
{
|
|
GHashEntry *e = (GHashEntry *)ghash_lookup_entry(gh, key);
|
|
BLI_assert(!(gh->flag & GHASH_FLAG_IS_GSET));
|
|
return e ? e->val : NULL;
|
|
}
|
|
|
|
/**
|
|
* A version of #BLI_ghash_lookup which accepts a fallback argument.
|
|
*/
|
|
void *BLI_ghash_lookup_default(GHash *gh, const void *key, void *val_default)
|
|
{
|
|
GHashEntry *e = (GHashEntry *)ghash_lookup_entry(gh, key);
|
|
BLI_assert(!(gh->flag & GHASH_FLAG_IS_GSET));
|
|
return e ? e->val : val_default;
|
|
}
|
|
|
|
/**
|
|
* Lookup a pointer to the value of \a key in \a gh.
|
|
*
|
|
* \param key: The key to lookup.
|
|
* \returns the pointer to value for \a key or NULL.
|
|
*
|
|
* \note This has 2 main benefits over #BLI_ghash_lookup.
|
|
* - A NULL return always means that \a key isn't in \a gh.
|
|
* - The value can be modified in-place without further function calls (faster).
|
|
*/
|
|
void **BLI_ghash_lookup_p(GHash *gh, const void *key)
|
|
{
|
|
GHashEntry *e = (GHashEntry *)ghash_lookup_entry(gh, key);
|
|
BLI_assert(!(gh->flag & GHASH_FLAG_IS_GSET));
|
|
return e ? &e->val : NULL;
|
|
}
|
|
|
|
/**
|
|
* Ensure \a key is exists in \a gh.
|
|
*
|
|
* This handles the common situation where the caller needs ensure a key is added to \a gh,
|
|
* constructing a new value in the case the key isn't found.
|
|
* Otherwise use the existing value.
|
|
*
|
|
* Such situations typically incur multiple lookups, however this function
|
|
* avoids them by ensuring the key is added,
|
|
* returning a pointer to the value so it can be used or initialized by the caller.
|
|
*
|
|
* \returns true when the value didn't need to be added.
|
|
* (when false, the caller _must_ initialize the value).
|
|
*/
|
|
bool BLI_ghash_ensure_p(GHash *gh, void *key, void ***r_val)
|
|
{
|
|
const uint hash = ghash_keyhash(gh, key);
|
|
const uint bucket_index = ghash_bucket_index(gh, hash);
|
|
GHashEntry *e = (GHashEntry *)ghash_lookup_entry_ex(gh, key, bucket_index);
|
|
const bool haskey = (e != NULL);
|
|
|
|
if (!haskey) {
|
|
e = BLI_mempool_alloc(gh->entrypool);
|
|
ghash_insert_ex_keyonly_entry(gh, key, bucket_index, (Entry *)e);
|
|
}
|
|
|
|
*r_val = &e->val;
|
|
return haskey;
|
|
}
|
|
|
|
/**
|
|
* A version of #BLI_ghash_ensure_p that allows caller to re-assign the key.
|
|
* Typically used when the key is to be duplicated.
|
|
*
|
|
* \warning Caller _must_ write to \a r_key when returning false.
|
|
*/
|
|
bool BLI_ghash_ensure_p_ex(GHash *gh, const void *key, void ***r_key, void ***r_val)
|
|
{
|
|
const uint hash = ghash_keyhash(gh, key);
|
|
const uint bucket_index = ghash_bucket_index(gh, hash);
|
|
GHashEntry *e = (GHashEntry *)ghash_lookup_entry_ex(gh, key, bucket_index);
|
|
const bool haskey = (e != NULL);
|
|
|
|
if (!haskey) {
|
|
/* Pass 'key' in case we resize. */
|
|
e = BLI_mempool_alloc(gh->entrypool);
|
|
ghash_insert_ex_keyonly_entry(gh, (void *)key, bucket_index, (Entry *)e);
|
|
e->e.key = NULL; /* caller must re-assign */
|
|
}
|
|
|
|
*r_key = &e->e.key;
|
|
*r_val = &e->val;
|
|
return haskey;
|
|
}
|
|
|
|
/**
|
|
* Remove \a key from \a gh, or return false if the key wasn't found.
