This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/editors/mesh/editmesh_knife.c
Cian Jinks 3b7ce70232 Fix T94499: Knife missed clipping check
The knife BVH raycast functionality was missing a check to discard
points which were clipped.
2022-06-13 19:28:48 +01:00

5118 lines
149 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2007 Blender Foundation. All rights reserved. */
/** \file
* \ingroup edmesh
*
* Interactive editmesh knife tool.
*/
#ifdef _MSC_VER
# define _USE_MATH_DEFINES
#endif
#include "MEM_guardedalloc.h"
#include "BLF_api.h"
#include "BLI_alloca.h"
#include "BLI_array.h"
#include "BLI_linklist.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "BLI_memarena.h"
#include "BLI_smallhash.h"
#include "BLI_stack.h"
#include "BLI_string.h"
#include "BLT_translation.h"
#include "BKE_bvhutils.h"
#include "BKE_context.h"
#include "BKE_editmesh.h"
#include "BKE_editmesh_bvh.h"
#include "BKE_layer.h"
#include "BKE_report.h"
#include "BKE_scene.h"
#include "BKE_unit.h"
#include "GPU_immediate.h"
#include "GPU_matrix.h"
#include "GPU_state.h"
#include "ED_mesh.h"
#include "ED_numinput.h"
#include "ED_screen.h"
#include "ED_space_api.h"
#include "ED_transform.h"
#include "ED_view3d.h"
#include "WM_api.h"
#include "WM_types.h"
#include "DNA_object_types.h"
#include "UI_interface.h"
#include "UI_resources.h"
#include "RNA_access.h"
#include "RNA_define.h"
#include "DEG_depsgraph.h"
#include "DEG_depsgraph_query.h"
#include "mesh_intern.h" /* Own include. */
/* Detect isolated holes and fill them. */
#define USE_NET_ISLAND_CONNECT
#define KMAXDIST (10 * U.dpi_fac) /* Max mouse distance from edge before not detecting it. */
/* WARNING: Knife float precision is fragile:
* Be careful before making changes here see: (T43229, T42864, T42459, T41164).
*/
#define KNIFE_FLT_EPS 0.00001f
#define KNIFE_FLT_EPS_SQUARED (KNIFE_FLT_EPS * KNIFE_FLT_EPS)
#define KNIFE_FLT_EPSBIG 0.0005f
#define KNIFE_FLT_EPS_PX_VERT 0.5f
#define KNIFE_FLT_EPS_PX_EDGE 0.05f
#define KNIFE_FLT_EPS_PX_FACE 0.05f
#define KNIFE_DEFAULT_ANGLE_SNAPPING_INCREMENT 30.0f
#define KNIFE_MIN_ANGLE_SNAPPING_INCREMENT 0.0f
#define KNIFE_MAX_ANGLE_SNAPPING_INCREMENT 180.0f
typedef struct KnifeColors {
uchar line[3];
uchar edge[3];
uchar edge_extra[3];
uchar curpoint[3];
uchar curpoint_a[4];
uchar point[3];
uchar point_a[4];
uchar xaxis[3];
uchar yaxis[3];
uchar zaxis[3];
uchar axis_extra[3];
} KnifeColors;
/* Knife-tool Operator. */
typedef struct KnifeVert {
Object *ob;
uint base_index;
BMVert *v; /* Non-NULL if this is an original vert. */
ListBase edges;
ListBase faces;
float co[3], cageco[3];
bool is_face, in_space;
bool is_cut; /* Along a cut created by user input (will draw too). */
bool is_invalid;
bool is_splitting; /* Created when an edge was split. */
} KnifeVert;
typedef struct Ref {
struct Ref *next, *prev;
void *ref;
} Ref;
typedef struct KnifeEdge {
KnifeVert *v1, *v2;
BMFace *basef; /* Face to restrict face fill to. */
ListBase faces;
BMEdge *e; /* Non-NULL if this is an original edge. */
bool is_cut; /* Along a cut created by user input (will draw too). */
bool is_invalid;
int splits; /* Number of times this edge has been split. */
} KnifeEdge;
typedef struct KnifeLineHit {
float hit[3], cagehit[3];
float schit[2]; /* Screen coordinates for cagehit. */
float l; /* Lambda along cut line. */
float perc; /* Lambda along hit line. */
float m; /* Depth front-to-back. */
/* Exactly one of kfe, v, or f should be non-NULL,
* saying whether cut line crosses and edge,
* is snapped to a vert, or is in the middle of some face. */
KnifeEdge *kfe;
KnifeVert *v;
BMFace *f;
Object *ob;
uint base_index;
} KnifeLineHit;
typedef struct KnifePosData {
float co[3];
float cage[3];
/* At most one of vert, edge, or bmface should be non-NULL,
* saying whether the point is snapped to a vertex, edge, or in a face.
* If none are set, this point is in space and is_space should be true. */
KnifeVert *vert;
KnifeEdge *edge;
BMFace *bmface;
Object *ob; /* Object of the vert, edge or bmface. */
uint base_index;
/* When true, the cursor isn't over a face. */
bool is_space;
float mval[2]; /* Mouse screen position (may be non-integral if snapped to something). */
} KnifePosData;
typedef struct KnifeMeasureData {
float cage[3];
float mval[2];
bool is_stored;
} KnifeMeasureData;
typedef struct KnifeUndoFrame {
int cuts; /* Line hits cause multiple edges/cuts to be created at once. */
int splits; /* Number of edges split. */
KnifePosData pos; /* Store previous KnifePosData. */
KnifeMeasureData mdata;
} KnifeUndoFrame;
typedef struct KnifeBVH {
BVHTree *tree; /* Knife Custom BVH Tree. */
BMLoop *(*looptris)[3]; /* Used by #knife_bvh_raycast_cb to store the intersecting looptri. */
float uv[2]; /* Used by #knife_bvh_raycast_cb to store the intersecting uv. */
uint base_index;
/* Use #bm_ray_cast_cb_elem_not_in_face_check. */
bool (*filter_cb)(BMFace *f, void *userdata);
void *filter_data;
} KnifeBVH;
/** Additional per-object data. */
typedef struct KnifeObjectInfo {
const float (*cagecos)[3];
/**
* Optionally allocate triangle indices, these are needed for non-interactive knife
* projection as multiple cuts are made without the BVH being updated.
