This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenlib/BLI_memory_utils.hh
Jacques Lucke 22fc0cbd69 BLI: improve support for trivial virtual arrays
This commits reduces the number of function calls through function
pointers in `blender::Any` when the stored type is trivial.

Furthermore, this implements marks some classes as trivial, which
we know are trivial but the compiler does not (the standard currently
says that any class with a virtual destructor is non-trivial). Under some
circumstances we know that final child classes are trivial though.
This allows for some optimizations.

Also see https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1077r0.html.
2022-06-25 19:27:33 +02:00

608 lines
15 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
#pragma once
/** \file
* \ingroup bli
* Some of the functions below have very similar alternatives in the standard library. However, it
* is rather annoying to use those when debugging. Therefore, some more specialized and easier to
* debug functions are provided here.
*/
#include <memory>
#include <new>
#include <type_traits>
#include "BLI_utildefines.h"
#include "MEM_guardedalloc.h"
namespace blender {
/**
* Under some circumstances #std::is_trivial_v<T> is false even though we know that the type is
* actually trivial. Using that extra knowledge allows for some optimizations.
*/
template<typename T> inline constexpr bool is_trivial_extended_v = std::is_trivial_v<T>;
template<typename T>
inline constexpr bool is_trivially_destructible_extended_v = is_trivial_extended_v<T> ||
std::is_trivially_destructible_v<T>;
template<typename T>
inline constexpr bool is_trivially_copy_constructible_extended_v =
is_trivial_extended_v<T> || std::is_trivially_copy_constructible_v<T>;
template<typename T>
inline constexpr bool is_trivially_move_constructible_extended_v =
is_trivial_extended_v<T> || std::is_trivially_move_constructible_v<T>;
/**
* Call the destructor on n consecutive values. For trivially destructible types, this does
* nothing.
*
* Exception Safety: Destructors shouldn't throw exceptions.
*
* Before:
* ptr: initialized
* After:
* ptr: uninitialized
*/
template<typename T> void destruct_n(T *ptr, int64_t n)
{
BLI_assert(n >= 0);
static_assert(std::is_nothrow_destructible_v<T>,
"This should be true for all types. Destructors are noexcept by default.");
/* This is not strictly necessary, because the loop below will be optimized away anyway. It is
* nice to make behavior this explicitly, though. */
if (is_trivially_destructible_extended_v<T>) {
return;
}
for (int64_t i = 0; i < n; i++) {
ptr[i].~T();
}
}
/**
* Call the default constructor on n consecutive elements. For trivially constructible types, this
* does nothing.
*
* Exception Safety: Strong.
*
* Before:
* ptr: uninitialized
* After:
* ptr: initialized
*/
template<typename T> void default_construct_n(T *ptr, int64_t n)
{
BLI_assert(n >= 0);
/* This is not strictly necessary, because the loop below will be optimized away anyway. It is
* nice to make behavior this explicitly, though. */
if (std::is_trivially_constructible_v<T>) {
return;
}
int64_t current = 0;
try {
for (; current < n; current++) {
new (static_cast<void *>(ptr + current)) T;
}
}
catch (...) {
destruct_n(ptr, current);
throw;
}
}
/**
* Copy n values from src to dst.
*
* Exception Safety: Basic.
*
* Before:
* src: initialized
* dst: initialized
* After:
* src: initialized
* dst: initialized
*/
template<typename T> void initialized_copy_n(const T *src, int64_t n, T *dst)
{
BLI_assert(n >= 0);
for (int64_t i = 0; i < n; i++) {
dst[i] = src[i];
}
}
/**
* Copy n values from src to dst.
*
* Exception Safety: Strong.
*
* Before:
* src: initialized
* dst: uninitialized
* After:
* src: initialized
* dst: initialized
*/
template<typename T> void uninitialized_copy_n(const T *src, int64_t n, T *dst)
{
BLI_assert(n >= 0);
int64_t current = 0;
try {
for (; current < n; current++) {
new (static_cast<void *>(dst + current)) T(src[current]);
}
}
catch (...) {
destruct_n(dst, current);
throw;
}
}
/**
* Convert n values from type `From` to type `To`.
