332 lines
9.4 KiB
C
332 lines
9.4 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
/** \file
|
|
* \ingroup bli
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "BLI_convexhull_2d.h"
|
|
#include "BLI_math.h"
|
|
#include "BLI_strict_flags.h"
|
|
#include "BLI_utildefines.h"
|
|
|
|
/* Copyright 2001, softSurfer (http://www.softsurfer.com)
|
|
* This code may be freely used and modified for any purpose
|
|
* providing that this copyright notice is included with it.
|
|
* SoftSurfer makes no warranty for this code, and cannot be held
|
|
* liable for any real or imagined damage resulting from its use.
|
|
* Users of this code must verify correctness for their application.
|
|
* http://softsurfer.com/Archive/algorithm_0203/algorithm_0203.htm
|
|
*/
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Main Convex-Hull Calculation
|
|
* \{ */
|
|
|
|
/**
|
|
* tests if a point is Left|On|Right of an infinite line.
|
|
* Input: three points P0, P1, and P2
|
|
* \returns > 0.0 for P2 left of the line through P0 and P1.
|
|
* = 0.0 for P2 on the line.
|
|
* < 0.0 for P2 right of the line.
|
|
*/
|
|
static float is_left(const float p0[2], const float p1[2], const float p2[2])
|
|
{
|
|
return (p1[0] - p0[0]) * (p2[1] - p0[1]) - (p2[0] - p0[0]) * (p1[1] - p0[1]);
|
|
}
|
|
|
|
/**
|
|
* A.M. Andrew's monotone chain 2D convex hull algorithm
|
|
*
|
|
* \param points: An array of 2D points presorted by increasing x and y-coords.
|
|
* \param n: The number of points in points.
|
|
* \param r_points: An array of the convex hull vertex indices (max is n).
|
|
* \returns the number of points in r_points.
|
|
*/
|
|
int BLI_convexhull_2d_sorted(const float (*points)[2], const int n, int r_points[])
|
|
{
|
|
/* the output array r_points[] will be used as the stack */
|
|
int bot = 0;
|
|
int top = -1; /* indices for bottom and top of the stack */
|
|
int i; /* array scan index */
|
|
int minmin, minmax;
|
|
int maxmin, maxmax;
|
|
float xmax;
|
|
|
|
/* Get the indices of points with min x-coord and min|max y-coord */
|
|
float xmin = points[0][0];
|
|
for (i = 1; i < n; i++) {
|
|
if (points[i][0] != xmin) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
minmin = 0;
|
|
minmax = i - 1;
|
|
if (minmax == n - 1) { /* degenerate case: all x-coords == xmin */
|
|
r_points[++top] = minmin;
|
|
if (points[minmax][1] != points[minmin][1]) {
|
|
/* a nontrivial segment */
|
|
r_points[++top] = minmax;
|
|
}
|
|
r_points[++top] = minmin; /* add polygon endpoint */
|
|
return top + 1;
|
|
}
|
|
|
|
/* Get the indices of points with max x-coord and min|max y-coord */
|
|
|
|
maxmax = n - 1;
|
|
xmax = points[n - 1][0];
|
|
for (i = n - 2; i >= 0; i--) {
|
|
if (points[i][0] != xmax) {
|
|
break;
|
|
}
|
|
}
|
|
maxmin = i + 1;
|
|
|
|
/* Compute the lower hull on the stack r_points */
|
|
r_points[++top] = minmin; /* push minmin point onto stack */
|
|
i = minmax;
|
|
while (++i <= maxmin) {
|
|
/* the lower line joins points[minmin] with points[maxmin] */
|
|
if (is_left(points[minmin], points[maxmin], points[i]) >= 0 && i < maxmin) {
|
|
continue; /* ignore points[i] above or on the lower line */
|
|
}
|
|
|
|
while (top > 0) { /* there are at least 2 points on the stack */
|
|
/* test if points[i] is left of the line at the stack top */
|
|
if (is_left(points[r_points[top - 1]], points[r_points[top]], points[i]) > 0.0f) {
|
|
break; /* points[i] is a new hull vertex */
|
|
}
|
|
top--; /* pop top point off stack */
|
|
}
|
|
|
|
r_points[++top] = i; /* push points[i] onto stack */