|
|
*
|
|
* \param key: The key to remove.
|
|
* \param keyfreefp: Optional callback to free the key.
|
|
* \param valfreefp: Optional callback to free the value.
|
|
* \return true if \a key was removed from \a gh.
|
|
*/
|
|
bool BLI_ghash_remove(GHash *gh,
|
|
const void *key,
|
|
GHashKeyFreeFP keyfreefp,
|
|
GHashValFreeFP valfreefp)
|
|
{
|
|
const uint hash = ghash_keyhash(gh, key);
|
|
const uint bucket_index = ghash_bucket_index(gh, hash);
|
|
Entry *e = ghash_remove_ex(gh, key, keyfreefp, valfreefp, bucket_index);
|
|
if (e) {
|
|
BLI_mempool_free(gh->entrypool, e);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* same as above but return the value,
|
|
* no free value argument since it will be returned */
|
|
/**
|
|
* Remove \a key from \a gh, returning the value or NULL if the key wasn't found.
|
|
*
|
|
* \param key: The key to remove.
|
|
* \param keyfreefp: Optional callback to free the key.
|
|
* \return the value of \a key int \a gh or NULL.
|
|
*/
|
|
void *BLI_ghash_popkey(GHash *gh, const void *key, GHashKeyFreeFP keyfreefp)
|
|
{
|
|
const uint hash = ghash_keyhash(gh, key);
|
|
const uint bucket_index = ghash_bucket_index(gh, hash);
|
|
GHashEntry *e = (GHashEntry *)ghash_remove_ex(gh, key, keyfreefp, NULL, bucket_index);
|
|
BLI_assert(!(gh->flag & GHASH_FLAG_IS_GSET));
|
|
if (e) {
|
|
void *val = e->val;
|
|
BLI_mempool_free(gh->entrypool, e);
|
|
return val;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* \return true if the \a key is in \a gh.
|
|
*/
|
|
bool BLI_ghash_haskey(GHash *gh, const void *key)
|
|
{
|
|
return (ghash_lookup_entry(gh, key) != NULL);
|
|
}
|
|
|
|
/**
|
|
* Remove a random entry from \a gh, returning true
|
|
* if a key/value pair could be removed, false otherwise.
|
|
*
|
|
* \param r_key: The removed key.
|
|
* \param r_val: The removed value.
|
|
* \param state: Used for efficient removal.
|
|
* \return true if there was something to pop, false if ghash was already empty.
|
|
*/
|
|
bool BLI_ghash_pop(GHash *gh, GHashIterState *state, void **r_key, void **r_val)
|
|
{
|
|
GHashEntry *e = (GHashEntry *)ghash_pop(gh, state);
|
|
|
|
BLI_assert(!(gh->flag & GHASH_FLAG_IS_GSET));
|
|
|
|
if (e) {
|
|
*r_key = e->e.key;
|
|
*r_val = e->val;
|
|
|
|
BLI_mempool_free(gh->entrypool, e);
|
|
return true;
|
|
}
|
|
|
|
*r_key = *r_val = NULL;
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Reset \a gh clearing all entries.
|
|
*
|
|
* \param keyfreefp: Optional callback to free the key.
|
|
* \param valfreefp: Optional callback to free the value.
|
|
* \param nentries_reserve: Optionally reserve the number of members that the hash will hold.
|
|
*/
|
|
void BLI_ghash_clear_ex(GHash *gh,
|
|
GHashKeyFreeFP keyfreefp,
|
|
GHashValFreeFP valfreefp,
|
|
const uint nentries_reserve)
|
|
{
|
|
if (keyfreefp || valfreefp) {
|
|
ghash_free_cb(gh, keyfreefp, valfreefp);
|
|
}
|
|
|
|
ghash_buckets_reset(gh, nentries_reserve);
|
|
BLI_mempool_clear_ex(gh->entrypool, nentries_reserve ? (int)nentries_reserve : -1);
|
|
}
|
|
|
|
/**
|
|
* Wraps #BLI_ghash_clear_ex with zero entries reserved.
|
|
*/
|
|
void BLI_ghash_clear(GHash *gh, GHashKeyFreeFP keyfreefp, GHashValFreeFP valfreefp)
|
|
{
|
|
BLI_ghash_clear_ex(gh, keyfreefp, valfreefp, 0);
|
|
}
|
|
|
|
/**
|
|
* Frees the GHash and its members.
