This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/api2_2x/NMesh.c
Stephen Swaney a703837179 Replace deprecated methods from old api:
PythonReturnErrorObject
  PythonIncRef

Fix some compiler warnings about missing initializers
in method tables.
2004-06-06 22:42:51 +00:00

2618 lines
66 KiB
C

/*
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* This is a new part of Blender.
*
* Contributor(s): Willian P. Germano, Jordi Rovira i Bonet, Joseph Gilbert,
* Bala Gi
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include "NMesh.h"
/* EXPP Mesh defines */
#define EXPP_NMESH_MODE_NOPUNOFLIP ME_NOPUNOFLIP
#define EXPP_NMESH_MODE_TWOSIDED ME_TWOSIDED
#define EXPP_NMESH_MODE_AUTOSMOOTH ME_AUTOSMOOTH
#define EXPP_NMESH_MODE_SUBSURF ME_SUBSURF
#define EXPP_NMESH_MODE_OPTIMAL ME_OPT_EDGES
#define NMESH_FRAME_MAX 18000
#define NMESH_SMOOTHRESH 30
#define NMESH_SMOOTHRESH_MIN 1
#define NMESH_SMOOTHRESH_MAX 80
#define NMESH_SUBDIV 1
#define NMESH_SUBDIV_MIN 1
#define NMESH_SUBDIV_MAX 6
void mesh_update(Mesh *mesh)
{
edge_drawflags_mesh(mesh);
tex_space_mesh(mesh);
}
/*****************************/
/* Mesh Color Object */
/*****************************/
static void NMCol_dealloc(PyObject *self)
{
PyObject_DEL(self);
}
static BPy_NMCol *newcol (char r, char g, char b, char a)
{
BPy_NMCol *mc = (BPy_NMCol *) PyObject_NEW (BPy_NMCol, &NMCol_Type);
mc->r= r;
mc->g= g;
mc->b= b;
mc->a= a;
return mc;
}
static PyObject *M_NMesh_Col(PyObject *self, PyObject *args)
{
short r = 255, g = 255, b = 255, a = 255;
if(PyArg_ParseTuple(args, "|hhhh", &r, &g, &b, &a))
return (PyObject *) newcol(r, g, b, a);
return NULL;
}
static PyObject *NMCol_getattr(PyObject *self, char *name)
{
BPy_NMCol *mc = (BPy_NMCol *)self;
if (strcmp(name, "r") == 0) return Py_BuildValue("i", mc->r);
else if (strcmp(name, "g") == 0) return Py_BuildValue("i", mc->g);
else if (strcmp(name, "b") == 0) return Py_BuildValue("i", mc->b);
else if (strcmp(name, "a") == 0) return Py_BuildValue("i", mc->a);
else if (strcmp(name, "__members__") == 0)
return Py_BuildValue("[s,s,s,s]", "r", "g", "b", "a");
return EXPP_ReturnPyObjError(PyExc_AttributeError, name);
}
static int NMCol_setattr(PyObject *self, char *name, PyObject *v)
{
BPy_NMCol *mc = (BPy_NMCol *)self;
short ival;
if(!PyArg_Parse(v, "h", &ival)) return -1;
ival = (short)EXPP_ClampInt(ival, 0, 255);
if (strcmp(name, "r") == 0) mc->r = ival;
else if (strcmp(name, "g") == 0) mc->g = ival;
else if (strcmp(name, "b") == 0) mc->b = ival;
else if (strcmp(name, "a")==0) mc->a = ival;
else return -1;
return 0;
}
PyObject *NMCol_repr(BPy_NMCol *self)
{
static char s[256];
sprintf (s, "[NMCol - <%d, %d, %d, %d>]", self->r, self->g, self->b, self->a);
return Py_BuildValue("s", s);
}
PyTypeObject NMCol_Type =
{
PyObject_HEAD_INIT(NULL)
0, /* ob_size */
"Blender NMCol", /* tp_name */
sizeof(BPy_NMCol), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor) NMCol_dealloc, /* tp_dealloc */
(printfunc) 0, /* tp_print */
(getattrfunc) NMCol_getattr, /* tp_getattr */
(setattrfunc) NMCol_setattr, /* tp_setattr */
0, /* tp_compare */
(reprfunc) NMCol_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
};
/*****************************/
/* NMesh Python Object */
/*****************************/
static void NMFace_dealloc (PyObject *self)
{
BPy_NMFace *mf = (BPy_NMFace *)self;
Py_DECREF(mf->v);
Py_DECREF(mf->uv);
Py_DECREF(mf->col);
PyObject_DEL(self);
}
static PyObject *new_NMFace(PyObject *vertexlist)
{
BPy_NMFace *mf = PyObject_NEW (BPy_NMFace, &NMFace_Type);
PyObject *vlcopy;
if (vertexlist) { /* create a copy of the given vertex list */
PyObject *item;
int i, len = PyList_Size(vertexlist);
vlcopy = PyList_New(len);
if (!vlcopy)
return EXPP_ReturnPyObjError(PyExc_MemoryError,
"couldn't create PyList");
for (i = 0; i < len; i++) {
item = PySequence_GetItem(vertexlist, i); /* PySequence increfs */
if (item)
PyList_SET_ITEM(vlcopy, i, item);
else
return EXPP_ReturnPyObjError(PyExc_RuntimeError,
"couldn't get vertex from a PyList");
}
}
else /* create an empty vertex list */
vlcopy = PyList_New(0);
mf->v = vlcopy;
mf->uv = PyList_New(0);
mf->image = NULL;
mf->mode = TF_DYNAMIC + TF_TEX;
mf->flag = TF_SELECT;
mf->transp = TF_SOLID;
mf->col = PyList_New(0);
mf->smooth = 0;
mf->mat_nr = 0;
return (PyObject *)mf;
}
static PyObject *M_NMesh_Face(PyObject *self, PyObject *args)
{
PyObject *vertlist = NULL;
if (!PyArg_ParseTuple(args, "|O!", &PyList_Type, &vertlist))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"expected a list of vertices or nothing as argument");
/* if (!vertlist) vertlist = PyList_New(0); */
return new_NMFace(vertlist);
}
static PyObject *NMFace_append(PyObject *self, PyObject *args)
{
PyObject *vert;
BPy_NMFace *f = (BPy_NMFace *)self;
if (!PyArg_ParseTuple(args, "O!", &NMVert_Type, &vert))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"expected an NMVert object");
PyList_Append(f->v, vert);
return EXPP_incr_ret(Py_None);
}
#undef MethodDef
#define MethodDef(func) {#func, NMFace_##func, METH_VARARGS, NMFace_##func##_doc}
static struct PyMethodDef NMFace_methods[] =
{
MethodDef(append),
{NULL, NULL, 0, NULL}
};
static PyObject *NMFace_getattr(PyObject *self, char *name)
{
BPy_NMFace *mf = (BPy_NMFace *)self;
if(strcmp(name, "v") == 0)
return Py_BuildValue("O", mf->v);
else if (strcmp(name, "col") == 0)
return Py_BuildValue("O", mf->col);
else if (strcmp(name, "mat") == 0) // emulation XXX
return Py_BuildValue("i", mf->mat_nr);
else if (strcmp(name, "materialIndex") == 0)
return Py_BuildValue("i", mf->mat_nr);
else if (strcmp(name, "smooth") == 0)
return Py_BuildValue("i", mf->smooth);
else if (strcmp(name, "image") == 0) {
if (mf->image)
return Image_CreatePyObject (mf->image);
else
return EXPP_incr_ret(Py_None);
}
else if (strcmp(name, "mode") == 0)
return Py_BuildValue("i", mf->mode);
else if (strcmp(name, "flag") == 0)
return Py_BuildValue("i", mf->flag);
else if (strcmp(name, "transp") == 0)
return Py_BuildValue("i", mf->transp);
else if (strcmp(name, "uv") == 0)
return Py_BuildValue("O", mf->uv);
else if ((strcmp(name, "normal") == 0) || (strcmp(name, "no") == 0)) {
if (EXPP_check_sequence_consistency(mf->v, &NMVert_Type)) {
float fNormal[3] = {0.0,0.0,0.0};
float *vco[4] = {NULL, NULL, NULL, NULL};
int nSize = PyList_Size(mf->v);
int loop;
if (nSize != 3 && nSize != 4)
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"face must contain either 3 or 4 verts");
for (loop = 0; loop < nSize; loop++) {
BPy_NMVert *v = (BPy_NMVert *)PyList_GetItem(mf->v, loop);
vco[loop] = (float *)v->co;
}
if (nSize == 4)
CalcNormFloat4(vco[0], vco[1], vco[2], vco[3], fNormal);
else
CalcNormFloat(vco[0], vco[1], vco[2], fNormal);
return Py_BuildValue("[f,f,f]",fNormal[0],fNormal[1],fNormal[2]);
}
else // EXPP_check_sequence_consistency failed
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"this face does not contain a series of NMVerts");
}
else if (strcmp(name, "__members__") == 0)
return Py_BuildValue("[s,s,s,s,s,s,s,s,s,s,s]",
"v", "col", "mat", "materialIndex", "smooth",
"image", "mode", "flag", "transp", "uv", "normal");
return Py_FindMethod(NMFace_methods, (PyObject*)self, name);
}
static int NMFace_setattr(PyObject *self, char *name, PyObject *v)
{
BPy_NMFace *mf = (BPy_NMFace *)self;
short ival;
if (strcmp(name, "v") == 0) {
if(PySequence_Check(v)) {
Py_DECREF(mf->v);
mf->v = EXPP_incr_ret(v);
return 0;
}
}
else if (strcmp(name, "col") == 0) {
if(PySequence_Check(v)) {
Py_DECREF(mf->col);
mf->col = EXPP_incr_ret(v);
return 0;
}
}
else if (!strcmp(name, "mat") || !strcmp(name, "materialIndex")) {
PyArg_Parse(v, "h", &ival);
mf->mat_nr= ival;
return 0;
}
else if (strcmp(name, "smooth") == 0) {
PyArg_Parse(v, "h", &ival);
mf->smooth = ival?1:0;
return 0;
}
else if (strcmp(name, "uv") == 0) {
if(PySequence_Check(v)) {