* Using these indices the it's possible to access `cagecos` even if the face has been cut
* and the loops in `em->looptris` no longer refer to the original triangles, see: T97153.
*/
const int (*tri_indices)[3];
/** Only assigned for convenient access. */
BMEditMesh *em;
} KnifeObjectInfo;
/* struct for properties used while drawing */
typedef struct KnifeTool_OpData {
ARegion *region; /* Region that knifetool was activated in. */
void *draw_handle; /* For drawing preview loop. */
ViewContext vc; /* NOTE: _don't_ use 'mval', instead use the one we define below. */
float mval[2]; /* Mouse value with snapping applied. */
Scene *scene;
/* Used for swapping current object when in multi-object edit mode. */
Object **objects;
uint objects_len;
/** Array `objects_len` length of additional per-object data. */
KnifeObjectInfo *objects_info;
MemArena *arena;
/* Reused for edge-net filling. */
struct {
/* Cleared each use. */
GSet *edge_visit;
#ifdef USE_NET_ISLAND_CONNECT
MemArena *arena;
#endif
} edgenet;
GHash *origvertmap;
GHash *origedgemap;
GHash *kedgefacemap;
GHash *facetrimap;
KnifeBVH bvh;
BLI_mempool *kverts;
BLI_mempool *kedges;
bool no_cuts; /* A cut has not been made yet. */
BLI_Stack *undostack;
BLI_Stack *splitstack; /* Store edge splits by #knife_split_edge. */
float vthresh;
float ethresh;
/* Used for drag-cutting. */
KnifeLineHit *linehits;
int totlinehit;
/* Data for mouse-position-derived data. */
KnifePosData curr; /* Current point under the cursor. */
KnifePosData prev; /* Last added cut (a line draws from the cursor to this). */
KnifePosData init; /* The first point in the cut-list, used for closing the loop. */
/* Number of knife edges `kedges`. */
int totkedge;
/* Number of knife vertices, `kverts`. */
int totkvert;
BLI_mempool *refs;
KnifeColors colors;
/* Run by the UI or not. */
bool is_interactive;
/* Operator options. */
bool cut_through; /* Preference, can be modified at runtime (that feature may go). */
bool only_select; /* Set on initialization. */
bool select_result; /* Set on initialization. */
bool is_ortho;
float ortho_extent;
float ortho_extent_center[3];
float clipsta, clipend;
enum { MODE_IDLE, MODE_DRAGGING, MODE_CONNECT, MODE_PANNING } mode;
bool is_drag_hold;
int prevmode;
bool snap_midpoints;
bool ignore_edge_snapping;
bool ignore_vert_snapping;
NumInput num;
float angle_snapping_increment; /* Degrees */
/* Use to check if we're currently dragging an angle snapped line. */
short angle_snapping_mode;
bool is_angle_snapping;
bool angle_snapping;
float angle;
/* Relative angle snapping reference edge. */
KnifeEdge *snap_ref_edge;
int snap_ref_edges_count;
int snap_edge; /* Used by #KNF_MODAL_CYCLE_ANGLE_SNAP_EDGE to choose an edge for snapping. */
short constrain_axis;
short constrain_axis_mode;
bool axis_constrained;
char axis_string[2];
short dist_angle_mode;
bool show_dist_angle;
KnifeMeasureData mdata; /* Data for distance and angle drawing calculations. */
KnifeUndoFrame *undo; /* Current undo frame. */
bool is_drag_undo;
bool depth_test;
} KnifeTool_OpData;
enum {
KNF_MODAL_CANCEL = 1,
KNF_MODAL_CONFIRM,
KNF_MODAL_UNDO,
KNF_MODAL_MIDPOINT_ON,
KNF_MODAL_MIDPOINT_OFF,
KNF_MODAL_NEW_CUT,
KNF_MODAL_IGNORE_SNAP_ON,
KNF_MODAL_IGNORE_SNAP_OFF,
KNF_MODAL_ADD_CUT,
KNF_MODAL_ANGLE_SNAP_TOGGLE,
KNF_MODAL_CYCLE_ANGLE_SNAP_EDGE,
KNF_MODAL_CUT_THROUGH_TOGGLE,
KNF_MODAL_SHOW_DISTANCE_ANGLE_TOGGLE,
KNF_MODAL_DEPTH_TEST_TOGGLE,
KNF_MODAL_PANNING,
KNF_MODAL_X_AXIS,
KNF_MODAL_Y_AXIS,
KNF_MODAL_Z_AXIS,
KNF_MODAL_ADD_CUT_CLOSED,
};
enum {
KNF_CONSTRAIN_ANGLE_MODE_NONE = 0,
KNF_CONSTRAIN_ANGLE_MODE_SCREEN = 1,
KNF_CONSTRAIN_ANGLE_MODE_RELATIVE = 2
};
enum {
KNF_CONSTRAIN_AXIS_NONE = 0,
KNF_CONSTRAIN_AXIS_X = 1,
KNF_CONSTRAIN_AXIS_Y = 2,
KNF_CONSTRAIN_AXIS_Z = 3
};
enum {
KNF_CONSTRAIN_AXIS_MODE_NONE = 0,
KNF_CONSTRAIN_AXIS_MODE_GLOBAL = 1,
KNF_CONSTRAIN_AXIS_MODE_LOCAL = 2
};
enum {
KNF_MEASUREMENT_NONE = 0,
KNF_MEASUREMENT_BOTH = 1,
KNF_MEASUREMENT_DISTANCE = 2,
KNF_MEASUREMENT_ANGLE = 3
};
/* -------------------------------------------------------------------- */
/** \name Drawing
* \{ */
static void knifetool_raycast_planes(const KnifeTool_OpData *kcd, float r_v1[3], float r_v2[3])
{
float planes[4][4];
planes_from_projmat(
kcd->vc.rv3d->persmat, planes[2], planes[0], planes[1], planes[3], NULL, NULL);
/* Ray-cast all planes. */