|
|
*
|
|
* \param gh: The GHash to free.
|
|
* \param keyfreefp: Optional callback to free the key.
|
|
* \param valfreefp: Optional callback to free the value.
|
|
*/
|
|
void BLI_ghash_free(GHash *gh, GHashKeyFreeFP keyfreefp, GHashValFreeFP valfreefp)
|
|
{
|
|
BLI_assert((int)gh->nentries == BLI_mempool_len(gh->entrypool));
|
|
if (keyfreefp || valfreefp) {
|
|
ghash_free_cb(gh, keyfreefp, valfreefp);
|
|
}
|
|
|
|
MEM_freeN(gh->buckets);
|
|
BLI_mempool_destroy(gh->entrypool);
|
|
MEM_freeN(gh);
|
|
}
|
|
|
|
/**
|
|
* Sets a GHash flag.
|
|
*/
|
|
void BLI_ghash_flag_set(GHash *gh, uint flag)
|
|
{
|
|
gh->flag |= flag;
|
|
}
|
|
|
|
/**
|
|
* Clear a GHash flag.
|
|
*/
|
|
void BLI_ghash_flag_clear(GHash *gh, uint flag)
|
|
{
|
|
gh->flag &= ~flag;
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name GHash Iterator API
|
|
* \{ */
|
|
|
|
/**
|
|
* Create a new GHashIterator. The hash table must not be mutated
|
|
* while the iterator is in use, and the iterator will step exactly
|
|
* #BLI_ghash_len(gh) times before becoming done.
|
|
*
|
|
* \param gh: The GHash to iterate over.
|
|
* \return Pointer to a new iterator.
|
|
*/
|
|
GHashIterator *BLI_ghashIterator_new(GHash *gh)
|
|
{
|
|
GHashIterator *ghi = MEM_mallocN(sizeof(*ghi), "ghash iterator");
|
|
BLI_ghashIterator_init(ghi, gh);
|
|
return ghi;
|
|
}
|
|
|
|
/**
|
|
* Init an already allocated GHashIterator. The hash table must not
|
|
* be mutated while the iterator is in use, and the iterator will
|
|
* step exactly #BLI_ghash_len(gh) times before becoming done.
|
|
*
|
|
* \param ghi: The GHashIterator to initialize.
|
|
* \param gh: The GHash to iterate over.
|
|
*/
|
|
void BLI_ghashIterator_init(GHashIterator *ghi, GHash *gh)
|
|
{
|
|
ghi->gh = gh;
|
|
ghi->curEntry = NULL;
|
|
ghi->curBucket = UINT_MAX; /* wraps to zero */
|
|
if (gh->nentries) {
|
|
do {
|
|
ghi->curBucket++;
|
|
if (UNLIKELY(ghi->curBucket == ghi->gh->nbuckets)) {
|
|
break;
|
|
}
|
|
ghi->curEntry = ghi->gh->buckets[ghi->curBucket];
|
|
} while (!ghi->curEntry);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Steps the iterator to the next index.
|
|
*
|
|
* \param ghi: The iterator.
|
|
*/
|
|
void BLI_ghashIterator_step(GHashIterator *ghi)
|
|
{
|
|
if (ghi->curEntry) {
|
|
ghi->curEntry = ghi->curEntry->next;
|
|
while (!ghi->curEntry) {
|
|
ghi->curBucket++;
|
|
if (ghi->curBucket == ghi->gh->nbuckets) {
|
|
break;
|
|
}
|
|
ghi->curEntry = ghi->gh->buckets[ghi->curBucket];
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Free a GHashIterator.
|
|
*
|
|
* \param ghi: The iterator to free.