Py_DECREF(mf->uv);
mf->uv = EXPP_incr_ret(v);
return 0;
}
}
else if (strcmp(name, "flag") == 0) {
PyArg_Parse(v, "h", &ival);
mf->flag = ival;
return 0;
}
else if (strcmp(name, "mode") == 0) {
PyArg_Parse(v, "h", &ival);
mf->mode = ival;
return 0;
}
else if (strcmp(name, "transp") == 0) {
PyArg_Parse(v, "h", &ival);
mf->transp = ival;
return 0;
}
else if (strcmp(name, "image") == 0) {
PyObject *pyimg;
if (!PyArg_Parse(v, "O!", &Image_Type, &pyimg))
return EXPP_ReturnIntError(PyExc_TypeError,
"expected image object");
if (pyimg == Py_None) {
mf->image = NULL;
return 0;
}
mf->image = ((BPy_Image *)pyimg)->image;
return 0;
}
return EXPP_ReturnIntError (PyExc_AttributeError, name);
}
static PyObject *NMFace_repr (PyObject *self)
{
return PyString_FromString("[NMFace]");
}
static int NMFace_len(BPy_NMFace *self)
{
return PySequence_Length(self->v);
}
static PyObject *NMFace_item(BPy_NMFace *self, int i)
{
return PySequence_GetItem(self->v, i); // new ref
}
static PyObject *NMFace_slice(BPy_NMFace *self, int begin, int end)
{
return PyList_GetSlice(self->v, begin, end); // new ref
}
static PySequenceMethods NMFace_SeqMethods =
{
(inquiry) NMFace_len, /* sq_length */
(binaryfunc) 0, /* sq_concat */
(intargfunc) 0, /* sq_repeat */
(intargfunc) NMFace_item, /* sq_item */
(intintargfunc) NMFace_slice, /* sq_slice */
(intobjargproc) 0, /* sq_ass_item */
(intintobjargproc) 0, /* sq_ass_slice */
};
PyTypeObject NMFace_Type =
{
PyObject_HEAD_INIT(NULL)
0, /*ob_size*/
"Blender NMFace", /*tp_name*/
sizeof(BPy_NMFace), /*tp_basicsize*/
0, /*tp_itemsize*/
/* methods */
(destructor) NMFace_dealloc, /*tp_dealloc*/
(printfunc) 0, /*tp_print*/
(getattrfunc) NMFace_getattr, /*tp_getattr*/
(setattrfunc) NMFace_setattr, /*tp_setattr*/
0, /*tp_compare*/
(reprfunc) NMFace_repr, /*tp_repr*/
0, /*tp_as_number*/
&NMFace_SeqMethods, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash*/
};
static BPy_NMVert *newvert(float *co)
{
BPy_NMVert *mv = PyObject_NEW(BPy_NMVert, &NMVert_Type);
mv->co[0] = co[0]; mv->co[1] = co[1]; mv->co[2] = co[2];
mv->no[0] = mv->no[1] = mv->no[2] = 0.0;
mv->uvco[0] = mv->uvco[1] = mv->uvco[2] = 0.0;
mv->flag = 0;
return mv;
}
static PyObject *M_NMesh_Vert(PyObject *self, PyObject *args)
{
float co[3]= {0.0, 0.0, 0.0};
if (!PyArg_ParseTuple(args, "|fff", &co[0], &co[1], &co[2]))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"expected three floats (or nothing) as arguments");
return (PyObject *)newvert(co);
}
static void NMVert_dealloc(PyObject *self)
{
PyObject_DEL(self);
}
static PyObject *NMVert_getattr(PyObject *self, char *name)
{
BPy_NMVert *mv = (BPy_NMVert *)self;
if (!strcmp(name, "co") || !strcmp(name, "loc"))
return newVectorObject(mv->co, 3);
else if (strcmp(name, "no") == 0) return newVectorObject(mv->no, 3);
else if (strcmp(name, "uvco") == 0) return newVectorObject(mv->uvco, 3);
else if (strcmp(name, "index") == 0) return PyInt_FromLong(mv->index);
else if (strcmp(name, "sel") == 0) return PyInt_FromLong(mv->flag & 1);
else if (strcmp(name, "__members__") == 0)
return Py_BuildValue("[s,s,s,s,s]", "co", "no", "uvco", "index", "sel");
return EXPP_ReturnPyObjError (PyExc_AttributeError, name);
}
static int NMVert_setattr(PyObject *self, char *name, PyObject *v)
{
BPy_NMVert *mv = (BPy_NMVert *)self;
int i;
if (strcmp(name,"index") == 0) {
PyArg_Parse(v, "i", &i);
mv->index = i;
return 0;
}
else if (strcmp(name, "sel") == 0) {
PyArg_Parse(v, "i", &i);
mv->flag = i?1:0;
return 0;
}
else if (strcmp(name, "uvco") == 0) {
if (!PyArg_ParseTuple(v, "ff|f",
&(mv->uvco[0]), &(mv->uvco[1]), &(mv->uvco[2])))
return EXPP_ReturnIntError (PyExc_AttributeError,
"Vector tuple or triple expected");
return 0;
}
return EXPP_ReturnIntError (PyExc_AttributeError, name);
}
static int NMVert_len(BPy_NMVert *self)
{
return 3;
}
static PyObject *NMVert_item(BPy_NMVert *self, int i)
{
if (i < 0 || i >= 3)
return EXPP_ReturnPyObjError (PyExc_IndexError,
"array index out of range");
return Py_BuildValue("f", self->co[i]);
}
static PyObject *NMVert_slice(BPy_NMVert *self, int begin, int end)
{
PyObject *list;
int count;
if (begin < 0) begin = 0;
if (end > 3) end = 3;
if (begin > end) begin = end;
list = PyList_New(end-begin);
for (count = begin; count < end; count++)
PyList_SetItem(list, count - begin, PyFloat_FromDouble(self->co[count]));
return list;
}
static int NMVert_ass_item(BPy_NMVert *self, int i, PyObject *ob)
{
if (i < 0 || i >= 3)
return EXPP_ReturnIntError (PyExc_IndexError,
"array assignment index out of range");
if (!PyNumber_Check(ob))
return EXPP_ReturnIntError (PyExc_IndexError,
"NMVert member must be a number");
self->co[i]= PyFloat_AsDouble(ob);
return 0;
}
static int NMVert_ass_slice(BPy_NMVert *self, int begin, int end, PyObject *seq)
{
int count;
if (begin < 0) begin = 0;
if (end > 3) end = 3;
if (begin > end) begin = end;
if (!PySequence_Check(seq))
EXPP_ReturnIntError (PyExc_TypeError,
"illegal argument type for built-in operation");
if (PySequence_Length(seq)!=(end-begin))
EXPP_ReturnIntError (PyExc_TypeError,
"size mismatch in slice assignment");
for (count = begin; count < end; count++) {
PyObject *ob = PySequence_GetItem(seq, count);
if (!PyArg_Parse(ob, "f", &self->co[count])) {
Py_DECREF(ob);
return -1;
}
Py_DECREF(ob);
}
return 0;
}
static PySequenceMethods NMVert_SeqMethods =
{
(inquiry) NMVert_len, /* sq_length */
(binaryfunc) 0, /* sq_concat */
(intargfunc) 0, /* sq_repeat */
(intargfunc) NMVert_item, /* sq_item */
(intintargfunc) NMVert_slice, /* sq_slice */
(intobjargproc) NMVert_ass_item, /* sq_ass_item */
(intintobjargproc) NMVert_ass_slice, /* sq_ass_slice */
};
PyTypeObject NMVert_Type =
{
PyObject_HEAD_INIT(NULL)
0, /*ob_size*/
"Blender NMVert", /*tp_name*/
sizeof(BPy_NMVert), /*tp_basicsize*/
0, /*tp_itemsize*/
/* methods */
(destructor) NMVert_dealloc, /*tp_dealloc*/
(printfunc) 0, /*tp_print*/
(getattrfunc) NMVert_getattr, /*tp_getattr*/
(setattrfunc) NMVert_setattr, /*tp_setattr*/
0, /*tp_compare*/
(reprfunc) 0, /*tp_repr*/
0, /*tp_as_number*/
&NMVert_SeqMethods, /*tp_as_sequence*/
};
static void NMesh_dealloc(PyObject *self)
{
BPy_NMesh *me = (BPy_NMesh *)self;
Py_DECREF(me->name);
Py_DECREF(me->verts);
Py_DECREF(me->faces);
Py_DECREF(me->materials);
PyObject_DEL(self);
}
static PyObject *NMesh_addMaterial (PyObject *self, PyObject *args)
{
BPy_NMesh *me = (BPy_NMesh *)self;
BPy_Material *pymat;
Material *mat;
PyObject *iter;
int i, len = 0;
if (!PyArg_ParseTuple (args, "O!", &Material_Type, &pymat))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"expected Blender Material PyObject");
mat = pymat->material;
len = PyList_Size(me->materials);
if (len >= 16)
return EXPP_ReturnPyObjError (PyExc_RuntimeError,
"object data material lists can't have more than 16 materials");
for (i = 0; i < len; i++) {
iter = PyList_GetItem(me->materials, i);
if (mat == Material_FromPyObject(iter))
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"material already in the list");
}
PyList_Append(me->materials, (PyObject *)pymat);
return EXPP_incr_ret (Py_None);
}
static PyObject *NMesh_removeAllKeys (PyObject *self, PyObject *args)
{
BPy_NMesh *nm = (BPy_NMesh *)self;
Mesh *me = nm->mesh;
if (!PyArg_ParseTuple (args, ""))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"this function expects no arguments");
if (!me || !me->key) return EXPP_incr_ret (Py_False);
me->key->id.us--;
me->key = 0;
return EXPP_incr_ret (Py_True);
}
static PyObject *NMesh_insertKey(PyObject *self, PyObject *args)
{
int fra = -1, oldfra = -1;
char *type = NULL;
short typenum;
BPy_NMesh *nm = (BPy_NMesh *)self;
Mesh *mesh = nm->mesh;
if (!PyArg_ParseTuple(args, "|is", &fra, &type))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"expected nothing or an int and optionally a string as arguments");
if (!type || !strcmp(type, "relative"))
typenum = 1;