float ray_dir[3];
float ray_hit_best[2][3] = {{UNPACK3(kcd->prev.cage)}, {UNPACK3(kcd->curr.cage)}};
float lambda_best[2] = {-FLT_MAX, FLT_MAX};
int i;
{
float curr_cage_adjust[3];
float co_depth[3];
copy_v3_v3(co_depth, kcd->prev.cage);
ED_view3d_win_to_3d(kcd->vc.v3d, kcd->region, co_depth, kcd->curr.mval, curr_cage_adjust);
sub_v3_v3v3(ray_dir, curr_cage_adjust, kcd->prev.cage);
}
for (i = 0; i < 4; i++) {
float ray_hit[3];
float lambda_test;
if (!isect_ray_plane_v3(kcd->prev.cage, ray_dir, planes[i], &lambda_test, false)) {
continue;
}
madd_v3_v3v3fl(ray_hit, kcd->prev.cage, ray_dir, lambda_test);
if (lambda_test < 0.0f) {
if (lambda_test > lambda_best[0]) {
copy_v3_v3(ray_hit_best[0], ray_hit);
lambda_best[0] = lambda_test;
}
}
else {
if (lambda_test < lambda_best[1]) {
copy_v3_v3(ray_hit_best[1], ray_hit);
lambda_best[1] = lambda_test;
}
}
}
copy_v3_v3(r_v1, ray_hit_best[0]);
copy_v3_v3(r_v2, ray_hit_best[1]);
}
static void knifetool_draw_angle_snapping(const KnifeTool_OpData *kcd)
{
float v1[3], v2[3];
knifetool_raycast_planes(kcd, v1, v2);
uint pos = GPU_vertformat_attr_add(immVertexFormat(), "pos", GPU_COMP_F32, 3, GPU_FETCH_FLOAT);
immBindBuiltinProgram(GPU_SHADER_3D_UNIFORM_COLOR);
immUniformThemeColor3(TH_TRANSFORM);
GPU_line_width(2.0);
immBegin(GPU_PRIM_LINES, 2);
immVertex3fv(pos, v1);
immVertex3fv(pos, v2);
immEnd();
immUnbindProgram();
}
static void knifetool_draw_orientation_locking(const KnifeTool_OpData *kcd)
{
if (compare_v3v3(kcd->prev.cage, kcd->curr.cage, KNIFE_FLT_EPSBIG)) {
return;
}
float v1[3], v2[3];
/* This is causing buggy behavior when `prev.cage` and `curr.cage` are too close together. */
knifetool_raycast_planes(kcd, v1, v2);
uint pos = GPU_vertformat_attr_add(immVertexFormat(), "pos", GPU_COMP_F32, 3, GPU_FETCH_FLOAT);
immBindBuiltinProgram(GPU_SHADER_3D_UNIFORM_COLOR);
switch (kcd->constrain_axis) {
case KNF_CONSTRAIN_AXIS_X: {
immUniformColor3ubv(kcd->colors.xaxis);
break;
}
case KNF_CONSTRAIN_AXIS_Y: {
immUniformColor3ubv(kcd->colors.yaxis);
break;
}
case KNF_CONSTRAIN_AXIS_Z: {
immUniformColor3ubv(kcd->colors.zaxis);
break;
}
default: {
immUniformColor3ubv(kcd->colors.axis_extra);
break;
}
}
GPU_line_width(2.0);
immBegin(GPU_PRIM_LINES, 2);
immVertex3fv(pos, v1);
immVertex3fv(pos, v2);
immEnd();
immUnbindProgram();
}
static void knifetool_draw_visible_distances(const KnifeTool_OpData *kcd)
{
GPU_matrix_push_projection();
GPU_matrix_push();
GPU_matrix_identity_set();
wmOrtho2_region_pixelspace(kcd->region);
uint pos = GPU_vertformat_attr_add(immVertexFormat(), "pos", GPU_COMP_F32, 2, GPU_FETCH_FLOAT);
immBindBuiltinProgram(GPU_SHADER_2D_UNIFORM_COLOR);
char numstr[256];
float numstr_size[2];
float posit[2];
const float bg_margin = 4.0f * U.dpi_fac;
const float font_size = 14.0f * U.pixelsize;
const int distance_precision = 4;
/* Calculate distance and convert to string. */
const float cut_len = len_v3v3(kcd->prev.cage, kcd->curr.cage);
UnitSettings *unit = &kcd->scene->unit;
if (unit->system == USER_UNIT_NONE) {
BLI_snprintf(numstr, sizeof(numstr), "%.*f", distance_precision, cut_len);
}
else {
BKE_unit_value_as_string(numstr,
sizeof(numstr),
(double)(cut_len * unit->scale_length),
distance_precision,
B_UNIT_LENGTH,
unit,
false);
}
BLF_enable(blf_mono_font, BLF_ROTATION);
BLF_size(blf_mono_font, font_size, U.dpi);
BLF_rotation(blf_mono_font, 0.0f);
BLF_width_and_height(blf_mono_font, numstr, sizeof(numstr), &numstr_size[0], &numstr_size[1]);
/* Center text. */
mid_v2_v2v2(posit, kcd->prev.mval, kcd->curr.mval);
posit[0] -= numstr_size[0] / 2.0f;
posit[1] -= numstr_size[1] / 2.0f;
/* Draw text background. */
float color_back[4] = {0.0f, 0.0f, 0.0f, 0.5f}; /* TODO: Replace with theme color. */
immUniformColor4fv(color_back);
GPU_blend(GPU_BLEND_ALPHA);
immRectf(pos,
posit[0] - bg_margin,
posit[1] - bg_margin,
posit[0] + bg_margin + numstr_size[0],
posit[1] + bg_margin + numstr_size[1]);
GPU_blend(GPU_BLEND_NONE);
immUnbindProgram();
/* Draw text. */
uchar color_text[3];
UI_GetThemeColor3ubv(TH_TEXT, color_text);
BLF_color3ubv(blf_mono_font, color_text);
BLF_position(blf_mono_font, posit[0], posit[1], 0.0f);
BLF_draw(blf_mono_font, numstr, sizeof(numstr));
BLF_disable(blf_mono_font, BLF_ROTATION);
GPU_matrix_pop();
GPU_matrix_pop_projection();
}
static void knifetool_draw_angle(const KnifeTool_OpData *kcd,