|
|
*/
|
|
void BLI_ghashIterator_free(GHashIterator *ghi)
|
|
{
|
|
MEM_freeN(ghi);
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name GSet Public API
|
|
*
|
|
* Use ghash API to give 'set' functionality
|
|
* \{ */
|
|
GSet *BLI_gset_new_ex(GSetHashFP hashfp,
|
|
GSetCmpFP cmpfp,
|
|
const char *info,
|
|
const uint nentries_reserve)
|
|
{
|
|
return (GSet *)ghash_new(hashfp, cmpfp, info, nentries_reserve, GHASH_FLAG_IS_GSET);
|
|
}
|
|
|
|
GSet *BLI_gset_new(GSetHashFP hashfp, GSetCmpFP cmpfp, const char *info)
|
|
{
|
|
return BLI_gset_new_ex(hashfp, cmpfp, info, 0);
|
|
}
|
|
|
|
/**
|
|
* Copy given GSet. Keys are also copied if callback is provided, else pointers remain the same.
|
|
*/
|
|
GSet *BLI_gset_copy(GSet *gs, GHashKeyCopyFP keycopyfp)
|
|
{
|
|
return (GSet *)ghash_copy((GHash *)gs, keycopyfp, NULL);
|
|
}
|
|
|
|
uint BLI_gset_len(GSet *gs)
|
|
{
|
|
return ((GHash *)gs)->nentries;
|
|
}
|
|
|
|
/**
|
|
* Adds the key to the set (no checks for unique keys!).
|
|
* Matching #BLI_ghash_insert
|
|
*/
|
|
void BLI_gset_insert(GSet *gs, void *key)
|
|
{
|
|
const uint hash = ghash_keyhash((GHash *)gs, key);
|
|
const uint bucket_index = ghash_bucket_index((GHash *)gs, hash);
|
|
ghash_insert_ex_keyonly((GHash *)gs, key, bucket_index);
|
|
}
|
|
|
|
/**
|
|
* A version of BLI_gset_insert which checks first if the key is in the set.
|
|
* \returns true if a new key has been added.
|
|
*
|
|
* \note GHash has no equivalent to this because typically the value would be different.
|
|
*/
|
|
bool BLI_gset_add(GSet *gs, void *key)
|
|
{
|
|
return ghash_insert_safe_keyonly((GHash *)gs, key, false, NULL);
|
|
}
|
|
|
|
/**
|
|
* Set counterpart to #BLI_ghash_ensure_p_ex.
|
|
* similar to BLI_gset_add, except it returns the key pointer.
|
|
*
|
|
* \warning Caller _must_ write to \a r_key when returning false.
|
|
*/
|
|
bool BLI_gset_ensure_p_ex(GSet *gs, const void *key, void ***r_key)
|
|
{
|
|
const uint hash = ghash_keyhash((GHash *)gs, key);
|
|
const uint bucket_index = ghash_bucket_index((GHash *)gs, hash);
|
|
GSetEntry *e = (GSetEntry *)ghash_lookup_entry_ex((GHash *)gs, key, bucket_index);
|
|
const bool haskey = (e != NULL);
|
|
|
|
if (!haskey) {
|
|
/* Pass 'key' in case we resize */
|
|
e = BLI_mempool_alloc(((GHash *)gs)->entrypool);
|
|
ghash_insert_ex_keyonly_entry((GHash *)gs, (void *)key, bucket_index, (Entry *)e);
|
|
e->key = NULL; /* caller must re-assign */
|
|
}
|
|
|
|
*r_key = &e->key;
|
|
return haskey;
|
|
}
|
|
|
|
/**
|
|
* Adds the key to the set (duplicates are managed).
|
|
* Matching #BLI_ghash_reinsert
|
|
*
|
|
* \returns true if a new key has been added.
|
|
*/
|
|
bool BLI_gset_reinsert(GSet *gs, void *key, GSetKeyFreeFP keyfreefp)
|
|
{
|
|
return ghash_insert_safe_keyonly((GHash *)gs, key, true, keyfreefp);
|
|
}
|
|
|
|
/**
|
|
* Replaces the key to the set if it's found.
|
|
* Matching #BLI_ghash_replace_key
|
|
*
|
|
* \returns The old key or NULL if not found.
|
|
*/
|
|
void *BLI_gset_replace_key(GSet *gs, void *key)
|
|
{
|
|
return BLI_ghash_replace_key((GHash *)gs, key);
|
|
}
|
|
|
|
bool BLI_gset_remove(GSet *gs, const void *key, GSetKeyFreeFP keyfreefp)
|
|
{
|
|
return BLI_ghash_remove((GHash *)gs, key, keyfreefp, NULL);
|
|
}
|
|
|
|
bool BLI_gset_haskey(GSet *gs, const void *key)
|
|
{
|
|
return (ghash_lookup_entry((GHash *)gs, key) != NULL);
|
|
}
|
|
|
|
/**
|
|
* Remove a random entry from \a gs, returning true if a key could be removed, false otherwise.