else if (!strcmp(type, "absolute"))
typenum = 2;
else
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"if given, type should be 'relative' or 'absolute'");
if (fra > 0) {
fra = EXPP_ClampInt(fra, 1, NMESH_FRAME_MAX);
oldfra = G.scene->r.cfra;
G.scene->r.cfra = fra;
}
if (!mesh)
return EXPP_ReturnPyObjError (PyExc_RuntimeError,
"update this NMesh first with its .update() method");
insert_meshkey(mesh, typenum);
if (fra > 0) G.scene->r.cfra = oldfra;
return EXPP_incr_ret (Py_None);
}
static PyObject *NMesh_getSelectedFaces(PyObject *self, PyObject *args)
{
BPy_NMesh *nm = (BPy_NMesh *)self;
Mesh *me = nm->mesh;
int flag = 0;
TFace *tf;
int i;
PyObject *l = PyList_New(0);
if (me == NULL) return NULL;
tf = me->tface;
if (tf == 0) return l;
if (!PyArg_ParseTuple(args, "|i", &flag))
return NULL;
if (flag) {
for (i = 0 ; i < me->totface; i++) {
if (tf[i].flag & TF_SELECT )
PyList_Append(l, PyInt_FromLong(i));
}
} else {
for (i = 0 ; i < me->totface; i++) {
if (tf[i].flag & TF_SELECT )
PyList_Append(l, PyList_GetItem(nm->faces, i));
}
}
return l;
}
static PyObject *NMesh_getActiveFace(PyObject *self, PyObject *args)
{
if (((BPy_NMesh *)self)->sel_face < 0)
return EXPP_incr_ret(Py_None);
return Py_BuildValue("i", ((BPy_NMesh *)self)->sel_face);
}
static PyObject *NMesh_hasVertexUV(PyObject *self, PyObject *args)
{
BPy_NMesh *me = (BPy_NMesh *)self;
int flag;
if (args) {
if (PyArg_ParseTuple(args, "i", &flag)) {
if(flag) me->flags |= NMESH_HASVERTUV;
else me->flags &= ~NMESH_HASVERTUV;
}
}
PyErr_Clear();
if (me->flags & NMESH_HASVERTUV)
return EXPP_incr_ret(Py_True);
else
return EXPP_incr_ret(Py_False);
}
static PyObject *NMesh_hasFaceUV(PyObject *self, PyObject *args)
{
BPy_NMesh *me = (BPy_NMesh *)self;
int flag = -1;
if (!PyArg_ParseTuple(args, "|i", &flag))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"expected int argument (or nothing)");
switch (flag) {
case 0:
me->flags |= NMESH_HASFACEUV;
break;
case 1:
me->flags &= ~NMESH_HASFACEUV;
break;
default:
break;
}
if (me->flags & NMESH_HASFACEUV)
return EXPP_incr_ret(Py_True);
else
return EXPP_incr_ret(Py_False);
}
static PyObject *NMesh_hasVertexColours(PyObject *self, PyObject *args)
{
BPy_NMesh *me= (BPy_NMesh *)self;
int flag = -1;
if (!PyArg_ParseTuple(args, "|i", &flag))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"expected int argument (or nothing)");
switch (flag) {
case 0:
me->flags &= ~NMESH_HASMCOL;
break;
case 1:
me->flags |= NMESH_HASMCOL;
break;
default:
break;
}
if (me->flags & NMESH_HASMCOL)
return EXPP_incr_ret(Py_True);
else
return EXPP_incr_ret(Py_False);
}
static PyObject *NMesh_update(PyObject *self, PyObject *args)
{
int recalc_normals = 0;
BPy_NMesh *nmesh = (BPy_NMesh *)self;
Mesh *mesh = nmesh->mesh;
if (!PyArg_ParseTuple(args, "|i", &recalc_normals))
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"expected nothing or an int (0 or 1) as argument");
if (recalc_normals && recalc_normals != 1)
return EXPP_ReturnPyObjError (PyExc_ValueError,
"expected 0 or 1 as argument");
if (mesh) {
unlink_existingMeshData(mesh);
convert_NMeshToMesh(mesh, nmesh);
} else {
nmesh->mesh = Mesh_fromNMesh(nmesh);
mesh = nmesh->mesh;
}
if (recalc_normals) vertexnormals_mesh(mesh, 0);
mesh_update(mesh);
nmesh_updateMaterials(nmesh);
if (nmesh->name && nmesh->name != Py_None)
new_id(&(G.main->mesh), &mesh->id, PyString_AsString(nmesh->name));
if (!during_script())
allqueue(REDRAWVIEW3D, 0);
return PyInt_FromLong(1);
}
/** Implementation of the python method getVertexInfluence for an NMesh object.
* This method returns a list of pairs (string,float) with bone names and
* influences that this vertex receives.
* @author Jordi Rovira i Bonet
*/
static PyObject *NMesh_getVertexInfluences(PyObject *self, PyObject *args)
{
int index;
PyObject* influence_list = NULL;
/* Get a reference to the mesh object wrapped in here. */
Mesh *me = ((BPy_NMesh*)self)->mesh;
if (!me)
return EXPP_ReturnPyObjError (PyExc_RuntimeError,
"unlinked nmesh: call its .update() method first");
/* Parse the parameters: only on integer (vertex index) */
if (!PyArg_ParseTuple(args, "i", &index))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"expected int argument (index of the vertex)");
/* Proceed only if we have vertex deformation information and index is valid*/
if (me->dvert) {
if ((index >= 0) && (index < me->totvert)) {
int i;
MDeformWeight *sweight = NULL;
/* Number of bones influencing the vertex */
int totinfluences=me->dvert[index].totweight;
/* Build the list only with weights and names of the influent bones */
/*influence_list = PyList_New(totinfluences);*/
influence_list = PyList_New(0);
/* Get the reference of the first weight structure */
sweight = me->dvert[index].dw;
for (i=0; i<totinfluences; i++) {
/*Add the weight and the name of the bone, which is used to identify it*/
if (sweight->data) /* valid bone: return its name */
/* PyList_SetItem(influence_list, i,
Py_BuildValue("[sf]", sweight->data->name, sweight->weight));
else // NULL bone: return Py_None instead
PyList_SetItem(influence_list, i,
Py_BuildValue("[Of]", Py_None, sweight->weight));*/
PyList_Append(influence_list,
Py_BuildValue("[sf]", sweight->data->name, sweight->weight));
/* Next weight */
sweight++;
}
}
else //influence_list = PyList_New(0);
return EXPP_ReturnPyObjError (PyExc_IndexError,
"vertex index out of range");
}
else influence_list = PyList_New(0);
return influence_list;
}
Mesh *Mesh_fromNMesh(BPy_NMesh *nmesh)
{
Mesh *mesh = NULL;
mesh = add_mesh();
if (!mesh)
EXPP_ReturnPyObjError(PyExc_RuntimeError,
"FATAL: could not create mesh object");
mesh->id.us = 0; /* no user yet */
G.totmesh++;
convert_NMeshToMesh(mesh, nmesh);
return mesh;
}
PyObject *NMesh_link(PyObject *self, PyObject *args)
{/*
BPy_Object *bl_obj;
if (!PyArg_ParseTuple(args, "O!", &Object_Type, &bl_obj))
return EXPP_ReturnPyErrorObj (PyExc_TypeError,
"NMesh can only be linked to Objects");
bl_obj->data = (PyObject *)self;*/
/* Better use object.link(nmesh), no need for this nmesh.link(object) */
return EXPP_incr_ret(Py_None);
}
static PyObject *NMesh_getMaxSmoothAngle (BPy_NMesh *self)
{
PyObject *attr = PyInt_FromLong (self->smoothresh);
if (attr) return attr;
return EXPP_ReturnPyObjError (PyExc_RuntimeError,
"couldn't get NMesh.maxSmoothAngle attribute");
}
static PyObject *NMesh_setMaxSmoothAngle (PyObject *self, PyObject *args)
{
short value = 0;
BPy_NMesh *nmesh = (BPy_NMesh *)self;
if (!PyArg_ParseTuple(args, "h", &value))
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"expected an int in [1, 80] as argument");
nmesh->smoothresh =
(short)EXPP_ClampInt (value, NMESH_SMOOTHRESH_MIN, NMESH_SMOOTHRESH_MAX);
Py_INCREF (Py_None);
return Py_None;
}
static PyObject *NMesh_getSubDivLevels (BPy_NMesh *self)
{
PyObject *attr = Py_BuildValue ("[h,h]", self->subdiv[0], self->subdiv[1]);
if (attr) return attr;
return EXPP_ReturnPyObjError (PyExc_RuntimeError,
"couldn't get NMesh.subDivLevels attribute");
}
static PyObject *NMesh_setSubDivLevels (PyObject *self, PyObject *args)
{
short display = 0, render = 0;
BPy_NMesh *nmesh = (BPy_NMesh *)self;
if (!PyArg_ParseTuple(args, "(hh)", &display, &render))
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"expected a sequence [int, int] as argument");
nmesh->subdiv[0] =
(short)EXPP_ClampInt (display, NMESH_SUBDIV_MIN, NMESH_SUBDIV_MAX);
nmesh->subdiv[1] =
(short)EXPP_ClampInt (render, NMESH_SUBDIV_MIN, NMESH_SUBDIV_MAX);
Py_INCREF (Py_None);
return Py_None;
}
static PyObject *NMesh_getMode (BPy_NMesh *self)
{
PyObject *attr = PyInt_FromLong (self->mode);
if (attr) return attr;
return EXPP_ReturnPyObjError (PyExc_RuntimeError,
"couldn't get NMesh.mode attribute");
}
static PyObject *NMesh_setMode (PyObject *self, PyObject *args)
{
BPy_NMesh *nmesh = (BPy_NMesh *)self;
char *m[5] = {NULL, NULL, NULL, NULL, NULL};
