This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/simulation/intern/ConstrainedConjugateGradient.h

337 lines
11 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) Blender Foundation
* All rights reserved.
*/
#pragma once
/** \file
* \ingroup sim
*/
#include <Eigen/Core>
namespace Eigen {
namespace internal {
/** \internal Low-level conjugate gradient algorithm
* \param mat: The matrix A
* \param rhs: The right hand side vector b
* \param x: On input and initial solution, on output the computed solution.
* \param precond: A preconditioner being able to efficiently solve for an
* approximation of Ax=b (regardless of b)
* \param iters: On input the max number of iteration,
* on output the number of performed iterations.
* \param tol_error: On input the tolerance error,
* on output an estimation of the relative error.
*/
template<typename MatrixType,
typename Rhs,
typename Dest,
typename FilterMatrixType,
typename Preconditioner>
EIGEN_DONT_INLINE void constrained_conjugate_gradient(const MatrixType &mat,
const Rhs &rhs,
Dest &x,
const FilterMatrixType &filter,
const Preconditioner &precond,
int &iters,
typename Dest::RealScalar &tol_error)
{
using std::abs;
using std::sqrt;
typedef typename Dest::RealScalar RealScalar;
typedef typename Dest::Scalar Scalar;
typedef Matrix<Scalar, Dynamic, 1> VectorType;
RealScalar tol = tol_error;
int maxIters = iters;
int n = mat.cols();
VectorType residual = filter * (rhs - mat * x); /* initial residual */
RealScalar rhsNorm2 = (filter * rhs).squaredNorm();
if (rhsNorm2 == 0) {
/* XXX TODO set constrained result here */
x.setZero();
iters = 0;
tol_error = 0;
return;
}
RealScalar threshold = tol * tol * rhsNorm2;
RealScalar residualNorm2 = residual.squaredNorm();
if (residualNorm2 < threshold) {
iters = 0;
tol_error = sqrt(residualNorm2 / rhsNorm2);
return;
}
VectorType p(n);
p = filter * precond.solve(residual); /* initial search direction */
VectorType z(n), tmp(n);
RealScalar absNew = numext::real(
residual.dot(p)); /* the square of the absolute value of r scaled by invM */
int i = 0;
while (i < maxIters) {
tmp.noalias() = filter * (mat * p); /* the bottleneck of the algorithm */
Scalar alpha = absNew / p.dot(tmp); /* the amount we travel on dir */
x += alpha * p; /* update solution */
residual -= alpha * tmp; /* update residue */
residualNorm2 = residual.squaredNorm();
if (residualNorm2 < threshold) {
break;
}
z = precond.solve(residual); /* approximately solve for "A z = residual" */
RealScalar absOld = absNew;
absNew = numext::real(residual.dot(z)); /* update the absolute value of r */
RealScalar beta =
absNew /
absOld; /* calculate the Gram-Schmidt value used to create the new search direction */
p = filter * (z + beta * p); /* update search direction */
i++;
}
tol_error = sqrt(residualNorm2 / rhsNorm2);
iters = i;
}
} // namespace internal
#if 0 /* unused */
template<typename MatrixType> struct MatrixFilter {
MatrixFilter() : m_cmat(NULL)
{
}
MatrixFilter(const MatrixType &cmat) : m_cmat(&cmat)
{
}
void setMatrix(const MatrixType &cmat)
{
m_cmat = &cmat;
}
template<typename VectorType> void apply(VectorType v) const
{
v = (*m_cmat) * v;
}
protected:
const MatrixType *m_cmat;
};
#endif
template<typename _MatrixType,
int _UpLo = Lower,
typename _FilterMatrixType = _MatrixType,
typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar>>
class ConstrainedConjugateGradient;
namespace internal {
template<typename _MatrixType, int _UpLo, typename _FilterMatrixType, typename _Preconditioner>
struct traits<
ConstrainedConjugateGradient<_MatrixType, _UpLo, _FilterMatrixType, _Preconditioner>> {
typedef _MatrixType MatrixType;
typedef _FilterMatrixType FilterMatrixType;
typedef _Preconditioner Preconditioner;
};
} // namespace internal
/** \ingroup IterativeLinearSolvers_Module
* \brief A conjugate gradient solver for sparse self-adjoint problems with additional constraints
*
* This class allows to solve for A.x = b sparse linear problems using a conjugate gradient
* algorithm. The sparse matrix A must be selfadjoint. The vectors x and b can be either dense or
* sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
* \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
*
* The maximal number of iterations and tolerance value can be controlled via the
* setMaxIterations() and setTolerance() methods. The defaults are the size of the problem for the
* maximal number of iterations and NumTraits<Scalar>::epsilon() for the tolerance.