|
|
}
|
|
|
|
/* Next, compute the upper hull on the stack r_points above the bottom hull */
|
|
if (maxmax != maxmin) { /* if distinct xmax points */
|
|
r_points[++top] = maxmax; /* push maxmax point onto stack */
|
|
}
|
|
|
|
bot = top; /* the bottom point of the upper hull stack */
|
|
i = maxmin;
|
|
while (--i >= minmax) {
|
|
/* the upper line joins points[maxmax] with points[minmax] */
|
|
if (is_left(points[maxmax], points[minmax], points[i]) >= 0 && i > minmax) {
|
|
continue; /* ignore points[i] below or on the upper line */
|
|
}
|
|
|
|
while (top > bot) { /* at least 2 points on the upper stack */
|
|
/* test if points[i] is left of the line at the stack top */
|
|
if (is_left(points[r_points[top - 1]], points[r_points[top]], points[i]) > 0.0f) {
|
|
break; /* points[i] is a new hull vertex */
|
|
}
|
|
top--; /* pop top point off stack */
|
|
}
|
|
|
|
if (points[i][0] == points[r_points[0]][0] && points[i][1] == points[r_points[0]][1]) {
|
|
return top + 1; /* special case (mgomes) */
|
|
}
|
|
|
|
r_points[++top] = i; /* push points[i] onto stack */
|
|
}
|
|
|
|
if (minmax != minmin) {
|
|
r_points[++top] = minmin; /* push joining endpoint onto stack */
|
|
}
|
|
|
|
return top + 1;
|
|
}
|
|
|
|
struct PointRef {
|
|
const float *pt; /* 2d vector */
|
|
};
|
|
|
|
static int pointref_cmp_yx(const void *a_, const void *b_)
|
|
{
|
|
const struct PointRef *a = a_;
|
|
const struct PointRef *b = b_;
|
|
|
|
if (a->pt[1] > b->pt[1]) {
|
|
return 1;
|
|
}
|
|
if (a->pt[1] < b->pt[1]) {
|
|
return -1;
|
|
}
|
|
|
|
if (a->pt[0] > b->pt[0]) {
|
|
return 1;
|
|
}
|
|
if (a->pt[0] < b->pt[0]) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* A.M. Andrew's monotone chain 2D convex hull algorithm
|
|
*
|
|
* \param points: An array of 2D points.
|
|
* \param n: The number of points in points.
|
|
* \param r_points: An array of the convex hull vertex indices (max is n).
|
|
* _must_ be allocated as ``n * 2`` because of how its used internally,
|
|
* even though the final result will be no more than \a n in size.
|
|
* \returns the number of points in r_points.
|
|
*/
|
|
int BLI_convexhull_2d(const float (*points)[2], const int n, int r_points[])
|
|
{
|
|
struct PointRef *points_ref = MEM_mallocN(sizeof(*points_ref) * (size_t)n, __func__);
|
|
float(*points_sort)[2] = MEM_mallocN(sizeof(*points_sort) * (size_t)n, __func__);
|
|
int *points_map;
|
|
int tot, i;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
points_ref[i].pt = points[i];
|
|
}
|
|
|
|
/* Sort the points by X, then by Y (required by the algorithm) */
|
|
qsort(points_ref, (size_t)n, sizeof(struct PointRef), pointref_cmp_yx);
|
|
|
|
for (i = 0; i < n; i++) {
|
|
memcpy(points_sort[i], points_ref[i].pt, sizeof(float[2]));
|
|
}
|
|
|
|
tot = BLI_convexhull_2d_sorted(points_sort, n, r_points);
|
|
|
|
/* map back to the original index values */
|
|
points_map = (int *)points_sort; /* abuse float array for temp storage */
|
|
for (i = 0; i < tot; i++) {
|
|
points_map[i] = (int)((const float(*)[2])points_ref[r_points[i]].pt - points);
|
|
}
|
|
|
|
memcpy(r_points, points_map, (size_t)tot * sizeof(*points_map));
|
|
|
|
MEM_freeN(points_ref);
|
|
MEM_freeN(points_sort);
|
|
|
|
return tot;
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* Helper functions */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Utility Convex-Hull Functions
|
|
* \{ */
|
|
|
|
/**
|
|
* \return The best angle for fitting the convex hull to an axis aligned bounding box.