short i, mode = 0;
if (!PyArg_ParseTuple(args, "|sssss", &m[0], &m[1], &m[2], &m[3], &m[4]))
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"expected from none to 5 strings as argument(s)");
for (i = 0; i < 5; i++) {
if (!m[i]) break;
if (strcmp(m[i], "NoVNormalsFlip") == 0)
mode |= EXPP_NMESH_MODE_NOPUNOFLIP;
else if (strcmp(m[i], "TwoSided") == 0)
mode |= EXPP_NMESH_MODE_TWOSIDED;
else if (strcmp(m[i], "AutoSmooth") == 0)
mode |= EXPP_NMESH_MODE_AUTOSMOOTH;
else if (strcmp(m[i], "SubSurf") == 0)
mode |= EXPP_NMESH_MODE_SUBSURF;
else if (strcmp(m[i], "Optimal") == 0)
mode |= EXPP_NMESH_MODE_OPTIMAL;
else
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"unknown NMesh mode");
}
nmesh->mode = mode;
Py_INCREF (Py_None);
return Py_None;
}
#undef MethodDef
#define MethodDef(func) {#func, NMesh_##func, METH_VARARGS, NMesh_##func##_doc}
static struct PyMethodDef NMesh_methods[] =
{
MethodDef(addVertGroup),
MethodDef(removeVertGroup),
MethodDef(assignVertsToGroup),
MethodDef(removeVertsFromGroup),
MethodDef(getVertsFromGroup),
MethodDef(renameVertGroup),
MethodDef(getVertGroupNames),
MethodDef(hasVertexColours),
MethodDef(hasFaceUV),
MethodDef(hasVertexUV),
MethodDef(getActiveFace),
MethodDef(getSelectedFaces),
MethodDef(getVertexInfluences),
MethodDef(addMaterial),
MethodDef(insertKey),
MethodDef(removeAllKeys),
MethodDef(update),
MethodDef(setMode),
MethodDef(setMaxSmoothAngle),
MethodDef(setSubDivLevels),
{"getMode", (PyCFunction)NMesh_getMode, METH_NOARGS, NMesh_getMode_doc},
{"getMaxSmoothAngle", (PyCFunction)NMesh_getMaxSmoothAngle, METH_NOARGS,
NMesh_getMaxSmoothAngle_doc},
{"getSubDivLevels", (PyCFunction)NMesh_getSubDivLevels, METH_NOARGS,
NMesh_getSubDivLevels_doc},
{NULL, NULL, 0, NULL}
};
static PyObject *NMesh_getattr(PyObject *self, char *name)
{
BPy_NMesh *me = (BPy_NMesh *)self;
if (strcmp(name, "name") == 0)
return EXPP_incr_ret(me->name);
else if (strcmp(name, "mode") == 0)
return PyInt_FromLong(me->mode);
else if (strcmp(name, "block_type") == 0) /* for compatibility */
return PyString_FromString("NMesh");
else if (strcmp(name, "materials") == 0)
return EXPP_incr_ret(me->materials);
else if (strcmp(name, "verts") == 0)
return EXPP_incr_ret(me->verts);
else if (strcmp(name, "maxSmoothAngle") == 0)
return PyInt_FromLong(me->smoothresh);
else if (strcmp(name, "subDivLevels") == 0)
return Py_BuildValue("[h,h]", me->subdiv[0], me->subdiv[1]);
else if (strcmp(name, "users") == 0) {
if (me->mesh) {
return PyInt_FromLong(me->mesh->id.us);
}
else { /* it's a free mesh: */
return Py_BuildValue("i", 0);
}
}
else if (strcmp(name, "faces") == 0)
return EXPP_incr_ret(me->faces);
else if (strcmp(name, "__members__") == 0)
return Py_BuildValue("[s,s,s,s,s,s,s]",
"name", "materials", "verts", "users", "faces", "maxSmoothAngle",
"subdivLevels");
return Py_FindMethod(NMesh_methods, (PyObject*)self, name);
}
static int NMesh_setattr(PyObject *self, char *name, PyObject *v)
{
BPy_NMesh *me = (BPy_NMesh *)self;
if (!strcmp(name, "name")) {
if (!PyString_Check(v))
return EXPP_ReturnIntError (PyExc_TypeError,
"expected string argument");
Py_DECREF (me->name);
me->name = EXPP_incr_ret(v);
}
else if (!strcmp(name, "mode")) {
short mode;
if (!PyInt_Check(v))
return EXPP_ReturnIntError (PyExc_TypeError,
"expected int argument");
mode = (short)PyInt_AsLong(v);
if (mode >= 0) me->mode = mode;
else
return EXPP_ReturnIntError (PyExc_ValueError,
"expected positive int argument");
}
else if (!strcmp(name, "verts") || !strcmp(name, "faces") ||
!strcmp(name, "materials")) {
if(PySequence_Check(v)) {
if(strcmp(name, "materials") == 0) {
Py_DECREF(me->materials);
me->materials = EXPP_incr_ret(v);
}
else if (strcmp(name, "verts") == 0) {
Py_DECREF(me->verts);
me->verts = EXPP_incr_ret(v);
}
else {
Py_DECREF(me->faces);
me->faces = EXPP_incr_ret(v);
}
}
else
return EXPP_ReturnIntError (PyExc_TypeError, "expected a sequence");
}
else if (!strcmp(name, "maxSmoothAngle")) {
short smoothresh = 0;
if (!PyInt_Check(v))
return EXPP_ReturnIntError (PyExc_TypeError,
"expected int argument");
smoothresh = (short)PyInt_AsLong(v);
me->smoothresh =
EXPP_ClampInt(smoothresh, NMESH_SMOOTHRESH_MIN, NMESH_SMOOTHRESH_MAX);
}
else if (!strcmp(name, "subDivLevels")) {
int subdiv[2] = {0,0};
int i;
PyObject *tmp;
if (!PySequence_Check(v) || (PySequence_Length(v) != 2))
return EXPP_ReturnIntError (PyExc_TypeError,
"expected a list [int, int] as argument");
for (i = 0; i < 2; i++) {
tmp = PySequence_GetItem(v, i);
if (tmp) {
if (!PyInt_Check(tmp)) {
Py_DECREF (tmp);
return EXPP_ReturnIntError (PyExc_TypeError,
"expected a list [int, int] as argument");
}
subdiv[i] = PyInt_AsLong (tmp);
me->subdiv[i] =
(short)EXPP_ClampInt(subdiv[i], NMESH_SUBDIV_MIN, NMESH_SUBDIV_MAX);
Py_DECREF (tmp);
}
else return EXPP_ReturnIntError (PyExc_RuntimeError,
"couldn't retrieve subdiv values from list");
}
}
else
return EXPP_ReturnIntError (PyExc_AttributeError, name);
return 0;
}
PyTypeObject NMesh_Type =
{
PyObject_HEAD_INIT(NULL)
0, /*ob_size*/
"Blender NMesh", /*tp_name*/
sizeof(BPy_NMesh), /*tp_basicsize*/
0, /*tp_itemsize*/
/* methods */
(destructor) NMesh_dealloc, /*tp_dealloc*/
(printfunc) 0, /*tp_print*/
(getattrfunc) NMesh_getattr, /*tp_getattr*/
(setattrfunc) NMesh_setattr, /*tp_setattr*/
};
static BPy_NMFace *nmface_from_data(BPy_NMesh *mesh, int vidxs[4],
char mat_nr, char flag, TFace *tface, MCol *col)
{
BPy_NMFace *newf = PyObject_NEW (BPy_NMFace, &NMFace_Type);
int i, len;
if (vidxs[3]) len = 4;
else if (vidxs[2]) len = 3;
else len = 2;
newf->v = PyList_New(len);
for (i = 0; i < len; i++)
PyList_SetItem(newf->v, i,
EXPP_incr_ret(PyList_GetItem(mesh->verts, vidxs[i])));
if (tface) {
newf->uv = PyList_New(len); // per-face UV coordinates
for (i = 0; i < len; i++) {
PyList_SetItem(newf->uv, i,
Py_BuildValue("(ff)", tface->uv[i][0], tface->uv[i][1]));
}
if (tface->tpage) /* pointer to image per face: */
newf->image = (Image *)tface->tpage;
else
newf->image = NULL;
newf->mode = tface->mode; /* draw mode */
newf->flag = tface->flag; /* select flag */
newf->transp = tface->transp; /* transparency flag */
col = (MCol *) (tface->col); /* XXX weird, tface->col is uint[4] */
}
else {
newf->mode = TF_DYNAMIC; /* just to initialize it to something meaninful,*/
/* since without tfaces there are no tface->mode's, obviously. */
newf->image = NULL;
newf->uv = PyList_New(0);
}
newf->mat_nr = mat_nr;
newf->smooth = flag & ME_SMOOTH;
if (col) {
newf->col = PyList_New(4);
for(i = 0; i < 4; i++, col++) {
PyList_SetItem(newf->col, i,
(PyObject *)newcol(col->b, col->g, col->r, col->a));
}
}
else newf->col = PyList_New(0);
return newf;
}
static BPy_NMVert *nmvert_from_data(BPy_NMesh *me,
MVert *vert, MSticky *st, float *co, int idx, char flag)
{
BPy_NMVert *mv = PyObject_NEW(BPy_NMVert, &NMVert_Type);
mv->co[0] = co[0]; mv->co[1] = co[1]; mv->co[2] = co[2];
mv->no[0] = vert->no[0]/32767.0;
mv->no[1] = vert->no[1]/32767.0;
mv->no[2] = vert->no[2]/32767.0;
if (st) {
mv->uvco[0] = st->co[0];
mv->uvco[1] = st->co[1];
mv->uvco[2] = 0.0;
} else mv->uvco[0] = mv->uvco[1] = mv->uvco[2] = 0.0;
mv->index = idx;
mv->flag = flag & 1;
return mv;
}
static int get_active_faceindex(Mesh *me)
{
TFace *tf;
int i;
if (me == NULL) return -1;
tf = me->tface;
if (tf == 0) return -1;
for (i = 0 ; i < me->totface; i++)
if (tf[i].flag & TF_ACTIVE ) return i;
return -1;
}
static PyObject *new_NMesh_internal(Mesh *oldmesh,
DispListMesh *dlm, float *extverts)
{
BPy_NMesh *me = PyObject_NEW (BPy_NMesh, &NMesh_Type);
me->flags = 0;
me->mode = EXPP_NMESH_MODE_TWOSIDED; /* default for new meshes */
me->subdiv[0] = NMESH_SUBDIV;
me->subdiv[1] = NMESH_SUBDIV;
me->smoothresh = NMESH_SMOOTHRESH;
me->object = NULL; /* not linked to any object yet */
if (!oldmesh) {
me->name = EXPP_incr_ret(Py_None);
me->materials = PyList_New(0);