const float start[3],
const float mid[3],
const float end[3],
const float start_ss[2],
const float mid_ss[2],
const float end_ss[2],
const float angle)
{
const RegionView3D *rv3d = kcd->region->regiondata;
const int arc_steps = 24;
const float arc_size = 64.0f * U.dpi_fac;
const float bg_margin = 4.0f * U.dpi_fac;
const float cap_size = 4.0f * U.dpi_fac;
const float font_size = 14.0f * U.pixelsize;
const int angle_precision = 3;
/* Angle arc in 3d space. */
GPU_blend(GPU_BLEND_ALPHA);
const uint pos_3d = GPU_vertformat_attr_add(
immVertexFormat(), "pos", GPU_COMP_F32, 3, GPU_FETCH_FLOAT);
immBindBuiltinProgram(GPU_SHADER_3D_UNIFORM_COLOR);
{
float dir_tmp[3];
float ar_coord[3];
float dir_a[3];
float dir_b[3];
float quat[4];
float axis[3];
float arc_angle;
const float inverse_average_scale = 1 /
(kcd->curr.ob->obmat[0][0] + kcd->curr.ob->obmat[1][1] +
kcd->curr.ob->obmat[2][2]);
const float px_scale =
3.0f * inverse_average_scale *
(ED_view3d_pixel_size_no_ui_scale(rv3d, mid) *
min_fff(arc_size, len_v2v2(start_ss, mid_ss) / 2.0f, len_v2v2(end_ss, mid_ss) / 2.0f));
sub_v3_v3v3(dir_a, start, mid);
sub_v3_v3v3(dir_b, end, mid);
normalize_v3(dir_a);
normalize_v3(dir_b);
cross_v3_v3v3(axis, dir_a, dir_b);
arc_angle = angle_normalized_v3v3(dir_a, dir_b);
axis_angle_to_quat(quat, axis, arc_angle / arc_steps);
copy_v3_v3(dir_tmp, dir_a);
immUniformThemeColor3(TH_WIRE);
GPU_line_width(1.0);
immBegin(GPU_PRIM_LINE_STRIP, arc_steps + 1);
for (int j = 0; j <= arc_steps; j++) {
madd_v3_v3v3fl(ar_coord, mid, dir_tmp, px_scale);
mul_qt_v3(quat, dir_tmp);
immVertex3fv(pos_3d, ar_coord);
}
immEnd();
}
immUnbindProgram();
/* Angle text and background in 2d space. */
GPU_matrix_push_projection();
GPU_matrix_push();
GPU_matrix_identity_set();
wmOrtho2_region_pixelspace(kcd->region);
uint pos_2d = GPU_vertformat_attr_add(
immVertexFormat(), "pos", GPU_COMP_F32, 2, GPU_FETCH_FLOAT);
immBindBuiltinProgram(GPU_SHADER_2D_UNIFORM_COLOR);
/* Angle as string. */
char numstr[256];
float numstr_size[2];
float posit[2];
UnitSettings *unit = &kcd->scene->unit;
if (unit->system == USER_UNIT_NONE) {
BLI_snprintf(numstr, sizeof(numstr), "%.*f°", angle_precision, RAD2DEGF(angle));
}
else {
BKE_unit_value_as_string(
numstr, sizeof(numstr), (double)angle, angle_precision, B_UNIT_ROTATION, unit, false);
}
BLF_enable(blf_mono_font, BLF_ROTATION);
BLF_size(blf_mono_font, font_size, U.dpi);
BLF_rotation(blf_mono_font, 0.0f);
BLF_width_and_height(blf_mono_font, numstr, sizeof(numstr), &numstr_size[0], &numstr_size[1]);
posit[0] = mid_ss[0] + (cap_size * 2.0f);
posit[1] = mid_ss[1] - (numstr_size[1] / 2.0f);
/* Draw text background. */
float color_back[4] = {0.0f, 0.0f, 0.0f, 0.5f}; /* TODO: Replace with theme color. */
immUniformColor4fv(color_back);
GPU_blend(GPU_BLEND_ALPHA);
immRectf(pos_2d,
posit[0] - bg_margin,
posit[1] - bg_margin,
posit[0] + bg_margin + numstr_size[0],
posit[1] + bg_margin + numstr_size[1]);
GPU_blend(GPU_BLEND_NONE);
immUnbindProgram();
/* Draw text. */
uchar color_text[3];
UI_GetThemeColor3ubv(TH_TEXT, color_text);
BLF_color3ubv(blf_mono_font, color_text);
BLF_position(blf_mono_font, posit[0], posit[1], 0.0f);
BLF_rotation(blf_mono_font, 0.0f);
BLF_draw(blf_mono_font, numstr, sizeof(numstr));
BLF_disable(blf_mono_font, BLF_ROTATION);
GPU_matrix_pop();
GPU_matrix_pop_projection();
GPU_blend(GPU_BLEND_NONE);
}
static void knifetool_draw_visible_angles(const KnifeTool_OpData *kcd)
{
Ref *ref;
KnifeVert *kfv;
KnifeVert *tempkfv;
KnifeEdge *kfe;
KnifeEdge *tempkfe;
if (kcd->curr.vert) {
kfv = kcd->curr.vert;
float min_angle = FLT_MAX;
float angle = 0.0f;
float *end;
kfe = ((Ref *)kfv->edges.first)->ref;
for (ref = kfv->edges.first; ref; ref = ref->next) {
tempkfe = ref->ref;
if (tempkfe->v1 != kfv) {
tempkfv = tempkfe->v1;
}
else {
tempkfv = tempkfe->v2;
}
angle = angle_v3v3v3(kcd->prev.cage, kcd->curr.cage, tempkfv->cageco);
if (angle < min_angle) {
min_angle = angle;
kfe = tempkfe;
end = tempkfv->cageco;
}
}
if (min_angle > KNIFE_FLT_EPSBIG) {
/* Last vertex in screen space. */
float end_ss[2];
ED_view3d_project_float_global(kcd->region, end, end_ss, V3D_PROJ_TEST_NOP);
knifetool_draw_angle(kcd,
kcd->prev.cage,
kcd->curr.cage,
end,
kcd->prev.mval,
kcd->curr.mval,
end_ss,
min_angle);
}
}
else if (kcd->curr.edge) {
kfe = kcd->curr.edge;
/* Check for most recent cut (if cage is part of previous cut). */
