This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/iksolver/intern/IK_QJacobian.cpp
Campbell Barton de13d0a80c doxygen: add newline after \file
While \file doesn't need an argument, it can't have another doxy
command after it.
2019-02-18 08:22:12 +11:00

427 lines
10 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*/
/** \file
* \ingroup iksolver
*/
#include "IK_QJacobian.h"
IK_QJacobian::IK_QJacobian()
: m_sdls(true), m_min_damp(1.0)
{
}
IK_QJacobian::~IK_QJacobian()
{
}
void IK_QJacobian::ArmMatrices(int dof, int task_size)
{
m_dof = dof;
m_task_size = task_size;
m_jacobian.resize(task_size, dof);
m_jacobian.setZero();
m_alpha.resize(dof);
m_alpha.setZero();
m_nullspace.resize(dof, dof);
m_d_theta.resize(dof);
m_d_theta_tmp.resize(dof);
m_d_norm_weight.resize(dof);
m_norm.resize(dof);
m_norm.setZero();
m_beta.resize(task_size);
m_weight.resize(dof);
m_weight_sqrt.resize(dof);
m_weight.setOnes();
m_weight_sqrt.setOnes();
if (task_size >= dof) {
m_transpose = false;
m_jacobian_tmp.resize(task_size, dof);
m_svd_u.resize(task_size, dof);
m_svd_v.resize(dof, dof);
m_svd_w.resize(dof);
m_svd_u_beta.resize(dof);
}
else {
// use the SVD of the transpose jacobian, it works just as well
// as the original, and often allows using smaller matrices.
m_transpose = true;
m_jacobian_tmp.resize(dof, task_size);
m_svd_u.resize(task_size, task_size);
m_svd_v.resize(dof, task_size);
m_svd_w.resize(task_size);
m_svd_u_beta.resize(task_size);
}
}
void IK_QJacobian::SetBetas(int id, int, const Vector3d& v)
{
m_beta[id + 0] = v.x();
m_beta[id + 1] = v.y();
m_beta[id + 2] = v.z();
}
void IK_QJacobian::SetDerivatives(int id, int dof_id, const Vector3d& v, double norm_weight)
{
m_jacobian(id + 0, dof_id) = v.x() * m_weight_sqrt[dof_id];
m_jacobian(id + 1, dof_id) = v.y() * m_weight_sqrt[dof_id];
m_jacobian(id + 2, dof_id) = v.z() * m_weight_sqrt[dof_id];
m_d_norm_weight[dof_id] = norm_weight;
}
void IK_QJacobian::Invert()
{
if (m_transpose) {
// SVD will decompose Jt into V*W*Ut with U,V orthogonal and W diagonal,
// so J = U*W*Vt and Jinv = V*Winv*Ut
Eigen::JacobiSVD<MatrixXd> svd(m_jacobian.transpose(), Eigen::ComputeThinU | Eigen::ComputeThinV);
m_svd_u = svd.matrixV();
m_svd_w = svd.singularValues();
m_svd_v = svd.matrixU();
}
else {
// SVD will decompose J into U*W*Vt with U,V orthogonal and W diagonal,
// so Jinv = V*Winv*Ut
Eigen::JacobiSVD<MatrixXd> svd(m_jacobian, Eigen::ComputeThinU | Eigen::ComputeThinV);
m_svd_u = svd.matrixU();
m_svd_w = svd.singularValues();
m_svd_v = svd.matrixV();
}
if (m_sdls)
InvertSDLS();
else
InvertDLS();
}
bool IK_QJacobian::ComputeNullProjection()
{
double epsilon = 1e-10;
// compute null space projection based on V
int i, j, rank = 0;
for (i = 0; i < m_svd_w.size(); i++)
if (m_svd_w[i] > epsilon)
rank++;
if (rank < m_task_size)
return false;
MatrixXd basis(m_svd_v.rows(), rank);
int b = 0;
for (i = 0; i < m_svd_w.size(); i++)
if (m_svd_w[i] > epsilon) {
for (j = 0; j < m_svd_v.rows(); j++)
basis(j, b) = m_svd_v(j, i);
b++;
}
m_nullspace = basis * basis.transpose();
for (i = 0; i < m_nullspace.rows(); i++)
for (j = 0; j < m_nullspace.cols(); j++)
if (i == j)
m_nullspace(i, j) = 1.0 - m_nullspace(i, j);
else
m_nullspace(i, j) = -m_nullspace(i, j);
return true;
}
void IK_QJacobian::SubTask(IK_QJacobian& jacobian)
{
if (!ComputeNullProjection())
return;
// restrict lower priority jacobian
jacobian.Restrict(m_d_theta, m_nullspace);
// add angle update from lower priority
jacobian.Invert();
// note: now damps secondary angles with minimum damping value from
// SDLS, to avoid shaking when the primary task is near singularities,
// doesn't work well at all
int i;
for (i = 0; i < m_d_theta.size(); i++)
m_d_theta[i] = m_d_theta[i] + /*m_min_damp * */ jacobian.AngleUpdate(i);
}
void IK_QJacobian::Restrict(VectorXd& d_theta, MatrixXd& nullspace)
{
// subtract part already moved by higher task from beta
m_beta = m_beta - m_jacobian * d_theta;
// note: should we be using the norm of the unrestricted jacobian for SDLS?