me->verts = PyList_New(0);
me->faces = PyList_New(0);
me->mesh = 0;
}
else {
MVert *mverts;
MSticky *msticky;
MFace *mfaces;
TFace *tfaces;
MCol *mcols;
int i, totvert, totface;
if (dlm) {
me->name = EXPP_incr_ret(Py_None);
me->mesh = 0;
msticky = NULL;
mfaces = NULL;
mverts = dlm->mvert;
mfaces = dlm->mface;
tfaces = dlm->tface;
mcols = dlm->mcol;
totvert = dlm->totvert;
totface = dlm->totface;
}
else {
me->name = PyString_FromString(oldmesh->id.name+2);
me->mesh = oldmesh;
me->mode = oldmesh->flag; /* yes, we save the mesh flags in nmesh->mode*/
me->subdiv[0] = oldmesh->subdiv;
me->subdiv[1] = oldmesh->subdivr;
me->smoothresh = oldmesh->smoothresh;
msticky = oldmesh->msticky;
mverts = oldmesh->mvert;
mfaces = oldmesh->mface;
tfaces = oldmesh->tface;
mcols = oldmesh->mcol;
totvert = oldmesh->totvert;
totface = oldmesh->totface;
me->sel_face = get_active_faceindex(oldmesh);
}
if (msticky) me->flags |= NMESH_HASVERTUV;
if (tfaces) me->flags |= NMESH_HASFACEUV;
if (mcols) me->flags |= NMESH_HASMCOL;
me->verts = PyList_New(totvert);
for (i = 0; i < totvert; i++) {
MVert *oldmv = &mverts[i];
MSticky *oldst = msticky?&msticky[i]:NULL;
float *vco = extverts?&extverts[i*3]:oldmv->co;
PyList_SetItem(me->verts, i,
(PyObject *)nmvert_from_data(me, oldmv, oldst, vco, i, oldmv->flag));
}
me->faces = PyList_New(totface);
for (i = 0; i < totface; i++) {
TFace *oldtf = tfaces?&tfaces[i]:NULL;
MCol *oldmc = mcols?&mcols[i*4]:NULL;
MFace *oldmf = &mfaces[i];
int vidxs[4];
vidxs[0] = oldmf->v1;
vidxs[1] = oldmf->v2;
vidxs[2] = oldmf->v3;
vidxs[3] = oldmf->v4;
PyList_SetItem (me->faces, i,
(PyObject *)nmface_from_data(me, vidxs, oldmf->mat_nr, oldmf->flag, oldtf, oldmc));
}
me->materials = EXPP_PyList_fromMaterialList(oldmesh->mat, oldmesh->totcol);
}
return (PyObject *)me;
}
PyObject *new_NMesh(Mesh *oldmesh)
{
return new_NMesh_internal (oldmesh, NULL, NULL);
}
static PyObject *M_NMesh_New(PyObject *self, PyObject *args)
{
char *name = NULL;
PyObject *ret = NULL;
if (!PyArg_ParseTuple(args, "|s", &name))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"expected nothing or a string as argument");
ret = new_NMesh(NULL);
if (ret && name) {
BPy_NMesh *nmesh = (BPy_NMesh *)ret;
Py_DECREF (nmesh->name);
nmesh->name = PyString_FromString(name);
}
return ret;
}
static PyObject *M_NMesh_GetRaw(PyObject *self, PyObject *args)
{
char *name = NULL;
Mesh *oldmesh = NULL;
if (!PyArg_ParseTuple(args, "|s", &name))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"expected string argument (or nothing)");
if (name) {
oldmesh = (Mesh *)GetIdFromList(&(G.main->mesh), name);
if (!oldmesh) return EXPP_incr_ret(Py_None);
}
return new_NMesh(oldmesh);
}
/* Note: NMesh.GetRawFromObject gets the display list mesh from Blender:
* the vertices are already transformed / deformed. */
static PyObject *M_NMesh_GetRawFromObject(PyObject *self, PyObject *args)
{
char *name;
Object *ob;
PyObject *nmesh;
if (!PyArg_ParseTuple(args, "s", &name))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"expected string argument");
ob = (Object*)GetIdFromList(&(G.main->object), name);
if (!ob)
return EXPP_ReturnPyObjError (PyExc_AttributeError, name);
else if (ob->type != OB_MESH)
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"Object does not have Mesh data");
else {
Mesh *me = (Mesh*)ob->data;
DispList *dl;
if (mesh_uses_displist(me) && (dl = find_displist(&me->disp, DL_MESH)))
nmesh = new_NMesh_internal(me, dl->mesh, NULL);
else if ((dl= find_displist(&ob->disp, DL_VERTS)))
nmesh = new_NMesh_internal(me, NULL, dl->verts);
else
nmesh = new_NMesh(me);
}
/* @hack: to mark that (deformed) mesh is readonly, so the update function
* will not try to write it. */
((BPy_NMesh *) nmesh)->mesh = 0;
return nmesh;
}
static void mvert_from_data(MVert *mv, MSticky *st, BPy_NMVert *from)
{
mv->co[0] = from->co[0]; mv->co[1] = from->co[1]; mv->co[2] = from->co[2];
mv->no[0] = from->no[0]*32767.0;
mv->no[1] = from->no[1]*32767.0;
mv->no[2] = from->no[2]*32767.0;
mv->flag = (from->flag & 1);
mv->mat_nr = 0;
if (st) {
st->co[0] = from->uvco[0];
st->co[1] = from->uvco[1];
}
}
/*@ TODO: this function is just a added hack. Don't look at the
* RGBA/BRGA confusion, it just works, but will never work with
* a restructured Blender */
static void assign_perFaceColors(TFace *tf, BPy_NMFace *from)
{
MCol *col;
int i;
col = (MCol *)(tf->col);
if (col) {
int len = PySequence_Length(from->col);
if(len > 4) len = 4;
for (i = 0; i < len; i++, col++) {
BPy_NMCol *mc = (BPy_NMCol *)PySequence_GetItem(from->col, i);
if(!BPy_NMCol_Check(mc)) {
Py_DECREF(mc);
continue;
}
col->r = mc->b;
col->b = mc->r;
col->g = mc->g;
col->a = mc->a;
Py_DECREF(mc);
}
}
}
static int assignFaceUV(TFace *tf, BPy_NMFace *nmface)
{
PyObject *fuv, *tmp;
int i;
fuv = nmface->uv;
if (PySequence_Length(fuv) == 0)
return 0;
/* fuv = [(u_1, v_1), ... (u_n, v_n)] */
for (i = 0; i < PySequence_Length(fuv); i++) {
tmp = PyList_GetItem(fuv, i); /* stolen reference ! */
if (!PyArg_ParseTuple(tmp, "ff", &(tf->uv[i][0]), &(tf->uv[i][1])))
return 0;
}
if (nmface->image) /* image assigned ? */
{
tf->tpage = (void *)nmface->image;
}
else
tf->tpage = 0;
tf->mode = nmface->mode; /* copy mode */
tf->flag = nmface->flag; /* copy flag */
tf->transp = nmface->transp; /* copy transp flag */
/* assign vertex colours */
assign_perFaceColors(tf, nmface);
return 1;
}
static void mface_from_data(MFace *mf, TFace *tf, MCol *col, BPy_NMFace *from)
{
BPy_NMVert *nmv;
int i = PyList_Size(from->v);
if (i >= 1) {
nmv = (BPy_NMVert *)PyList_GetItem(from->v, 0);
if (BPy_NMVert_Check(nmv) && nmv->index != -1) mf->v1 = nmv->index;
else mf->v1 = 0;
}
if (i >= 2) {
nmv = (BPy_NMVert *)PyList_GetItem(from->v, 1);
if (BPy_NMVert_Check(nmv) && nmv->index != -1) mf->v2 = nmv->index;
else mf->v2 = 0;
}
if (i >= 3) {
nmv = (BPy_NMVert *)PyList_GetItem(from->v, 2);
if (BPy_NMVert_Check(nmv) && nmv->index != -1) mf->v3 = nmv->index;
else mf->v3= 0;
}
if(i >= 4) {
nmv = (BPy_NMVert *)PyList_GetItem(from->v, 3);
if (BPy_NMVert_Check(nmv) && nmv->index != -1) mf->v4 = nmv->index;
else mf->v4= 0;
}
if (tf) {
assignFaceUV(tf, from);
if (PyErr_Occurred())
{
PyErr_Print();
return;
}
test_index_face(mf, tf, i);
}
else {
test_index_mface(mf, i);
}
mf->puno = 0;
mf->mat_nr = from->mat_nr;
mf->edcode = 0;
if (from->smooth)
mf->flag = ME_SMOOTH;
else
mf->flag = 0;
if (col) {
int len = PySequence_Length(from->col);
if(len > 4) len = 4;
for (i = 0; i < len; i++, col++) {
BPy_NMCol *mc = (BPy_NMCol *) PySequence_GetItem(from->col, i);
if(!BPy_NMCol_Check(mc)) {
Py_DECREF(mc);
continue;
}
col->b = mc->r;
col->g = mc->g;
col->r = mc->b;
col->a = mc->a;
Py_DECREF(mc);
}
}
}
/* check for a valid UV sequence */
static int check_validFaceUV(BPy_NMesh *nmesh)
{
PyObject *faces;
BPy_NMFace *nmface;
int i, n;
faces = nmesh->faces;
for (i = 0; i < PySequence_Length(faces); i++) {
nmface = (BPy_NMFace *)PyList_GetItem(faces, i);
n = PySequence_Length(nmface->uv);
if (n != PySequence_Length(nmface->v))
{
if (n > 0)
printf("Warning: different length of vertex and UV coordinate "
"list in face!\n");
return 0;
}
}
return 1;
}
/* this is a copy of unlink_mesh in mesh.c, because ... */
void EXPP_unlink_mesh(Mesh *me)
{
int a;
if(me==0) return;
for(a=0; a<me->totcol; a++) {
if(me->mat[a]) me->mat[a]->id.us--;
me->mat[a]= 0;
}
/* ... here we want to preserve mesh keys */
/* if users want to get rid of them, they can use mesh.removeAllKeys() */
/*
if(me->key) me->key->id.us--;
me->key= 0;
*/
if(me->texcomesh) me->texcomesh= 0;
}
static int unlink_existingMeshData(Mesh *mesh)
{
freedisplist(&mesh->disp);
EXPP_unlink_mesh(mesh);
if(mesh->mvert) MEM_freeN(mesh->mvert);
if(mesh->mface) MEM_freeN(mesh->mface);
if(mesh->mcol) MEM_freeN(mesh->mcol);
if(mesh->msticky) MEM_freeN(mesh->msticky);
if(mesh->mat) MEM_freeN(mesh->mat);
