This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/kernel/split/kernel_branched.h
Mai Lavelle 6238214159 Cycles: Faster split branched path tracing by sharing samples with inactive threads
Unlike regular path tracing, branched path tracing is usually used with lower
sample counts, at least for primary rays. This means that are less samples for
the GPU to work on in parallel and rendering is slower. As there is less work
overall there is also more inactive threads during rendering with BPT. This
patch makes use of those inactive rays to render branched samples in parallel
with other samples.

Each thread that is preparing for a branched sample will attempt to find an
inactive thread and if one is found the state for the sample is copied to that
thread. Potentially, if there are enough inactive threads, 100s of branched
samples could be generated from the same originating thread and ran in
parallel giving large speed ups.

Gives 70% faster render for pavillion midday scene. 20-60% faster on BMW
with car paint replaced with SSS/volumes.
2017-06-10 04:08:49 -04:00

221 lines
7.1 KiB
C++

/*
* Copyright 2011-2017 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
#ifdef __BRANCHED_PATH__
/* sets up the various state needed to do an indirect loop */
ccl_device_inline void kernel_split_branched_path_indirect_loop_init(KernelGlobals *kg, int ray_index)
{
SplitBranchedState *branched_state = &kernel_split_state.branched_state[ray_index];
/* save a copy of the state to restore later */
#define BRANCHED_STORE(name) \
branched_state->name = kernel_split_state.name[ray_index];
BRANCHED_STORE(path_state);
BRANCHED_STORE(throughput);
BRANCHED_STORE(ray);
BRANCHED_STORE(sd);
BRANCHED_STORE(isect);
BRANCHED_STORE(ray_state);
#undef BRANCHED_STORE
/* set loop counters to intial position */
branched_state->next_closure = 0;
branched_state->next_sample = 0;
}
/* ends an indirect loop and restores the previous state */
ccl_device_inline void kernel_split_branched_path_indirect_loop_end(KernelGlobals *kg, int ray_index)
{
SplitBranchedState *branched_state = &kernel_split_state.branched_state[ray_index];
/* restore state */
#define BRANCHED_RESTORE(name) \
kernel_split_state.name[ray_index] = branched_state->name;
BRANCHED_RESTORE(path_state);
BRANCHED_RESTORE(throughput);
BRANCHED_RESTORE(ray);
BRANCHED_RESTORE(sd);
BRANCHED_RESTORE(isect);
BRANCHED_RESTORE(ray_state);
#undef BRANCHED_RESTORE
/* leave indirect loop */
REMOVE_RAY_FLAG(kernel_split_state.ray_state, ray_index, RAY_BRANCHED_INDIRECT);
}
ccl_device_inline bool kernel_split_branched_indirect_start_shared(KernelGlobals *kg, int ray_index)
{
ccl_global char *ray_state = kernel_split_state.ray_state;
int inactive_ray = dequeue_ray_index(QUEUE_INACTIVE_RAYS,
kernel_split_state.queue_data, kernel_split_params.queue_size, kernel_split_params.queue_index);
if(!IS_STATE(ray_state, inactive_ray, RAY_INACTIVE)) {
return false;
}
#define SPLIT_DATA_ENTRY(type, name, num) \
kernel_split_state.name[inactive_ray] = kernel_split_state.name[ray_index];
SPLIT_DATA_ENTRIES_BRANCHED_SHARED
#undef SPLIT_DATA_ENTRY
kernel_split_state.branched_state[inactive_ray].shared_sample_count = 0;
kernel_split_state.branched_state[inactive_ray].original_ray = ray_index;
kernel_split_state.branched_state[inactive_ray].waiting_on_shared_samples = false;
PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
PathRadiance *inactive_L = &kernel_split_state.path_radiance[inactive_ray];
path_radiance_init(inactive_L, kernel_data.film.use_light_pass);
inactive_L->direct_throughput = L->direct_throughput;
path_radiance_copy_indirect(inactive_L, L);
ray_state[inactive_ray] = RAY_REGENERATED;
ADD_RAY_FLAG(ray_state, inactive_ray, RAY_BRANCHED_INDIRECT_SHARED);
ADD_RAY_FLAG(ray_state, inactive_ray, IS_FLAG(ray_state, ray_index, RAY_BRANCHED_INDIRECT));
atomic_fetch_and_inc_uint32((ccl_global uint*)&kernel_split_state.branched_state[ray_index].shared_sample_count);
return true;
}
/* bounce off surface and integrate indirect light */
ccl_device_noinline bool kernel_split_branched_path_surface_indirect_light_iter(KernelGlobals *kg,
int ray_index,
float num_samples_adjust,
ShaderData *saved_sd,
bool reset_path_state,
bool wait_for_shared)
{
SplitBranchedState *branched_state = &kernel_split_state.branched_state[ray_index];
ShaderData *sd = saved_sd;
RNG rng = kernel_split_state.rng[ray_index];
PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
float3 throughput = branched_state->throughput;
ccl_global PathState *ps = &kernel_split_state.path_state[ray_index];
float sum_sample_weight = 0.0f;
#ifdef __DENOISING_FEATURES__
if(ps->denoising_feature_weight > 0.0f) {
for(int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
/* transparency is not handled here, but in outer loop */
if(!CLOSURE_IS_BSDF(sc->type) || CLOSURE_IS_BSDF_TRANSPARENT(sc->type)) {
continue;
}
sum_sample_weight += sc->sample_weight;
}
}
else {
sum_sample_weight = 1.0f;
}
#endif /* __DENOISING_FEATURES__ */
for(int i = branched_state->next_closure; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if(!CLOSURE_IS_BSDF(sc->type))
continue;
/* transparency is not handled here, but in outer loop */
if(sc->type == CLOSURE_BSDF_TRANSPARENT_ID)
continue;
int num_samples;
if(CLOSURE_IS_BSDF_DIFFUSE(sc->type))
num_samples = kernel_data.integrator.diffuse_samples;
else if(CLOSURE_IS_BSDF_BSSRDF(sc->type))
num_samples = 1;
else if(CLOSURE_IS_BSDF_GLOSSY(sc->type))
num_samples = kernel_data.integrator.glossy_samples;
else
num_samples = kernel_data.integrator.transmission_samples;
num_samples = ceil_to_int(num_samples_adjust*num_samples);
float num_samples_inv = num_samples_adjust/num_samples;
RNG bsdf_rng = cmj_hash(rng, i);
for(int j = branched_state->next_sample; j < num_samples; j++) {
if(reset_path_state) {
*ps = branched_state->path_state;
}
ccl_global float3 *tp = &kernel_split_state.throughput[ray_index];
*tp = throughput;
ccl_global Ray *bsdf_ray = &kernel_split_state.ray[ray_index];
if(!kernel_branched_path_surface_bounce(kg,
&bsdf_rng,
sd,
sc,
j,
num_samples,
tp,
ps,
L,
bsdf_ray,
sum_sample_weight))
{
continue;
}
/* update state for next iteration */
branched_state->next_closure = i;
branched_state->next_sample = j+1;
branched_state->num_samples = num_samples;
/* start the indirect path */
*tp *= num_samples_inv;
if(kernel_split_branched_indirect_start_shared(kg, ray_index)) {
continue;
}
return true;
}
branched_state->next_sample = 0;
}
branched_state->next_closure = sd->num_closure;
if(wait_for_shared) {
branched_state->waiting_on_shared_samples = (branched_state->shared_sample_count > 0);
if(branched_state->waiting_on_shared_samples) {
return true;
}
}
return false;
}
#endif /* __BRANCHED_PATH__ */
CCL_NAMESPACE_END