|
|
*
|
|
* \param r_key: The removed key.
|
|
* \param state: Used for efficient removal.
|
|
* \return true if there was something to pop, false if gset was already empty.
|
|
*/
|
|
bool BLI_gset_pop(GSet *gs, GSetIterState *state, void **r_key)
|
|
{
|
|
GSetEntry *e = (GSetEntry *)ghash_pop((GHash *)gs, (GHashIterState *)state);
|
|
|
|
if (e) {
|
|
*r_key = e->key;
|
|
|
|
BLI_mempool_free(((GHash *)gs)->entrypool, e);
|
|
return true;
|
|
}
|
|
|
|
*r_key = NULL;
|
|
return false;
|
|
}
|
|
|
|
void BLI_gset_clear_ex(GSet *gs, GSetKeyFreeFP keyfreefp, const uint nentries_reserve)
|
|
{
|
|
BLI_ghash_clear_ex((GHash *)gs, keyfreefp, NULL, nentries_reserve);
|
|
}
|
|
|
|
void BLI_gset_clear(GSet *gs, GSetKeyFreeFP keyfreefp)
|
|
{
|
|
BLI_ghash_clear((GHash *)gs, keyfreefp, NULL);
|
|
}
|
|
|
|
void BLI_gset_free(GSet *gs, GSetKeyFreeFP keyfreefp)
|
|
{
|
|
BLI_ghash_free((GHash *)gs, keyfreefp, NULL);
|
|
}
|
|
|
|
void BLI_gset_flag_set(GSet *gs, uint flag)
|
|
{
|
|
((GHash *)gs)->flag |= flag;
|
|
}
|
|
|
|
void BLI_gset_flag_clear(GSet *gs, uint flag)
|
|
{
|
|
((GHash *)gs)->flag &= ~flag;
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name GSet Combined Key/Value Usage
|
|
*
|
|
* \note Not typical ``set`` use, only use when the pointer identity matters.
|
|
* This can be useful when the key references data stored outside the GSet.
|
|
* \{ */
|
|
|
|
/**
|
|
* Returns the pointer to the key if it's found.
|
|
*/
|
|
void *BLI_gset_lookup(GSet *gs, const void *key)
|
|
{
|
|
Entry *e = ghash_lookup_entry((GHash *)gs, key);
|
|
return e ? e->key : NULL;
|
|
}
|
|
|
|
/**
|
|
* Returns the pointer to the key if it's found, removing it from the GSet.
|
|
* \note Caller must handle freeing.
|
|
*/
|
|
void *BLI_gset_pop_key(GSet *gs, const void *key)
|
|
{
|
|
const uint hash = ghash_keyhash((GHash *)gs, key);
|
|
const uint bucket_index = ghash_bucket_index((GHash *)gs, hash);
|
|
Entry *e = ghash_remove_ex((GHash *)gs, key, NULL, NULL, bucket_index);
|
|
if (e) {
|
|
void *key_ret = e->key;
|
|
BLI_mempool_free(((GHash *)gs)->entrypool, e);
|
|
return key_ret;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Debugging & Introspection
|
|
* \{ */
|
|
|
|
#include "BLI_math.h"
|
|
|
|
/**
|
|
* \return number of buckets in the GHash.
|
|
*/
|
|
int BLI_ghash_buckets_len(GHash *gh)
|
|
{
|
|
return (int)gh->nbuckets;
|
|
}
|
|
int BLI_gset_buckets_len(GSet *gs)
|
|
{
|
|
return BLI_ghash_buckets_len((GHash *)gs);
|
|
}
|
|
|
|
/**
|
|
* Measure how well the hash function performs (1.0 is approx as good as random distribution),
|
|
* and return a few other stats like load,
|
|
* variance of the distribution of the entries in the buckets, etc.
|
|
*
|
|
* Smaller is better!