if(mesh->tface) MEM_freeN(mesh->tface);
return 1;
}
Material **nmesh_updateMaterials(BPy_NMesh *nmesh)
{
Material **matlist;
Mesh *mesh = nmesh->mesh;
int len = PyList_Size(nmesh->materials);
if (!mesh) {
printf("FATAL INTERNAL ERROR: illegal call to updateMaterials()\n");
return 0;
}
if (len > 0) {
matlist = EXPP_newMaterialList_fromPyList(nmesh->materials);
EXPP_incr_mats_us(matlist, len);
if (mesh->mat) MEM_freeN(mesh->mat);
mesh->mat = matlist;
} else {
matlist = 0;
}
mesh->totcol = len;
/**@ This is another ugly fix due to the weird material handling of blender.
* it makes sure that object material lists get updated (by their length)
* according to their data material lists, otherwise blender crashes.
* It just stupidly runs through all objects...BAD BAD BAD.
*/
test_object_materials((ID *)mesh);
return matlist;
}
PyObject *NMesh_assignMaterials_toObject(BPy_NMesh *nmesh, Object *ob)
{
BPy_Material *pymat;
Material *ma;
int i;
short old_matmask;
Mesh *mesh = nmesh->mesh;
int nmats; /* number of mats == len(nmesh->materials)*/
old_matmask = ob->colbits; /*@ HACK: save previous colbits */
ob->colbits = 0; /* make assign_material work on mesh linked material */
nmats = PyList_Size(nmesh->materials);
if (nmats > 0 && !mesh->mat) {
ob->totcol = nmats;
mesh->totcol = nmats;
mesh->mat = MEM_callocN(sizeof(void *)*nmats, "bpy_memats");
if (ob->mat) MEM_freeN(ob->mat);
ob->mat = MEM_callocN(sizeof(void *)*nmats, "bpy_obmats");
}
for (i = 0; i < nmats; i++) {
pymat = (BPy_Material *)PySequence_GetItem(nmesh->materials, i);
if (Material_CheckPyObject ((PyObject *)pymat)) {
ma = pymat->material;
assign_material(ob, ma, i+1);/*@ XXX don't use this function anymore*/
}
else {
Py_DECREF (pymat);
return EXPP_ReturnPyObjError (PyExc_TypeError,
"expected Material type in attribute list 'materials'!");
}
Py_DECREF (pymat);
}
ob->colbits = old_matmask; /*@ HACK */
ob->actcol = 1;
return EXPP_incr_ret (Py_None);
}
static int convert_NMeshToMesh (Mesh *mesh, BPy_NMesh *nmesh)
{
MFace *newmf;
TFace *newtf;
MVert *newmv;
MSticky *newst;
MCol *newmc;
int i, j;
mesh->mvert = NULL;
mesh->mface = NULL;
mesh->mcol = NULL;
mesh->msticky = NULL;
mesh->tface = NULL;
mesh->mat = NULL;
/* Minor note: we used 'mode' because 'flag' was already used internally
* by nmesh */
mesh->flag = nmesh->mode;
mesh->smoothresh = nmesh->smoothresh;
mesh->subdiv = nmesh->subdiv[0];
mesh->subdivr = nmesh->subdiv[1];
/*@ material assignment moved to PutRaw */
mesh->totvert = PySequence_Length(nmesh->verts);
if (mesh->totvert) {
if (nmesh->flags&NMESH_HASVERTUV)
mesh->msticky = MEM_callocN(sizeof(MSticky)*mesh->totvert, "msticky");
mesh->mvert = MEM_callocN(sizeof(MVert)*mesh->totvert, "mverts");
}
if (mesh->totvert)
mesh->totface = PySequence_Length(nmesh->faces);
else
mesh->totface = 0;
if (mesh->totface) {
/*@ only create vertcol array if mesh has no texture faces */
/*@ TODO: get rid of double storage of vertex colours. In a mesh,
* vertex colors can be stored the following ways:
* - per (TFace*)->col
* - per (Mesh*)->mcol
* This is stupid, but will reside for the time being -- at least until
* a redesign of the internal Mesh structure */
if (!(nmesh->flags & NMESH_HASFACEUV) && (nmesh->flags&NMESH_HASMCOL))
mesh->mcol = MEM_callocN(4*sizeof(MCol)*mesh->totface, "mcol");
mesh->mface = MEM_callocN(sizeof(MFace)*mesh->totface, "mfaces");
}
/*@ This stuff here is to tag all the vertices referenced
* by faces, then untag the vertices which are actually
* in the vert list. Any vertices untagged will be ignored
* by the mface_from_data function. It comes from my
* screwed up decision to not make faces only store the
* index. - Zr
*/
for (i = 0; i < mesh->totface; i++) {
BPy_NMFace *mf = (BPy_NMFace *)PySequence_GetItem(nmesh->faces, i);
j = PySequence_Length(mf->v);
while (j--) {
BPy_NMVert *mv = (BPy_NMVert *)PySequence_GetItem(mf->v, j);
if (BPy_NMVert_Check(mv)) mv->index = -1;
Py_DECREF(mv);
}
Py_DECREF(mf);
}
for (i = 0; i < mesh->totvert; i++) {
BPy_NMVert *mv = (BPy_NMVert *)PySequence_GetItem(nmesh->verts, i);
mv->index = i;
Py_DECREF(mv);
}
newmv = mesh->mvert;
newst = mesh->msticky;
for (i = 0; i < mesh->totvert; i++) {
PyObject *mv = PySequence_GetItem (nmesh->verts, i);
mvert_from_data(newmv, newst, (BPy_NMVert *)mv);
Py_DECREF(mv);
newmv++;
if (newst) newst++;
}
/* assign per face texture UVs */
/* check face UV flag, then check whether there was one
* UV coordinate assigned, if yes, make tfaces */
if ((nmesh->flags & NMESH_HASFACEUV) || (check_validFaceUV(nmesh))) {
make_tfaces(mesh); /* initialize TFaces */
newmc = mesh->mcol;
newmf = mesh->mface;
newtf = mesh->tface;
for (i = 0; i<mesh->totface; i++) {
PyObject *mf = PySequence_GetItem(nmesh->faces, i);
mface_from_data(newmf, newtf, newmc, (BPy_NMFace *) mf);
Py_DECREF(mf);
newtf++;
newmf++;
if (newmc) newmc += 4;
}
nmesh->flags |= NMESH_HASFACEUV;
}
else {
newmc = mesh->mcol;
newmf = mesh->mface;
for (i = 0; i < mesh->totface; i++) {
PyObject *mf = PySequence_GetItem(nmesh->faces, i);
mface_from_data(newmf, 0, newmc, (BPy_NMFace *) mf);
Py_DECREF(mf);
newmf++;
if (newmc) newmc += 4; /* there are 4 MCol's per face */
}
}
return 1;
}
static PyObject *M_NMesh_PutRaw(PyObject *self, PyObject *args)
{
char *name = NULL;
Mesh *mesh = NULL;
Object *ob = NULL;
BPy_NMesh *nmesh;
int recalc_normals = 1;
if (!PyArg_ParseTuple(args, "O!|si",
&NMesh_Type, &nmesh, &name, &recalc_normals))
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"expected an NMesh object and optionally also a string and an int");
if (!PySequence_Check(nmesh->verts))
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"nmesh vertices are not a sequence");
if (!PySequence_Check(nmesh->faces))
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"nmesh faces are not a sequence");
if (!PySequence_Check(nmesh->materials))
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"nmesh materials are not a sequence");
if (!EXPP_check_sequence_consistency(nmesh->verts, &NMVert_Type))
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"nmesh vertices must be NMVerts");
if (!EXPP_check_sequence_consistency(nmesh->faces, &NMFace_Type))
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"nmesh faces must be NMFaces");
if (name)
mesh = (Mesh *)GetIdFromList(&(G.main->mesh), name);
if (!mesh || mesh->id.us == 0) {
ob = add_object(OB_MESH);
if (!ob) {
PyErr_SetString(PyExc_RuntimeError,
"Fatal: could not create mesh object");
return 0;
}
if (!mesh) mesh = (Mesh *)ob->data;
else set_mesh(ob, mesh); // also does id.us++
}
if (name)
new_id(&(G.main->mesh), &mesh->id, name);
else if (nmesh->name && nmesh->name != Py_None)
new_id(&(G.main->mesh), &mesh->id, PyString_AsString(nmesh->name));
unlink_existingMeshData(mesh);
convert_NMeshToMesh(mesh, nmesh);
nmesh->mesh = mesh;
if (recalc_normals) vertexnormals_mesh(mesh, 0);
mesh_update(mesh);
if (!during_script())
allqueue(REDRAWVIEW3D, 0);
// @OK...this requires some explanation:
// Materials can be assigned two ways:
// a) to the object data (in this case, the mesh)
// b) to the Object
//
// Case a) is wanted, if Mesh data should be shared among objects,
// as well as its materials (up to 16)
// Case b) is wanted, when Mesh data should be shared, but not the
// materials. For example, you want several checker boards sharing their
// mesh data, but having different colors. So you would assign material
// index 0 to all even, index 1 to all odd faces and bind the materials
// to the Object instead (MaterialButtons: [OB] "link materials to object")
//
// This feature implies that pointers to materials can be stored in
// an object or a mesh. The number of total materials MUST be
// synchronized (ob->totcol <-> mesh->totcol). We avoid the dangerous
// direct access by calling blenderkernel/material.c:assign_material().