*
* This class can be used as the direct solver classes. Here is a typical usage example:
* \code
* int n = 10000;
* VectorXd x(n), b(n);
* SparseMatrix<double> A(n,n);
* // fill A and b
* ConjugateGradient<SparseMatrix<double> > cg;
* cg.compute(A);
* x = cg.solve(b);
* std::cout << "#iterations: " << cg.iterations() << std::endl;
* std::cout << "estimated error: " << cg.error() << std::endl;
* // update b, and solve again
* x = cg.solve(b);
* \endcode
*
* By default the iterations start with x=0 as an initial guess of the solution.
* One can control the start using the solveWithGuess() method. Here is a step by
* step execution example starting with a random guess and printing the evolution
* of the estimated error:
* * \code
* x = VectorXd::Random(n);
* cg.setMaxIterations(1);
* int i = 0;
* do {
* x = cg.solveWithGuess(b,x);
* std::cout << i << " : " << cg.error() << std::endl;
* ++i;
* } while (cg.info()!=Success && i<100);
* \endcode
* Note that such a step by step execution is slightly slower.
*
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
*/
template<typename _MatrixType, int _UpLo, typename _FilterMatrixType, typename _Preconditioner>
class ConstrainedConjugateGradient
: public IterativeSolverBase<
ConstrainedConjugateGradient<_MatrixType, _UpLo, _FilterMatrixType, _Preconditioner>> {
typedef IterativeSolverBase<ConstrainedConjugateGradient> Base;
using Base::m_error;
using Base::m_info;
using Base::m_isInitialized;
using Base::m_iterations;
using Base::mp_matrix;
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
typedef typename MatrixType::RealScalar RealScalar;
typedef _FilterMatrixType FilterMatrixType;
typedef _Preconditioner Preconditioner;
enum { UpLo = _UpLo };
public:
/** Default constructor. */
ConstrainedConjugateGradient() : Base()
{
}
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
*
* This constructor is a shortcut for the default constructor followed
* by a call to compute().
*
* \warning this class stores a reference to the matrix A as well as some
* precomputed values that depend on it. Therefore, if \a A is changed
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
ConstrainedConjugateGradient(const MatrixType &A) : Base(A)
{
}
~ConstrainedConjugateGradient()
{
}
FilterMatrixType &filter()
{
return m_filter;
}
const FilterMatrixType &filter() const
{
return m_filter;
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
* \a x0 as an initial solution.
*
* \sa compute()
*/
template<typename Rhs, typename Guess>
inline const internal::solve_retval_with_guess<ConstrainedConjugateGradient, Rhs, Guess>
solveWithGuess(const MatrixBase<Rhs> &b, const Guess &x0) const
{
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
eigen_assert(
Base::rows() == b.rows() &&
"ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval_with_guess<ConstrainedConjugateGradient, Rhs, Guess>(
*this, b.derived(), x0);
}
/** \internal */
template<typename Rhs, typename Dest> void _solveWithGuess(const Rhs &b, Dest &x) const
{
m_iterations = Base::maxIterations();
m_error = Base::m_tolerance;
for (int j = 0; j < b.cols(); j++) {
m_iterations = Base::maxIterations();
m_error = Base::m_tolerance;
typename Dest::ColXpr xj(x, j);
internal::constrained_conjugate_gradient(mp_matrix->template selfadjointView<UpLo>(),
b.col(j),
xj,
m_filter,
Base::m_preconditioner,
m_iterations,
m_error);
}
m_isInitialized = true;
m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
}
/** \internal */
template<typename Rhs, typename Dest> void _solve(const Rhs &b, Dest &x) const
{
x.setOnes();
_solveWithGuess(b, x);
}
protected:
FilterMatrixType m_filter;
};
namespace internal {
template<typename _MatrixType, int _UpLo, typename _Filter, typename _Preconditioner, typename Rhs>
struct solve_retval<ConstrainedConjugateGradient<_MatrixType, _UpLo, _Filter, _Preconditioner>,
Rhs>
: solve_retval_base<ConstrainedConjugateGradient<_MatrixType, _UpLo, _Filter, _Preconditioner>,
Rhs> {
typedef ConstrainedConjugateGradient<_MatrixType, _UpLo, _Filter, _Preconditioner> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec, Rhs)
template<typename Dest> void evalTo(Dest &dst) const
{
dec()._solve(rhs(), dst);
}
};
} // end namespace internal
} // end namespace Eigen