if (!compare_v3v3(kfe->v1->cageco, kcd->prev.cage, KNIFE_FLT_EPSBIG) &&
!compare_v3v3(kfe->v2->cageco, kcd->prev.cage, KNIFE_FLT_EPSBIG)) {
/* Determine acute angle. */
float angle1 = angle_v3v3v3(kcd->prev.cage, kcd->curr.cage, kfe->v1->cageco);
float angle2 = angle_v3v3v3(kcd->prev.cage, kcd->curr.cage, kfe->v2->cageco);
float angle;
float *end;
if (angle1 < angle2) {
angle = angle1;
end = kfe->v1->cageco;
}
else {
angle = angle2;
end = kfe->v2->cageco;
}
/* Last vertex in screen space. */
float end_ss[2];
ED_view3d_project_float_global(kcd->region, end, end_ss, V3D_PROJ_TEST_NOP);
knifetool_draw_angle(
kcd, kcd->prev.cage, kcd->curr.cage, end, kcd->prev.mval, kcd->curr.mval, end_ss, angle);
}
}
if (kcd->prev.vert) {
kfv = kcd->prev.vert;
float min_angle = FLT_MAX;
float angle = 0.0f;
float *end;
/* If using relative angle snapping, always draw angle to reference edge. */
if (kcd->is_angle_snapping && kcd->angle_snapping_mode == KNF_CONSTRAIN_ANGLE_MODE_RELATIVE) {
kfe = kcd->snap_ref_edge;
if (kfe->v1 != kfv) {
tempkfv = kfe->v1;
}
else {
tempkfv = kfe->v2;
}
min_angle = angle_v3v3v3(kcd->curr.cage, kcd->prev.cage, tempkfv->cageco);
end = tempkfv->cageco;
}
else {
/* Choose minimum angle edge. */
kfe = ((Ref *)kfv->edges.first)->ref;
for (ref = kfv->edges.first; ref; ref = ref->next) {
tempkfe = ref->ref;
if (tempkfe->v1 != kfv) {
tempkfv = tempkfe->v1;
}
else {
tempkfv = tempkfe->v2;
}
angle = angle_v3v3v3(kcd->curr.cage, kcd->prev.cage, tempkfv->cageco);
if (angle < min_angle) {
min_angle = angle;
kfe = tempkfe;
end = tempkfv->cageco;
}
}
}
if (min_angle > KNIFE_FLT_EPSBIG) {
/* Last vertex in screen space. */
float end_ss[2];
ED_view3d_project_float_global(kcd->region, end, end_ss, V3D_PROJ_TEST_NOP);
knifetool_draw_angle(kcd,
kcd->curr.cage,
kcd->prev.cage,
end,
kcd->curr.mval,
kcd->prev.mval,
end_ss,
min_angle);
}
}
else if (kcd->prev.edge) {
/* Determine acute angle. */
kfe = kcd->prev.edge;
float angle1 = angle_v3v3v3(kcd->curr.cage, kcd->prev.cage, kfe->v1->cageco);
float angle2 = angle_v3v3v3(kcd->curr.cage, kcd->prev.cage, kfe->v2->cageco);
float angle;
float *end;
/* kcd->prev.edge can have one vertex part of cut and one part of mesh? */
/* This never seems to happen for kcd->curr.edge. */
if ((!kcd->prev.vert || kcd->prev.vert->v == kfe->v1->v) || kfe->v1->is_cut) {
angle = angle2;
end = kfe->v2->cageco;
}
else if ((!kcd->prev.vert || kcd->prev.vert->v == kfe->v2->v) || kfe->v2->is_cut) {
angle = angle1;
end = kfe->v1->cageco;
}
else {
if (angle1 < angle2) {
angle = angle1;
end = kfe->v1->cageco;
}
else {
angle = angle2;
end = kfe->v2->cageco;
}
}
/* Last vertex in screen space. */
float end_ss[2];
ED_view3d_project_float_global(kcd->region, end, end_ss, V3D_PROJ_TEST_NOP);
knifetool_draw_angle(
kcd, kcd->curr.cage, kcd->prev.cage, end, kcd->curr.mval, kcd->prev.mval, end_ss, angle);
}
else if (kcd->mdata.is_stored && !kcd->prev.is_space) {
float angle = angle_v3v3v3(kcd->curr.cage, kcd->prev.cage, kcd->mdata.cage);
knifetool_draw_angle(kcd,
kcd->curr.cage,
kcd->prev.cage,
kcd->mdata.cage,
kcd->curr.mval,
kcd->prev.mval,
kcd->mdata.mval,
angle);
}
}
static void knifetool_draw_dist_angle(const KnifeTool_OpData *kcd)
{
switch (kcd->dist_angle_mode) {
case KNF_MEASUREMENT_BOTH: {
knifetool_draw_visible_distances(kcd);
knifetool_draw_visible_angles(kcd);
break;
}
case KNF_MEASUREMENT_DISTANCE: {
knifetool_draw_visible_distances(kcd);
break;
}
case KNF_MEASUREMENT_ANGLE: {
knifetool_draw_visible_angles(kcd);
break;
}
}
}
/* Modal loop selection drawing callback. */
static void knifetool_draw(const bContext *UNUSED(C), ARegion *UNUSED(region), void *arg)
{
const KnifeTool_OpData *kcd = arg;
GPU_depth_test(GPU_DEPTH_NONE);
GPU_matrix_push_projection();
GPU_polygon_offset(1.0f, 1.0f);
GPUVertFormat *format = immVertexFormat();
uint pos = GPU_vertformat_attr_add(format, "pos", GPU_COMP_F32, 3, GPU_FETCH_FLOAT);
immBindBuiltinProgram(GPU_SHADER_3D_UNIFORM_COLOR);
if (kcd->mode == MODE_DRAGGING) {
immUniformColor3ubv(kcd->colors.line);
GPU_line_width(2.0);
immBegin(GPU_PRIM_LINES, 2);
immVertex3fv(pos, kcd->prev.cage);
immVertex3fv(pos, kcd->curr.cage);
immEnd();
}
if (kcd->prev.vert) {
immUniformColor3ubv(kcd->colors.point);
GPU_point_size(11 * UI_DPI_FAC);
immBegin(GPU_PRIM_POINTS, 1);
immVertex3fv(pos, kcd->prev.cage);