|
|
*
|
|
* Intended to be used with #BLI_convexhull_2d
|
|
*
|
|
* \param points_hull: Ordered hull points
|
|
* (result of #BLI_convexhull_2d mapped to a contiguous array).
|
|
*
|
|
* \note we could return the index of the best edge too if its needed.
|
|
*/
|
|
float BLI_convexhull_aabb_fit_hull_2d(const float (*points_hull)[2], unsigned int n)
|
|
{
|
|
unsigned int i, i_prev;
|
|
float area_best = FLT_MAX;
|
|
float dvec_best[2]; /* best angle, delay atan2 */
|
|
|
|
i_prev = n - 1;
|
|
for (i = 0; i < n; i++) {
|
|
const float *ev_a = points_hull[i];
|
|
const float *ev_b = points_hull[i_prev];
|
|
float dvec[2]; /* 2d rotation matrix */
|
|
|
|
sub_v2_v2v2(dvec, ev_a, ev_b);
|
|
if (normalize_v2(dvec) != 0.0f) {
|
|
/* rotation matrix */
|
|
float min[2] = {FLT_MAX, FLT_MAX}, max[2] = {-FLT_MAX, -FLT_MAX};
|
|
unsigned int j;
|
|
float area;
|
|
|
|
for (j = 0; j < n; j++) {
|
|
float tvec[2];
|
|
mul_v2_v2_cw(tvec, dvec, points_hull[j]);
|
|
|
|
min[0] = min_ff(min[0], tvec[0]);
|
|
min[1] = min_ff(min[1], tvec[1]);
|
|
|
|
max[0] = max_ff(max[0], tvec[0]);
|
|
max[1] = max_ff(max[1], tvec[1]);
|
|
|
|
area = (max[0] - min[0]) * (max[1] - min[1]);
|
|
if (area > area_best) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (area < area_best) {
|
|
area_best = area;
|
|
copy_v2_v2(dvec_best, dvec);
|
|
}
|
|
}
|
|
|
|
i_prev = i;
|
|
}
|
|
|
|
return (area_best != FLT_MAX) ? atan2f(dvec_best[0], dvec_best[1]) : 0.0f;
|
|
}
|
|
|
|
/**
|
|
* Wrap #BLI_convexhull_aabb_fit_hull_2d and do the convex hull calculation.
|
|
*
|
|
* \param points: arbitrary 2d points.
|
|
*/
|
|
float BLI_convexhull_aabb_fit_points_2d(const float (*points)[2], unsigned int n)
|
|
{
|
|
int *index_map;
|
|
int tot;
|
|
|
|
float angle;
|
|
|
|
index_map = MEM_mallocN(sizeof(*index_map) * n * 2, __func__);
|
|
|
|
tot = BLI_convexhull_2d(points, (int)n, index_map);
|
|
|
|
if (tot) {
|
|
float(*points_hull)[2];
|
|
int j;
|
|
|
|
points_hull = MEM_mallocN(sizeof(*points_hull) * (size_t)tot, __func__);
|
|
for (j = 0; j < tot; j++) {
|
|
copy_v2_v2(points_hull[j], points[index_map[j]]);
|
|
}
|
|
|
|
angle = BLI_convexhull_aabb_fit_hull_2d(points_hull, (unsigned int)tot);
|
|
MEM_freeN(points_hull);
|
|
}
|
|
else {
|
|
angle = 0.0f;
|
|
}
|
|
|
|
MEM_freeN(index_map);
|
|
|
|
return angle;
|
|
}
|
|
|
|
/** \} */
|