// The flags setting the material binding is found in ob->colbits, where
// each bit indicates the binding PER MATERIAL
if (ob) { // we created a new object
nmesh->object = ob; // linking so vgrouping methods know which obj to work on
NMesh_assignMaterials_toObject(nmesh, ob);
EXPP_synchronizeMaterialLists (ob, ob->data);
return Object_CreatePyObject(ob);
}
else {
mesh->mat = EXPP_newMaterialList_fromPyList(nmesh->materials);
EXPP_incr_mats_us (mesh->mat, PyList_Size (nmesh->materials));
return EXPP_incr_ret (Py_None);
}
}
#undef MethodDef
#define MethodDef(func) \
{#func, M_NMesh_##func, METH_VARARGS, M_NMesh_##func##_doc}
static struct PyMethodDef M_NMesh_methods[] = {
MethodDef(Col),
MethodDef(Vert),
MethodDef(Face),
MethodDef(New),
MethodDef(GetRaw),
MethodDef(GetRawFromObject),
MethodDef(PutRaw),
{NULL, NULL, 0, NULL}
};
static PyObject *M_NMesh_Modes (void)
{
PyObject *Modes = M_constant_New();
if (Modes) {
BPy_constant *d = (BPy_constant *)Modes;
constant_insert(d, "NOVNORMALSFLIP",
PyInt_FromLong(EXPP_NMESH_MODE_NOPUNOFLIP));
constant_insert(d, "TWOSIDED", PyInt_FromLong(EXPP_NMESH_MODE_TWOSIDED));
constant_insert(d, "AUTOSMOOTH",PyInt_FromLong(EXPP_NMESH_MODE_AUTOSMOOTH));
constant_insert(d, "SUBSURF", PyInt_FromLong(EXPP_NMESH_MODE_SUBSURF));
constant_insert(d, "OPTIMAL", PyInt_FromLong(EXPP_NMESH_MODE_OPTIMAL));
}
return Modes;
}
#undef EXPP_ADDCONST
#define EXPP_ADDCONST(dict, name) \
constant_insert(dict, #name, PyInt_FromLong(TF_##name))
/* Set constants for face drawing mode -- see drawmesh.c */
static PyObject *M_NMesh_FaceModesDict (void)
{
PyObject *FM = M_constant_New();
if (FM) {
BPy_constant *d = (BPy_constant *)FM;
constant_insert(d, "BILLBOARD", PyInt_FromLong(TF_BILLBOARD2));
constant_insert(d, "ALL", PyInt_FromLong(0xffff));
constant_insert(d, "HALO", PyInt_FromLong(TF_BILLBOARD));
EXPP_ADDCONST(d, DYNAMIC);
EXPP_ADDCONST(d, INVISIBLE);
EXPP_ADDCONST(d, LIGHT);
EXPP_ADDCONST(d, OBCOL);
EXPP_ADDCONST(d, SHADOW);
EXPP_ADDCONST(d, SHAREDVERT);
EXPP_ADDCONST(d, SHAREDCOL);
EXPP_ADDCONST(d, TEX);
EXPP_ADDCONST(d, TILES);
EXPP_ADDCONST(d, TWOSIDE);
}
return FM;
}
static PyObject *M_NMesh_FaceFlagsDict (void)
{
PyObject *FF = M_constant_New();
if (FF) {
BPy_constant *d = (BPy_constant *)FF;
EXPP_ADDCONST(d, SELECT);
EXPP_ADDCONST(d, HIDE);
EXPP_ADDCONST(d, ACTIVE);
}
return FF;
}
static PyObject *M_NMesh_FaceTranspModesDict (void)
{
PyObject *FTM = M_constant_New();
if (FTM) {
BPy_constant *d = (BPy_constant *)FTM;
EXPP_ADDCONST(d, SOLID);
EXPP_ADDCONST(d, ADD);
EXPP_ADDCONST(d, ALPHA);
EXPP_ADDCONST(d, SUB);
}
return FTM;
}
PyObject *NMesh_Init (void)
{
PyObject *submodule;
PyObject *Modes = M_NMesh_Modes ();
PyObject *FaceFlags = M_NMesh_FaceFlagsDict ();
PyObject *FaceModes = M_NMesh_FaceModesDict ();
PyObject *FaceTranspModes = M_NMesh_FaceTranspModesDict ();
NMCol_Type.ob_type = &PyType_Type;
NMFace_Type.ob_type = &PyType_Type;
NMVert_Type.ob_type = &PyType_Type;
NMesh_Type.ob_type = &PyType_Type;
submodule = Py_InitModule3("Blender.NMesh", M_NMesh_methods, M_NMesh_doc);
if (Modes) PyModule_AddObject (submodule, "Modes", Modes);
if (FaceFlags) PyModule_AddObject (submodule, "FaceFlags", FaceFlags);
if (FaceModes) PyModule_AddObject (submodule, "FaceModes", FaceModes);
if (FaceTranspModes)
PyModule_AddObject (submodule, "FaceTranspModes", FaceTranspModes);
g_nmeshmodule = submodule;
return submodule;
}
/* These are needed by Object.c */
PyObject *NMesh_CreatePyObject (Mesh *me, Object *ob)
{
BPy_NMesh *nmesh = (BPy_NMesh *)new_NMesh (me);
if (nmesh) nmesh->object = ob; /* linking nmesh and object for vgrouping methods */
return (PyObject *)nmesh;
}
int NMesh_CheckPyObject (PyObject *pyobj)
{
return (pyobj->ob_type == &NMesh_Type);
}
Mesh *Mesh_FromPyObject (PyObject *pyobj, Object *ob)
{
if (pyobj->ob_type == &NMesh_Type) {
Mesh *mesh;
BPy_NMesh *nmesh = (BPy_NMesh *)pyobj;
if (nmesh->mesh) {
mesh = nmesh->mesh;
unlink_existingMeshData(mesh);
convert_NMeshToMesh(mesh, nmesh);
}
else {
nmesh->mesh = Mesh_fromNMesh(nmesh);
mesh = nmesh->mesh;
}
nmesh->object = ob; /* linking for vgrouping methods */
if (nmesh->name && nmesh->name != Py_None)
new_id(&(G.main->mesh), &mesh->id, PyString_AsString(nmesh->name));
mesh_update(mesh);
nmesh_updateMaterials(nmesh);
return mesh;
}
return NULL;
}
static PyObject *NMesh_addVertGroup (PyObject *self, PyObject *args)
{
char* groupStr;
struct Object* object;
PyObject *tempStr;
if (!PyArg_ParseTuple(args, "s", &groupStr))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"expected string argument");
if (( (BPy_NMesh*)self )->object == NULL)
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"mesh must be linked to an object first...");
object = ((BPy_NMesh*)self)->object;
//get clamped name
tempStr = PyString_FromStringAndSize(groupStr, 32);
groupStr = PyString_AsString(tempStr);
add_defgroup_name (object, groupStr);
allqueue (REDRAWBUTSALL, 1);
return EXPP_incr_ret (Py_None);
}
static PyObject *NMesh_removeVertGroup (PyObject *self, PyObject *args)
{
char* groupStr;
struct Object* object;
int nIndex;
bDeformGroup* pGroup;
if (!PyArg_ParseTuple(args, "s", &groupStr))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"expected string argument");
if (( (BPy_NMesh*)self )->object == NULL)
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"mesh must be linked to an object first...");
object = ((BPy_NMesh*)self)->object;
pGroup = get_named_vertexgroup(object, groupStr);
if(pGroup == NULL)
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"group does not exist!");
nIndex = get_defgroup_num(object, pGroup);
if(nIndex == -1)
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"no deform groups assigned to mesh");
nIndex++;
object->actdef = nIndex;
del_defgroup(object);
allqueue (REDRAWBUTSALL, 1);
return EXPP_incr_ret (Py_None);
}
static PyObject *NMesh_assignVertsToGroup (PyObject *self, PyObject *args)
{
//listObject is an integer list of vertex indices to add to group
//groupStr = group name
//weight is a float defining the weight this group has on this vertex
//assignmode = "replace", "add", "subtract"
// replace weight - add addition weight to vertex for this group
// - remove group influence from this vertex
//the function will not like it if your in editmode...