*
* Exception Safety: Strong.
*
* Before:
* src: initialized
* dst: uninitialized
* After:
* src: initialized
* dst: initialized
*/
template<typename From, typename To>
void uninitialized_convert_n(const From *src, int64_t n, To *dst)
{
BLI_assert(n >= 0);
int64_t current = 0;
try {
for (; current < n; current++) {
new (static_cast<void *>(dst + current)) To(static_cast<To>(src[current]));
}
}
catch (...) {
destruct_n(dst, current);
throw;
}
}
/**
* Move n values from src to dst.
*
* Exception Safety: Basic.
*
* Before:
* src: initialized
* dst: initialized
* After:
* src: initialized, moved-from
* dst: initialized
*/
template<typename T> void initialized_move_n(T *src, int64_t n, T *dst)
{
BLI_assert(n >= 0);
for (int64_t i = 0; i < n; i++) {
dst[i] = std::move(src[i]);
}
}
/**
* Move n values from src to dst.
*
* Exception Safety: Basic.
*
* Before:
* src: initialized
* dst: uninitialized
* After:
* src: initialized, moved-from
* dst: initialized
*/
template<typename T> void uninitialized_move_n(T *src, int64_t n, T *dst)
{
BLI_assert(n >= 0);
int64_t current = 0;
try {
for (; current < n; current++) {
new (static_cast<void *>(dst + current)) T(std::move(src[current]));
}
}
catch (...) {
destruct_n(dst, current);
throw;
}
}
/**
* Relocate n values from src to dst. Relocation is a move followed by destruction of the src
* value.
*
* Exception Safety: Basic.
*
* Before:
* src: initialized
* dst: initialized
* After:
* src: uninitialized
* dst: initialized
*/
template<typename T> void initialized_relocate_n(T *src, int64_t n, T *dst)
{
BLI_assert(n >= 0);
initialized_move_n(src, n, dst);
destruct_n(src, n);
}
/**
* Relocate n values from src to dst. Relocation is a move followed by destruction of the src
* value.
*
* Exception Safety: Basic.
*
* Before:
* src: initialized
* dst: uninitialized
* After:
* src: uninitialized
* dst: initialized
*/
template<typename T> void uninitialized_relocate_n(T *src, int64_t n, T *dst)
{
BLI_assert(n >= 0);
uninitialized_move_n(src, n, dst);
destruct_n(src, n);
}
/**
* Copy the value to n consecutive elements.
*
* Exception Safety: Basic.
*
* Before:
* dst: initialized
* After:
* dst: initialized
*/
template<typename T> void initialized_fill_n(T *dst, int64_t n, const T &value)
{
BLI_assert(n >= 0);
for (int64_t i = 0; i < n; i++) {
dst[i] = value;
}
}
/**
* Copy the value to n consecutive elements.
*
* Exception Safety: Strong.
*
* Before:
* dst: uninitialized
* After:
* dst: initialized
*/
template<typename T> void uninitialized_fill_n(T *dst, int64_t n, const T &value)
{
BLI_assert(n >= 0);
int64_t current = 0;
try {
for (; current < n; current++) {
new (static_cast<void *>(dst + current)) T(value);
}
}
catch (...) {
destruct_n(dst, current);
throw;
}
}
template<typename T> struct DestructValueAtAddress {
DestructValueAtAddress() = default;
template<typename U> DestructValueAtAddress(const U &)
{
}
void operator()(T *ptr)
{
ptr->~T();
}
};
/**
* A destruct_ptr is like unique_ptr, but it will only call the destructor and will not free the
* memory. This is useful when using custom allocators.
*/
template<typename T> using destruct_ptr = std::unique_ptr<T, DestructValueAtAddress<T>>;
/**
* An `AlignedBuffer` is a byte array with at least the given size and alignment. The buffer will
* not be initialized by the default constructor.