immEnd();
}
if (kcd->prev.bmface || kcd->prev.edge) {
immUniformColor3ubv(kcd->colors.curpoint);
GPU_point_size(9 * UI_DPI_FAC);
immBegin(GPU_PRIM_POINTS, 1);
immVertex3fv(pos, kcd->prev.cage);
immEnd();
}
if (kcd->curr.vert) {
immUniformColor3ubv(kcd->colors.point);
GPU_point_size(11 * UI_DPI_FAC);
immBegin(GPU_PRIM_POINTS, 1);
immVertex3fv(pos, kcd->curr.cage);
immEnd();
}
else if (kcd->curr.edge) {
immUniformColor3ubv(kcd->colors.edge);
GPU_line_width(2.0);
immBegin(GPU_PRIM_LINES, 2);
immVertex3fv(pos, kcd->curr.edge->v1->cageco);
immVertex3fv(pos, kcd->curr.edge->v2->cageco);
immEnd();
}
if (kcd->curr.bmface || kcd->curr.edge) {
immUniformColor3ubv(kcd->colors.curpoint);
GPU_point_size(9 * UI_DPI_FAC);
immBegin(GPU_PRIM_POINTS, 1);
immVertex3fv(pos, kcd->curr.cage);
immEnd();
}
if (kcd->depth_test) {
GPU_depth_test(GPU_DEPTH_LESS_EQUAL);
}
if (kcd->totkedge > 0) {
BLI_mempool_iter iter;
KnifeEdge *kfe;
immUniformColor3ubv(kcd->colors.line);
GPU_line_width(1.0);
GPUBatch *batch = immBeginBatchAtMost(GPU_PRIM_LINES, BLI_mempool_len(kcd->kedges) * 2);
BLI_mempool_iternew(kcd->kedges, &iter);
for (kfe = BLI_mempool_iterstep(&iter); kfe; kfe = BLI_mempool_iterstep(&iter)) {
if (!kfe->is_cut || kfe->is_invalid) {
continue;
}
immVertex3fv(pos, kfe->v1->cageco);
immVertex3fv(pos, kfe->v2->cageco);
}
immEnd();
GPU_batch_draw(batch);
GPU_batch_discard(batch);
}
if (kcd->totkvert > 0) {
BLI_mempool_iter iter;
KnifeVert *kfv;
immUniformColor3ubv(kcd->colors.point);
GPU_point_size(5.0 * UI_DPI_FAC);
GPUBatch *batch = immBeginBatchAtMost(GPU_PRIM_POINTS, BLI_mempool_len(kcd->kverts));
BLI_mempool_iternew(kcd->kverts, &iter);
for (kfv = BLI_mempool_iterstep(&iter); kfv; kfv = BLI_mempool_iterstep(&iter)) {
if (!kfv->is_cut || kfv->is_invalid) {
continue;
}
immVertex3fv(pos, kfv->cageco);
}
immEnd();
GPU_batch_draw(batch);
GPU_batch_discard(batch);
}
/* Draw relative angle snapping reference edge. */
if (kcd->is_angle_snapping && kcd->angle_snapping_mode == KNF_CONSTRAIN_ANGLE_MODE_RELATIVE) {
immUniformColor3ubv(kcd->colors.edge_extra);
GPU_line_width(2.0);
immBegin(GPU_PRIM_LINES, 2);
immVertex3fv(pos, kcd->snap_ref_edge->v1->cageco);
immVertex3fv(pos, kcd->snap_ref_edge->v2->cageco);
immEnd();
}
if (kcd->totlinehit > 0) {
KnifeLineHit *lh;
int i, snapped_verts_count, other_verts_count;
float fcol[4];
GPU_blend(GPU_BLEND_ALPHA);
GPUVertBuf *vert = GPU_vertbuf_create_with_format(format);
GPU_vertbuf_data_alloc(vert, kcd->totlinehit);
lh = kcd->linehits;
for (i = 0, snapped_verts_count = 0, other_verts_count = 0; i < kcd->totlinehit; i++, lh++) {
if (lh->v) {
GPU_vertbuf_attr_set(vert, pos, snapped_verts_count++, lh->cagehit);
}
else {
GPU_vertbuf_attr_set(vert, pos, kcd->totlinehit - 1 - other_verts_count++, lh->cagehit);
}
}
GPUBatch *batch = GPU_batch_create_ex(GPU_PRIM_POINTS, vert, NULL, GPU_BATCH_OWNS_VBO);
GPU_batch_program_set_builtin(batch, GPU_SHADER_3D_UNIFORM_COLOR);
/* Draw any snapped verts first. */
rgba_uchar_to_float(fcol, kcd->colors.point_a);
GPU_batch_uniform_4fv(batch, "color", fcol);
GPU_point_size(11 * UI_DPI_FAC);
if (snapped_verts_count > 0) {
GPU_batch_draw_range(batch, 0, snapped_verts_count);
}
/* Now draw the rest. */
rgba_uchar_to_float(fcol, kcd->colors.curpoint_a);
GPU_batch_uniform_4fv(batch, "color", fcol);
GPU_point_size(7 * UI_DPI_FAC);
if (other_verts_count > 0) {
GPU_batch_draw_range(batch, snapped_verts_count, other_verts_count);
}
GPU_batch_discard(batch);
GPU_blend(GPU_BLEND_NONE);
}
immUnbindProgram();
GPU_depth_test(GPU_DEPTH_NONE);
if (kcd->mode == MODE_DRAGGING) {
if (kcd->is_angle_snapping) {
knifetool_draw_angle_snapping(kcd);
}
else if (kcd->axis_constrained) {
knifetool_draw_orientation_locking(kcd);
}
if (kcd->show_dist_angle) {
knifetool_draw_dist_angle(kcd);
}
}
GPU_matrix_pop_projection();
/* Reset default. */
GPU_depth_test(GPU_DEPTH_LESS_EQUAL);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Header
* \{ */
static void knife_update_header(bContext *C, wmOperator *op, KnifeTool_OpData *kcd)
{
char header[UI_MAX_DRAW_STR];
char buf[UI_MAX_DRAW_STR];
char *p = buf;
int available_len = sizeof(buf);
#define WM_MODALKEY(_id) \
WM_modalkeymap_operator_items_to_string_buf( \
op->type, (_id), true, UI_MAX_SHORTCUT_STR, &available_len, &p)
BLI_snprintf(
header,
sizeof(header),
TIP_("%s: confirm, %s: cancel, %s: undo, "