char* groupStr;
char* assignmodeStr = NULL;
int nIndex;
int assignmode;
float weight = 1.0;
struct Object* object;
bDeformGroup* pGroup;
PyObject* listObject;
int tempInt;
int x;
if (( (BPy_NMesh*)self )->object == NULL)
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"mesh must be linked to an object first...");
if (!PyArg_ParseTuple(args, "sO!fs", &groupStr, &PyList_Type, &listObject,
&weight, &assignmodeStr)) {
return EXPP_ReturnPyObjError (PyExc_TypeError,
"expected string, list, float, string arguments");
}
object = ((BPy_NMesh*)self)->object;
if (object->data == NULL)
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"object contains no data...");
pGroup = get_named_vertexgroup(object, groupStr);
if(pGroup == NULL)
return EXPP_ReturnPyObjError(PyExc_AttributeError, "group does not exist!");
nIndex = get_defgroup_num(object, pGroup);
if(nIndex == -1)
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"no deform groups assigned to mesh");
if(assignmodeStr == NULL)
assignmode = 1; /* default */
else if(STREQ(assignmodeStr, "replace"))
assignmode = 1;
else if(STREQ(assignmodeStr, "add"))
assignmode = 2;
else if(STREQ(assignmodeStr, "subtract"))
assignmode = 3;
else
return EXPP_ReturnPyObjError (PyExc_ValueError, "bad assignment mode");
//makes a set of dVerts corresponding to the mVerts
if (!((Mesh*)object->data)->dvert) {
create_dverts((Mesh*)object->data);
}
//loop list adding verts to group
for (x = 0; x < PyList_Size(listObject); x++) {
if (!(PyArg_Parse((PyList_GetItem(listObject, x)), "i", &tempInt)))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"python list integer not parseable");
if (tempInt < 0 || tempInt >= ((Mesh*)object->data)->totvert)
return EXPP_ReturnPyObjError (PyExc_ValueError,
"bad vertex index in list");
add_vert_defnr(object, nIndex, tempInt, weight, assignmode);
}
return EXPP_incr_ret (Py_None);
}
static PyObject *NMesh_removeVertsFromGroup (PyObject *self, PyObject *args)
{
//not passing a list will remove all verts from group
char* groupStr;
int nIndex;
struct Object* object;
bDeformGroup* pGroup;
PyObject* listObject;
int tempInt;
int x, argc;
/* argc is the number of parameters passed in: 1 (no list given) or 2: */
argc = PyObject_Length(args);
if (!PyArg_ParseTuple(args, "s|O!", &groupStr, &PyList_Type, &listObject))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"expected string and optional list argument");
if (( (BPy_NMesh*)self )->object == NULL)
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"mesh must be linked to an object first...");
object = ((BPy_NMesh*)self)->object;
if (object->data == NULL)
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"object contains no data...");
if ((!((Mesh*)object->data)->dvert))
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"this mesh contains no deform vertices...'");
pGroup = get_named_vertexgroup(object, groupStr);
if(pGroup == NULL)
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"group does not exist!");
nIndex = get_defgroup_num(object, pGroup);
if(nIndex == -1)
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"no deform groups assigned to mesh");
if (argc == 1) /* no list given */ {
//enter editmode
if((G.obedit == 0))
{
//set current object
BASACT->object = object;
G.obedit= BASACT->object;
}
//set current vertex group
nIndex++;
object->actdef = nIndex;
//clear all dVerts in active group
remove_verts_defgroup (1);
//exit editmode
G.obedit = 0;
}
else
{
if(G.obedit != 0) //remove_vert_def_nr doesn't like it if your in editmode
G.obedit = 0;
//loop list adding verts to group
for(x = 0; x < PyList_Size(listObject); x++) {
if(!(PyArg_Parse((PyList_GetItem(listObject, x)), "i", &tempInt)))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"python list integer not parseable");
if(tempInt < 0 || tempInt >= ((Mesh*)object->data)->totvert)
return EXPP_ReturnPyObjError (PyExc_ValueError,
"bad vertex index in list");
remove_vert_def_nr (object, nIndex, tempInt);
}
}
return EXPP_incr_ret (Py_None);
}
static PyObject *NMesh_getVertsFromGroup (PyObject *self, PyObject *args)
{
//not passing a list will return all verts from group
//passing indecies not part of the group will not return data in pyList
//can be used as a index/group check for a vertex
char* groupStr;
int nIndex;
int weightRet;
struct Object* object;
bDeformGroup* pGroup;
MVert *mvert;
MDeformVert *dvert;
float weight;
int i, k, l1, l2, count;
int num = 0;
PyObject* tempVertexList = NULL;
PyObject* vertexList;
PyObject* listObject;
int tempInt;
int x;
listObject = (void*)-2054456; //can't use NULL macro because compiler thinks
//it's a 0 and we need to check 0 index vertex pos
l1 = FALSE;
l2 = FALSE;
weightRet = 0;
if (!PyArg_ParseTuple(args, "s|iO!", &groupStr, &weightRet,
&PyList_Type, &listObject))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"expected string and optional int and list arguments");
if (weightRet < 0 || weightRet > 1)
return EXPP_ReturnPyObjError (PyExc_ValueError,
"return weights flag must be 0 or 1...");
if(((BPy_NMesh*)self)->object == NULL)
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"mesh must be linked to an object first...");
object = ((BPy_NMesh*)self)->object;
if(object->data == NULL)
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"object contains no data...");
if ((!((Mesh*)object->data)->dvert))
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"this mesh contains no deform vertices...'");
pGroup = get_named_vertexgroup(object, groupStr);
if(pGroup == NULL)
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"group does not exist!");
nIndex = get_defgroup_num(object, pGroup);
if(nIndex == -1)
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"no deform groups assigned to mesh");
//temporary list
tempVertexList = PyList_New(((Mesh*)object->data)->totvert);
if (tempVertexList == NULL)
return EXPP_ReturnPyObjError (PyExc_RuntimeError,
"getVertsFromGroup: can't create pylist!");
count = 0;
if (listObject == (void *)-2054456) //do entire group
{
for(k = 0; k < ((Mesh*)object->data)->totvert ; k++)
{
dvert = ((Mesh*)object->data)->dvert + k;
for (i=0 ; i < dvert->totweight; i++)
{
if (dvert->dw[i].def_nr == nIndex)
{
mvert = ((Mesh*)object->data)->mvert + k;
weight = dvert->dw[i].weight;
//printf("index =%3d weight:%10f\n", k, weight);
if(weightRet == 1)
PyList_SetItem(tempVertexList, count,
Py_BuildValue("(i,f)", k, weight));
else if (weightRet == 0)
PyList_SetItem(tempVertexList, count, Py_BuildValue("i", k));
count++;
}
}
}
}
else //do single vertex
{
//loop list adding verts to group
for(x = 0; x < PyList_Size(listObject); x++)
{
if(!(PyArg_Parse((PyList_GetItem(listObject, x)), "i", &tempInt)))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"python list integer not parseable");
if(tempInt < 0 || tempInt >= ((Mesh*)object->data)->totvert)
return EXPP_ReturnPyObjError (PyExc_ValueError,
"bad vertex index in list");
num = tempInt;
dvert = ((Mesh*)object->data)->dvert + num;
for (i=0 ; i < dvert->totweight; i++)
{
l1 = TRUE;
if (dvert->dw[i].def_nr == nIndex)
{
l2 = TRUE;
mvert = ((Mesh*)object->data)->mvert + num;
weight = dvert->dw[i].weight;
//printf("index =%3d weight:%10f\n", num, weight);
if(weightRet == 1) {
PyList_SetItem(tempVertexList, count,
Py_BuildValue("(i,f)", num, weight));
}
else if (weightRet == 0)
PyList_SetItem(tempVertexList, count, Py_BuildValue("i", num));
count++;
}
if(l2 == FALSE)
printf("vertex at index %d is not part of passed group...\n", tempInt);
}
if(l1 == FALSE)
printf("vertex at index %d is not assigned to a vertex group...\n", tempInt);
l1 = l2 = FALSE; //reset flags
}
}
//only return what we need
vertexList = PyList_GetSlice(tempVertexList, 0, count);
Py_DECREF(tempVertexList);
return (vertexList);
}
static PyObject *NMesh_renameVertGroup (PyObject *self, PyObject *args)
{
char * oldGr = NULL;
char * newGr = NULL;
bDeformGroup * defGroup = NULL;
/*PyObject *tempStr;*/
if(!((BPy_NMesh*)self)->object)
return EXPP_ReturnPyObjError (PyExc_RuntimeError,
"This mesh must be linked to an object");
if (!PyArg_ParseTuple(args, "ss", &oldGr, &newGr))
return EXPP_ReturnPyObjError (PyExc_TypeError,
"Expected string & string argument");
defGroup = get_named_vertexgroup(((BPy_NMesh*)self)->object, oldGr);
if(defGroup == NULL)
return EXPP_ReturnPyObjError (PyExc_RuntimeError,
"Couldn't find the expected vertex group");
//set name
PyOS_snprintf(defGroup->name, 32, newGr);
unique_vertexgroup_name(defGroup, ((BPy_NMesh*)self)->object);
return EXPP_incr_ret (Py_None);
}
static PyObject *NMesh_getVertGroupNames (PyObject *self, PyObject *args)
{
bDeformGroup * defGroup;
PyObject *list;
if(!((BPy_NMesh*)self)->object)
return EXPP_ReturnPyObjError (PyExc_RuntimeError,
"This mesh must be linked to an object");
list = PyList_New(0);
for (defGroup = (((BPy_NMesh*)self)->object)->defbase.first; defGroup; defGroup=defGroup->next){
if(PyList_Append(list,PyString_FromString(defGroup->name)) < 0)
return EXPP_ReturnPyObjError (PyExc_RuntimeError,
"Couldn't add item to list");
}
return list;
}