Even though the `no_unique_address` attribute has only been standardized in C++20, compilers seem to support it with C++17 already. This attribute allows reducing the memory footprint of structs which have empty types as data members (usually that is an allocator or inline buffer in Blender). Previously, one had to use the empty base optimization to achieve the same effect, which requires a lot of boilerplate code. The types that benefit from this the most are `Vector` and `Array`, which usually become 8 bytes smaller. All types which use these core data structures get smaller as well of course. Differential Revision: https://developer.blender.org/D14993
256 lines
5.8 KiB
C++
256 lines
5.8 KiB
C++
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
#pragma once
|
|
|
|
/** \file
|
|
* \ingroup bli
|
|
*
|
|
* This is a generic counterpart to #blender::Array, used when the type is not known at runtime.
|
|
*
|
|
* `GArray` should generally only be used for passing data around in dynamic contexts.
|
|
* It does not support a few things that #blender::Array supports:
|
|
* - Small object optimization / inline buffer.
|
|
* - Exception safety and various more specific constructors.
|
|
*/
|
|
|
|
#include "BLI_allocator.hh"
|
|
#include "BLI_cpp_type.hh"
|
|
#include "BLI_generic_span.hh"
|
|
|
|
namespace blender {
|
|
|
|
template<
|
|
/**
|
|
* The allocator used by this array. Should rarely be changed, except when you don't want that
|
|
* MEM_* functions are used internally.
|
|
*/
|
|
typename Allocator = GuardedAllocator>
|
|
class GArray {
|
|
protected:
|
|
/** The type of the data in the array, will be null after the array is default constructed,
|
|
* but a value should be assigned before any other interaction with the array. */
|
|
const CPPType *type_ = nullptr;
|
|
void *data_ = nullptr;
|
|
int64_t size_ = 0;
|
|
|
|
BLI_NO_UNIQUE_ADDRESS Allocator allocator_;
|
|
|
|
public:
|
|
/**
|
|
* The default constructor creates an empty array, the only situation in which the type is
|
|
* allowed to be null. This default constructor exists so `GArray` can be used in containers,
|
|
* but the type should be supplied before doing anything else to the array.
|
|
*/
|
|
GArray(Allocator allocator = {}) noexcept : allocator_(allocator)
|
|
{
|
|
}
|
|
|
|
GArray(NoExceptConstructor, Allocator allocator = {}) noexcept : GArray(allocator)
|
|
{
|
|
}
|
|
|
|
/**
|
|
* Create and allocate a new array, with elements default constructed
|
|
* (which does not do anything for trivial types).
|
|
*/
|
|
GArray(const CPPType &type, int64_t size, Allocator allocator = {}) : GArray(type, allocator)
|
|
{
|
|
BLI_assert(size >= 0);
|
|
size_ = size;
|
|
data_ = this->allocate(size_);
|
|
type_->default_construct_n(data_, size_);
|
|
}
|
|
|
|
/**
|
|
* Create an empty array with just a type.
|
|
*/
|
|
GArray(const CPPType &type, Allocator allocator = {}) : GArray(allocator)
|
|
{
|
|
type_ = &type;
|
|
}
|
|
|
|
/**
|
|
* Take ownership of a buffer with a provided size. The buffer should be
|
|
* allocated with the same allocator provided to the constructor.
|
|
*/
|
|
GArray(const CPPType &type, void *buffer, int64_t size, Allocator allocator = {})
|
|
: GArray(type, allocator)
|
|
{
|
|
BLI_assert(size >= 0);
|
|
BLI_assert(buffer != nullptr || size == 0);
|
|
BLI_assert(type_->pointer_has_valid_alignment(buffer));
|
|
|
|
data_ = buffer;
|
|
size_ = size;
|
|
}
|
|
|
|
/**
|
|
* Create an array by copying values from a generic span.
|
|
*/
|
|
GArray(const GSpan span, Allocator allocator = {}) : GArray(span.type(), span.size(), allocator)
|
|
{
|
|
if (span.data() != nullptr) {
|
|
BLI_assert(span.size() != 0);
|
|
/* Use copy assign rather than construct since the memory is already initialized. */
|
|
type_->copy_assign_n(span.data(), data_, size_);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Create an array by copying values from another generic array.