"%s: start/define cut, %s: close cut, %s: new cut, "
"%s: midpoint snap (%s), %s: ignore snap (%s), "
"%s: angle constraint %.2f(%.2f) (%s%s%s%s), %s: cut through (%s), "
"%s: panning, %s%s%s: orientation lock (%s), "
"%s: distance/angle measurements (%s), "
"%s: x-ray (%s)"),
WM_MODALKEY(KNF_MODAL_CONFIRM),
WM_MODALKEY(KNF_MODAL_CANCEL),
WM_MODALKEY(KNF_MODAL_UNDO),
WM_MODALKEY(KNF_MODAL_ADD_CUT),
WM_MODALKEY(KNF_MODAL_ADD_CUT_CLOSED),
WM_MODALKEY(KNF_MODAL_NEW_CUT),
WM_MODALKEY(KNF_MODAL_MIDPOINT_ON),
WM_bool_as_string(kcd->snap_midpoints),
WM_MODALKEY(KNF_MODAL_IGNORE_SNAP_ON),
WM_bool_as_string(kcd->ignore_edge_snapping),
WM_MODALKEY(KNF_MODAL_ANGLE_SNAP_TOGGLE),
(kcd->angle >= 0.0f) ? RAD2DEGF(kcd->angle) : 360.0f + RAD2DEGF(kcd->angle),
(kcd->angle_snapping_increment > KNIFE_MIN_ANGLE_SNAPPING_INCREMENT &&
kcd->angle_snapping_increment <= KNIFE_MAX_ANGLE_SNAPPING_INCREMENT) ?
kcd->angle_snapping_increment :
KNIFE_DEFAULT_ANGLE_SNAPPING_INCREMENT,
kcd->angle_snapping ?
((kcd->angle_snapping_mode == KNF_CONSTRAIN_ANGLE_MODE_SCREEN) ? "Screen" : "Relative") :
"OFF",
/* TODO: Can this be simplified? */
(kcd->angle_snapping_mode == KNF_CONSTRAIN_ANGLE_MODE_RELATIVE) ? " - " : "",
(kcd->angle_snapping_mode == KNF_CONSTRAIN_ANGLE_MODE_RELATIVE) ?
WM_MODALKEY(KNF_MODAL_CYCLE_ANGLE_SNAP_EDGE) :
"",
(kcd->angle_snapping_mode == KNF_CONSTRAIN_ANGLE_MODE_RELATIVE) ? ": cycle edge" : "",
/**/
WM_MODALKEY(KNF_MODAL_CUT_THROUGH_TOGGLE),
WM_bool_as_string(kcd->cut_through),
WM_MODALKEY(KNF_MODAL_PANNING),
WM_MODALKEY(KNF_MODAL_X_AXIS),
WM_MODALKEY(KNF_MODAL_Y_AXIS),
WM_MODALKEY(KNF_MODAL_Z_AXIS),
(kcd->axis_constrained ? kcd->axis_string : WM_bool_as_string(kcd->axis_constrained)),
WM_MODALKEY(KNF_MODAL_SHOW_DISTANCE_ANGLE_TOGGLE),
WM_bool_as_string(kcd->show_dist_angle),
WM_MODALKEY(KNF_MODAL_DEPTH_TEST_TOGGLE),
WM_bool_as_string(!kcd->depth_test));
#undef WM_MODALKEY
ED_workspace_status_text(C, header);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Knife Object Info Accessors (#KnifeObjectInfo)
* \{ */
static const int *knife_bm_tri_index_get(const KnifeTool_OpData *kcd,
int base_index,
int tri_index,
int tri_index_buf[3])
{
const KnifeObjectInfo *obinfo = &kcd->objects_info[base_index];
if (obinfo->tri_indices) {
return obinfo->tri_indices[tri_index];
}
for (int i = 0; i < 3; i++) {
tri_index_buf[i] = BM_elem_index_get(obinfo->em->looptris[tri_index][i]->v);
}
return tri_index_buf;
}
static void knife_bm_tri_cagecos_get(const KnifeTool_OpData *kcd,
int base_index,
int tri_index,
float cos[3][3])
{
const KnifeObjectInfo *obinfo = &kcd->objects_info[base_index];
int tri_ind_buf[3];
const int *tri_ind = knife_bm_tri_index_get(kcd, base_index, tri_index, tri_ind_buf);
for (int i = 0; i < 3; i++) {
copy_v3_v3(cos[i], obinfo->cagecos[tri_ind[i]]);
}
}
static void knife_bm_tri_cagecos_get_worldspace(const KnifeTool_OpData *kcd,
int base_index,
int tri_index,
float cos[3][3])
{
knife_bm_tri_cagecos_get(kcd, base_index, tri_index, cos);
const Object *ob = kcd->objects[base_index];
for (int i = 0; i < 3; i++) {
mul_m4_v3(ob->obmat, cos[i]);
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Knife BVH Utils
* \{ */
static bool knife_bm_face_is_select(BMFace *f)
{
return (BM_elem_flag_test(f, BM_ELEM_SELECT) != 0);
}
static bool knife_bm_face_is_not_hidden(BMFace *f)
{
return (BM_elem_flag_test(f, BM_ELEM_HIDDEN) == 0);
}
static void knife_bvh_init(KnifeTool_OpData *kcd)
{
Object *ob;
BMEditMesh *em;
/* Test Function. */
bool (*test_fn)(BMFace *);
if ((kcd->only_select && kcd->cut_through)) {
test_fn = knife_bm_face_is_select;
}
else {
test_fn = knife_bm_face_is_not_hidden;
}
/* Construct BVH Tree. */
const float epsilon = FLT_EPSILON * 2.0f;
int tottri = 0;
int ob_tottri = 0;
BMLoop *(*looptris)[3];
BMFace *f_test = NULL, *f_test_prev = NULL;
bool test_fn_ret = false;
/* Calculate tottri. */
for (uint b = 0; b < kcd->objects_len; b++) {
ob_tottri = 0;
ob = kcd->objects[b];
em = BKE_editmesh_from_object(ob);
for (int i = 0; i < em->tottri; i++) {
f_test = em->looptris[i][0]->f;
if (f_test != f_test_prev) {
test_fn_ret = test_fn(f_test);
f_test_prev = f_test;
}
if (test_fn_ret) {
ob_tottri++;
}
}
tottri += ob_tottri;
}
kcd->bvh.tree = BLI_bvhtree_new(tottri, epsilon, 8, 8);
f_test_prev = NULL;
test_fn_ret = false;
/* Add tri's for each object.