// project jacobian on to null space of higher priority task
m_jacobian = m_jacobian * nullspace;
}
void IK_QJacobian::InvertSDLS()
{
// Compute the dampeds least squeares pseudo inverse of J.
//
// Since J is usually not invertible (most of the times it's not even
// square), the psuedo inverse is used. This gives us a least squares
// solution.
//
// This is fine when the J*Jt is of full rank. When J*Jt is near to
// singular the least squares inverse tries to minimize |J(dtheta) - dX)|
// and doesn't try to minimize dTheta. This results in eratic changes in
// angle. The damped least squares minimizes |dtheta| to try and reduce this
// erratic behaviour.
//
// The selectively damped least squares (SDLS) is used here instead of the
// DLS. The SDLS damps individual singular values, instead of using a single
// damping term.
double max_angle_change = M_PI / 4.0;
double epsilon = 1e-10;
int i, j;
m_d_theta.setZero();
m_min_damp = 1.0;
for (i = 0; i < m_dof; i++) {
m_norm[i] = 0.0;
for (j = 0; j < m_task_size; j += 3) {
double n = 0.0;
n += m_jacobian(j, i) * m_jacobian(j, i);
n += m_jacobian(j + 1, i) * m_jacobian(j + 1, i);
n += m_jacobian(j + 2, i) * m_jacobian(j + 2, i);
m_norm[i] += sqrt(n);
}
}
for (i = 0; i < m_svd_w.size(); i++) {
if (m_svd_w[i] <= epsilon)
continue;
double wInv = 1.0 / m_svd_w[i];
double alpha = 0.0;
double N = 0.0;
// compute alpha and N
for (j = 0; j < m_svd_u.rows(); j += 3) {
alpha += m_svd_u(j, i) * m_beta[j];
alpha += m_svd_u(j + 1, i) * m_beta[j + 1];
alpha += m_svd_u(j + 2, i) * m_beta[j + 2];
// note: for 1 end effector, N will always be 1, since U is
// orthogonal, .. so could be optimized
double tmp;
tmp = m_svd_u(j, i) * m_svd_u(j, i);
tmp += m_svd_u(j + 1, i) * m_svd_u(j + 1, i);
tmp += m_svd_u(j + 2, i) * m_svd_u(j + 2, i);
N += sqrt(tmp);
}
alpha *= wInv;
// compute M, dTheta and max_dtheta
double M = 0.0;
double max_dtheta = 0.0, abs_dtheta;
for (j = 0; j < m_d_theta.size(); j++) {
double v = m_svd_v(j, i);
M += fabs(v) * m_norm[j];
// compute tmporary dTheta's
m_d_theta_tmp[j] = v * alpha;
// find largest absolute dTheta
// multiply with weight to prevent unnecessary damping
abs_dtheta = fabs(m_d_theta_tmp[j]) * m_weight_sqrt[j];
if (abs_dtheta > max_dtheta)
max_dtheta = abs_dtheta;
}
M *= wInv;
// compute damping term and damp the dTheta's
double gamma = max_angle_change;
if (N < M)
gamma *= N / M;
double damp = (gamma < max_dtheta) ? gamma / max_dtheta : 1.0;
for (j = 0; j < m_d_theta.size(); j++) {
// slight hack: we do 0.80*, so that if there is some oscillation,
// the system can still converge (for joint limits). also, it's
// better to go a little to slow than to far
double dofdamp = damp / m_weight[j];
if (dofdamp > 1.0) dofdamp = 1.0;
m_d_theta[j] += 0.80 * dofdamp * m_d_theta_tmp[j];
}
if (damp < m_min_damp)
m_min_damp = damp;
}