*/
template<size_t Size, size_t Alignment> class AlignedBuffer {
struct Empty {
};
struct alignas(Alignment) Sized {
/* Don't create an empty array. This causes problems with some compilers. */
std::byte buffer_[Size > 0 ? Size : 1];
};
using BufferType = std::conditional_t<Size == 0, Empty, Sized>;
BLI_NO_UNIQUE_ADDRESS BufferType buffer_;
public:
operator void *()
{
return this;
}
operator const void *() const
{
return this;
}
void *ptr()
{
return this;
}
const void *ptr() const
{
return this;
}
};
/**
* This can be used to reserve memory for C++ objects whose lifetime is different from the
* lifetime of the object they are embedded in. It's used by containers with small buffer
* optimization and hash table implementations.
*/
template<typename T, int64_t Size = 1> class TypedBuffer {
private:
BLI_NO_UNIQUE_ADDRESS AlignedBuffer<sizeof(T) * (size_t)Size, alignof(T)> buffer_;
public:
operator T *()
{
return static_cast<T *>(buffer_.ptr());
}
operator const T *() const
{
return static_cast<const T *>(buffer_.ptr());
}
T &operator*()
{
return *static_cast<T *>(buffer_.ptr());
}
const T &operator*() const
{
return *static_cast<const T *>(buffer_.ptr());
}
T *ptr()
{
return static_cast<T *>(buffer_.ptr());
}
const T *ptr() const
{
return static_cast<const T *>(buffer_.ptr());
}
T &ref()
{
return *static_cast<T *>(buffer_.ptr());
}
const T &ref() const
{
return *static_cast<const T *>(buffer_.ptr());
}
};
/* A dynamic stack buffer can be used instead of #alloca when wants to allocate a dynamic amount of
* memory on the stack. Using this class has some advantages:
* - It falls back to heap allocation, when the size is too large.
* - It can be used in loops safely.
* - If the buffer is heap allocated, it is free automatically in the destructor.
*/
template<size_t ReservedSize = 64, size_t ReservedAlignment = 64>
class alignas(ReservedAlignment) DynamicStackBuffer {
private:
/* Don't create an empty array. This causes problems with some compilers. */
char reserved_buffer_[(ReservedSize > 0) ? ReservedSize : 1];
void *buffer_;
public:
DynamicStackBuffer(const int64_t size, const int64_t alignment)
{
BLI_assert(size >= 0);
BLI_assert(alignment >= 0);
if (size <= ReservedSize && alignment <= ReservedAlignment) {
buffer_ = reserved_buffer_;
}
else {
buffer_ = MEM_mallocN_aligned(size, alignment, __func__);
}
}
~DynamicStackBuffer()
{
if (buffer_ != reserved_buffer_) {
MEM_freeN(buffer_);
}
}
/* Don't allow any copying or moving of this type. */
DynamicStackBuffer(const DynamicStackBuffer &other) = delete;
DynamicStackBuffer(DynamicStackBuffer &&other) = delete;
DynamicStackBuffer &operator=(const DynamicStackBuffer &other) = delete;
DynamicStackBuffer &operator=(DynamicStackBuffer &&other) = delete;
void *buffer() const
{
return buffer_;
}
};
/**
* This can be used by container constructors. A parameter of this type should be used to indicate
* that the constructor does not construct the elements.
*/
class NoInitialization {
};
/**
* This can be used to mark a constructor of an object that does not throw exceptions. Other
* constructors can delegate to this constructor to make sure that the object lifetime starts.
* With this, the destructor of the object will be called, even when the remaining constructor
* throws.
*/
class NoExceptConstructor {
};
/**
* Helper variable that checks if a pointer type can be converted into another pointer type without
* issues. Possible issues are casting away const and casting a pointer to a child class.
* Adding const or casting to a parent class is fine.
*/
template<typename From, typename To>
inline constexpr bool is_convertible_pointer_v =
std::is_convertible_v<From, To> &&std::is_pointer_v<From> &&std::is_pointer_v<To>;
/**
* Helper variable that checks if a Span<From> can be converted to Span<To> safely, whereby From
* and To are pointers. Adding const and casting to a void pointer is allowed.