|
|
*/
|
|
double BLI_ghash_calc_quality_ex(GHash *gh,
|
|
double *r_load,
|
|
double *r_variance,
|
|
double *r_prop_empty_buckets,
|
|
double *r_prop_overloaded_buckets,
|
|
int *r_biggest_bucket)
|
|
{
|
|
double mean;
|
|
uint i;
|
|
|
|
if (gh->nentries == 0) {
|
|
if (r_load) {
|
|
*r_load = 0.0;
|
|
}
|
|
if (r_variance) {
|
|
*r_variance = 0.0;
|
|
}
|
|
if (r_prop_empty_buckets) {
|
|
*r_prop_empty_buckets = 1.0;
|
|
}
|
|
if (r_prop_overloaded_buckets) {
|
|
*r_prop_overloaded_buckets = 0.0;
|
|
}
|
|
if (r_biggest_bucket) {
|
|
*r_biggest_bucket = 0;
|
|
}
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
mean = (double)gh->nentries / (double)gh->nbuckets;
|
|
if (r_load) {
|
|
*r_load = mean;
|
|
}
|
|
if (r_biggest_bucket) {
|
|
*r_biggest_bucket = 0;
|
|
}
|
|
|
|
if (r_variance) {
|
|
/* We already know our mean (i.e. load factor), easy to compute variance.
|
|
* See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Two-pass_algorithm
|
|
*/
|
|
double sum = 0.0;
|
|
for (i = 0; i < gh->nbuckets; i++) {
|
|
int count = 0;
|
|
Entry *e;
|
|
for (e = gh->buckets[i]; e; e = e->next) {
|
|
count++;
|
|
}
|
|
sum += ((double)count - mean) * ((double)count - mean);
|
|
}
|
|
*r_variance = sum / (double)(gh->nbuckets - 1);
|
|
}
|
|
|
|
{
|
|
uint64_t sum = 0;
|
|
uint64_t overloaded_buckets_threshold = (uint64_t)max_ii(GHASH_LIMIT_GROW(1), 1);
|
|
uint64_t sum_overloaded = 0;
|
|
uint64_t sum_empty = 0;
|
|
|
|
for (i = 0; i < gh->nbuckets; i++) {
|
|
uint64_t count = 0;
|
|
Entry *e;
|
|
for (e = gh->buckets[i]; e; e = e->next) {
|
|
count++;
|
|
}
|
|
if (r_biggest_bucket) {
|
|
*r_biggest_bucket = max_ii(*r_biggest_bucket, (int)count);
|
|
}
|
|
if (r_prop_overloaded_buckets && (count > overloaded_buckets_threshold)) {
|
|
sum_overloaded++;
|
|
}
|
|
if (r_prop_empty_buckets && !count) {
|
|
sum_empty++;
|
|
}
|
|
sum += count * (count + 1);
|
|
}
|
|
if (r_prop_overloaded_buckets) {
|
|
*r_prop_overloaded_buckets = (double)sum_overloaded / (double)gh->nbuckets;
|
|
}
|
|
if (r_prop_empty_buckets) {
|
|
*r_prop_empty_buckets = (double)sum_empty / (double)gh->nbuckets;
|
|
}
|
|
return ((double)sum * (double)gh->nbuckets /
|
|
((double)gh->nentries * (gh->nentries + 2 * gh->nbuckets - 1)));
|
|
}
|
|
}
|
|
double BLI_gset_calc_quality_ex(GSet *gs,
|
|
double *r_load,
|
|
double *r_variance,
|
|
double *r_prop_empty_buckets,
|
|
double *r_prop_overloaded_buckets,
|
|
int *r_biggest_bucket)
|
|
{
|
|
return BLI_ghash_calc_quality_ex((GHash *)gs,
|
|
r_load,
|
|
r_variance,
|
|
r_prop_empty_buckets,
|
|
r_prop_overloaded_buckets,
|
|
r_biggest_bucket);
|
|
}
|
|
|
|
double BLI_ghash_calc_quality(GHash *gh)
|
|
{
|
|
return BLI_ghash_calc_quality_ex(gh, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
double BLI_gset_calc_quality(GSet *gs)
|
|
{
|
|
return BLI_ghash_calc_quality_ex((GHash *)gs, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
/** \} */
|