|
|
*/
|
|
GArray(const GArray &other) : GArray(other.as_span(), other.allocator())
|
|
{
|
|
}
|
|
|
|
/**
|
|
* Create an array by taking ownership of another array's data, clearing the data in the other.
|
|
*/
|
|
GArray(GArray &&other) : GArray(other.type(), other.data(), other.size(), other.allocator())
|
|
{
|
|
other.data_ = nullptr;
|
|
other.size_ = 0;
|
|
}
|
|
|
|
~GArray()
|
|
{
|
|
if (data_ != nullptr) {
|
|
type_->destruct_n(data_, size_);
|
|
this->deallocate(data_);
|
|
}
|
|
}
|
|
|
|
GArray &operator=(const GArray &other)
|
|
{
|
|
return copy_assign_container(*this, other);
|
|
}
|
|
|
|
GArray &operator=(GArray &&other)
|
|
{
|
|
return move_assign_container(*this, std::move(other));
|
|
}
|
|
|
|
const CPPType &type() const
|
|
{
|
|
BLI_assert(type_ != nullptr);
|
|
return *type_;
|
|
}
|
|
|
|
bool is_empty() const
|
|
{
|
|
return size_ == 0;
|
|
}
|
|
|
|
/**
|
|
* Return the number of elements in the array (not the size in bytes).
|
|
*/
|
|
int64_t size() const
|
|
{
|
|
return size_;
|
|
}
|
|
|
|
/**
|
|
* Get a pointer to the beginning of the array.
|
|
*/
|
|
const void *data() const
|
|
{
|
|
return data_;
|
|
}
|
|
void *data()
|
|
{
|
|
return data_;
|
|
}
|
|
|
|
const void *operator[](int64_t index) const
|
|
{
|
|
BLI_assert(index < size_);
|
|
return POINTER_OFFSET(data_, type_->size() * index);
|
|
}
|
|
|
|
void *operator[](int64_t index)
|
|
{
|
|
BLI_assert(index < size_);
|
|
return POINTER_OFFSET(data_, type_->size() * index);
|
|
}
|
|
|
|
operator GSpan() const
|
|
{
|
|
BLI_assert(type_ != nullptr);
|
|
return GSpan(*type_, data_, size_);
|
|
}
|
|
|
|
operator GMutableSpan()
|
|
{
|
|
BLI_assert(type_ != nullptr);
|
|
return GMutableSpan(*type_, data_, size_);
|
|
}
|
|
|
|
GSpan as_span() const
|
|
{
|
|
return *this;
|
|
}
|
|
|
|
GMutableSpan as_mutable_span()
|
|
{
|
|
return *this;
|
|
}
|
|
|
|
/**
|
|
* Access the allocator used by this array.
|
|
*/
|
|
Allocator &allocator()
|
|
{
|
|
return allocator_;
|
|
}
|
|
const Allocator &allocator() const
|
|
{
|
|
return allocator_;
|
|
}
|
|
|
|
/**
|
|
* Destruct values and create a new array of the given size. The values in the new array are
|
|
* default constructed.
|
|
*/
|
|
void reinitialize(const int64_t new_size)
|
|
{
|
|
BLI_assert(new_size >= 0);
|
|
int64_t old_size = size_;
|
|
|
|
type_->destruct_n(data_, size_);
|
|
size_ = 0;
|
|
|
|
if (new_size <= old_size) {
|
|
type_->default_construct_n(data_, new_size);
|
|
}
|
|
else {
|
|
void *new_data = this->allocate(new_size);
|
|
try {
|
|
type_->default_construct_n(new_data, new_size);
|
|
}
|
|
catch (...) {
|
|
this->deallocate(new_data);
|
|
throw;
|
|
}
|
|
this->deallocate(data_);
|
|
data_ = new_data;
|
|
}
|
|
|
|
size_ = new_size;
|
|
}
|
|
|
|
private:
|
|
void *allocate(int64_t size)
|
|
{
|
|
const int64_t item_size = type_->size();
|
|
const int64_t alignment = type_->alignment();
|
|
return allocator_.allocate(static_cast<size_t>(size) * item_size, alignment, AT);
|
|
}
|
|
|
|
void deallocate(void *ptr)
|
|
{
|
|
allocator_.deallocate(ptr);
|
|
}
|
|
};
|
|
|
|
} // namespace blender
|