// weight + prevent from doing angle updates with angles > max_angle_change
double max_angle = 0.0, abs_angle;
for (j = 0; j < m_dof; j++) {
m_d_theta[j] *= m_weight[j];
abs_angle = fabs(m_d_theta[j]);
if (abs_angle > max_angle)
max_angle = abs_angle;
}
if (max_angle > max_angle_change) {
double damp = (max_angle_change) / (max_angle_change + max_angle);
for (j = 0; j < m_dof; j++)
m_d_theta[j] *= damp;
}
}
void IK_QJacobian::InvertDLS()
{
// Compute damped least squares inverse of pseudo inverse
// Compute damping term lambda
// Note when lambda is zero this is equivalent to the
// least squares solution. This is fine when the m_jjt is
// of full rank. When m_jjt is near to singular the least squares
// inverse tries to minimize |J(dtheta) - dX)| and doesn't
// try to minimize dTheta. This results in eratic changes in angle.
// Damped least squares minimizes |dtheta| to try and reduce this
// erratic behaviour.
// We don't want to use the damped solution everywhere so we
// only increase lamda from zero as we approach a singularity.
// find the smallest non-zero W value, anything below epsilon is
// treated as zero
double epsilon = 1e-10;
double max_angle_change = 0.1;
double x_length = sqrt(m_beta.dot(m_beta));
int i, j;
double w_min = std::numeric_limits<double>::max();
for (i = 0; i < m_svd_w.size(); i++) {
if (m_svd_w[i] > epsilon && m_svd_w[i] < w_min)
w_min = m_svd_w[i];
}
// compute lambda damping term
double d = x_length / max_angle_change;
double lambda;
if (w_min <= d / 2)
lambda = d / 2;
else if (w_min < d)
lambda = sqrt(w_min * (d - w_min));
else
lambda = 0.0;
lambda *= lambda;
if (lambda > 10)
lambda = 10;
// immediately multiply with Beta, so we can do matrix*vector products
// rather than matrix*matrix products
// compute Ut*Beta
m_svd_u_beta = m_svd_u.transpose() * m_beta;
m_d_theta.setZero();
for (i = 0; i < m_svd_w.size(); i++) {
if (m_svd_w[i] > epsilon) {
double wInv = m_svd_w[i] / (m_svd_w[i] * m_svd_w[i] + lambda);
// compute V*Winv*Ut*Beta
m_svd_u_beta[i] *= wInv;
for (j = 0; j < m_d_theta.size(); j++)
m_d_theta[j] += m_svd_v(j, i) * m_svd_u_beta[i];
}
}
for (j = 0; j < m_d_theta.size(); j++)
m_d_theta[j] *= m_weight[j];
}
void IK_QJacobian::Lock(int dof_id, double delta)
{
int i;
for (i = 0; i < m_task_size; i++) {
m_beta[i] -= m_jacobian(i, dof_id) * delta;
m_jacobian(i, dof_id) = 0.0;
}
m_norm[dof_id] = 0.0; // unneeded
m_d_theta[dof_id] = 0.0;
}
double IK_QJacobian::AngleUpdate(int dof_id) const
{
return m_d_theta[dof_id];
}
double IK_QJacobian::AngleUpdateNorm() const
{
int i;
double mx = 0.0, dtheta_abs;
for (i = 0; i < m_d_theta.size(); i++) {
dtheta_abs = fabs(m_d_theta[i] * m_d_norm_weight[i]);
if (dtheta_abs > mx)
mx = dtheta_abs;
}
return mx;
}
void IK_QJacobian::SetDoFWeight(int dof, double weight)
{
m_weight[dof] = weight;
m_weight_sqrt[dof] = sqrt(weight);
}