* Casting up and down a class hierarchy generally is not allowed, because this might change the
* pointer under some circumstances.
*/
template<typename From, typename To>
inline constexpr bool is_span_convertible_pointer_v =
/* Make sure we are working with pointers. */
std::is_pointer_v<From> &&std::is_pointer_v<To> &&
(/* No casting is necessary when both types are the same. */
std::is_same_v<From, To> ||
/* Allow adding const to the underlying type. */
std::is_same_v<const std::remove_pointer_t<From>, std::remove_pointer_t<To>> ||
/* Allow casting non-const pointers to void pointers. */
(!std::is_const_v<std::remove_pointer_t<From>> && std::is_same_v<To, void *>) ||
/* Allow casting any pointer to const void pointers. */
std::is_same_v<To, const void *>);
/**
* Same as #std::is_same_v but allows for checking multiple types at the same time.
*/
template<typename T, typename... Args>
inline constexpr bool is_same_any_v = (std::is_same_v<T, Args> || ...);
/**
* Inline buffers for small-object-optimization should be disable by default. Otherwise we might
* get large unexpected allocations on the stack.
*/
inline constexpr int64_t default_inline_buffer_capacity(size_t element_size)
{
return (static_cast<int64_t>(element_size) < 100) ? 4 : 0;
}
/**
* This can be used by containers to implement an exception-safe copy-assignment-operator.
* It assumes that the container has an exception safe copy constructor and an exception-safe
* move-assignment-operator.
*/
template<typename Container> Container &copy_assign_container(Container &dst, const Container &src)
{
if (&src == &dst) {
return dst;
}
Container container_copy{src};
dst = std::move(container_copy);
return dst;
}
/**
* This can be used by containers to implement an exception-safe move-assignment-operator.
* It assumes that the container has an exception-safe move-constructor and a noexcept constructor
* tagged with the NoExceptConstructor tag.
*/
template<typename Container>
Container &move_assign_container(Container &dst, Container &&src) noexcept(
std::is_nothrow_move_constructible_v<Container>)
{
if (&dst == &src) {
return dst;
}
dst.~Container();
if constexpr (std::is_nothrow_move_constructible_v<Container>) {
new (&dst) Container(std::move(src));
}
else {
try {
new (&dst) Container(std::move(src));
}
catch (...) {
new (&dst) Container(NoExceptConstructor());
throw;
}
}
return dst;
}
/**
* Returns true if the value is different and was assigned.
*/
template<typename T> inline bool assign_if_different(T &old_value, T new_value)
{
if (old_value != new_value) {
old_value = std::move(new_value);
return true;
}
return false;
}
} // namespace blender
namespace blender::detail {
template<typename Func> struct ScopedDeferHelper {
Func func;
~ScopedDeferHelper()
{
func();
}
};
} // namespace blender::detail
#define BLI_SCOPED_DEFER_NAME1(a, b) a##b
#define BLI_SCOPED_DEFER_NAME2(a, b) BLI_SCOPED_DEFER_NAME1(a, b)
#define BLI_SCOPED_DEFER_NAME(a) BLI_SCOPED_DEFER_NAME2(_scoped_defer_##a##_, __LINE__)
/**
* Execute the given function when the current scope ends. This can be used to cheaply implement
* some RAII-like behavior for C types that don't support it. Long term, the types we want to use
* this with should either be converted to C++ or get a proper C++ API. Until then, this function
* can help avoid common resource leakages.
*/
#define BLI_SCOPED_DEFER(function_to_defer) \
auto BLI_SCOPED_DEFER_NAME(func) = (function_to_defer); \
blender::detail::ScopedDeferHelper<decltype(BLI_SCOPED_DEFER_NAME(func))> \
BLI_SCOPED_DEFER_NAME(helper){std::move(BLI_SCOPED_DEFER_NAME(func))};