* TODO:
* test_fn can leave large gaps between bvh tree indices.
* Compacting bvh tree indices may be possible.
* Don't forget to update #knife_bvh_intersect_plane!
*/
tottri = 0;
for (uint b = 0; b < kcd->objects_len; b++) {
ob = kcd->objects[b];
em = BKE_editmesh_from_object(ob);
looptris = em->looptris;
for (int i = 0; i < em->tottri; i++) {
f_test = looptris[i][0]->f;
if (f_test != f_test_prev) {
test_fn_ret = test_fn(f_test);
f_test_prev = f_test;
}
if (!test_fn_ret) {
continue;
}
float tri_cos[3][3];
knife_bm_tri_cagecos_get_worldspace(kcd, b, i, tri_cos);
BLI_bvhtree_insert(kcd->bvh.tree, i + tottri, &tri_cos[0][0], 3);
}
tottri += em->tottri;
}
BLI_bvhtree_balance(kcd->bvh.tree);
}
/* Wrapper for #BLI_bvhtree_free. */
static void knife_bvh_free(KnifeTool_OpData *kcd)
{
if (kcd->bvh.tree) {
BLI_bvhtree_free(kcd->bvh.tree);
kcd->bvh.tree = NULL;
}
}
static void knife_bvh_raycast_cb(void *userdata,
int index,
const BVHTreeRay *ray,
BVHTreeRayHit *hit)
{
if (index == -1) {
return;
}
KnifeTool_OpData *kcd = userdata;
BMLoop **ltri;
Object *ob;
BMEditMesh *em;
float dist, uv[2];
bool isect;
int tottri;
tottri = 0;
uint b = 0;
for (; b < kcd->objects_len; b++) {
index -= tottri;
ob = kcd->objects[b];
em = BKE_editmesh_from_object(ob);
tottri = em->tottri;
if (index < tottri) {
ltri = em->looptris[index];
break;
}
}
if (kcd->bvh.filter_cb) {
if (!kcd->bvh.filter_cb(ltri[0]->f, kcd->bvh.filter_data)) {
return;
}
}
float tri_cos[3][3];
knife_bm_tri_cagecos_get_worldspace(kcd, b, index, tri_cos);
isect = (ray->radius > 0.0f ?
isect_ray_tri_epsilon_v3(
ray->origin, ray->direction, UNPACK3(tri_cos), &dist, uv, ray->radius) :
#ifdef USE_KDOPBVH_WATERTIGHT
isect_ray_tri_watertight_v3(
ray->origin, ray->isect_precalc, UNPACK3(tri_cos), &dist, uv));
#else
isect_ray_tri_v3(ray->origin, ray->direction, UNPACK3(tri_cos), &dist, uv);
#endif
if (isect && dist < hit->dist) {
madd_v3_v3v3fl(hit->co, ray->origin, ray->direction, dist);
/* Discard clipped points. */
if (RV3D_CLIPPING_ENABLED(kcd->vc.v3d, kcd->vc.rv3d) &&
ED_view3d_clipping_test(kcd->vc.rv3d, hit->co, false)) {
return;
}
hit->dist = dist;
hit->index = index;
copy_v3_v3(hit->no, ltri[0]->f->no);
kcd->bvh.looptris = em->looptris;
copy_v2_v2(kcd->bvh.uv, uv);
kcd->bvh.base_index = b;
}
}
/* `co` is expected to be in world space. */
static BMFace *knife_bvh_raycast(KnifeTool_OpData *kcd,
const float co[3],
const float dir[3],
const float radius,
float *r_dist,
float r_hitout[3],
float r_cagehit[3],
uint *r_base_index)
{
BMFace *face;
BVHTreeRayHit hit;
const float dist = r_dist ? *r_dist : FLT_MAX;
hit.dist = dist;
hit.index = -1;
BLI_bvhtree_ray_cast(kcd->bvh.tree, co, dir, radius, &hit, knife_bvh_raycast_cb, kcd);
/* Handle Hit */
if (hit.index != -1 && hit.dist != dist) {
face = kcd->bvh.looptris[hit.index][0]->f;
/* Hits returned in world space. */
if (r_hitout) {
float tri_cos[3][3];
knife_bm_tri_cagecos_get_worldspace(kcd, kcd->bvh.base_index, hit.index, tri_cos);
interp_v3_v3v3v3_uv(r_hitout, UNPACK3(tri_cos), kcd->bvh.uv);
if (r_cagehit) {
copy_v3_v3(r_cagehit, hit.co);
}
}
if (r_dist) {
*r_dist = hit.dist;
}
if (r_base_index) {
*r_base_index = kcd->bvh.base_index;
}
return face;
}
return NULL;
}
/* `co` is expected to be in world space. */
static BMFace *knife_bvh_raycast_filter(KnifeTool_OpData *kcd,
const float co[3],
const float dir[3],
const float radius,
float *r_dist,
float r_hitout[3],
float r_cagehit[3],
uint *r_base_index,
bool (*filter_cb)(BMFace *f, void *userdata),
void *filter_userdata)
{
kcd->bvh.filter_cb = filter_cb;
kcd->bvh.filter_data = filter_userdata;
BMFace *face;
BVHTreeRayHit hit;
const float dist = r_dist ? *r_dist : FLT_MAX;
hit.dist = dist;
hit.index = -1;
BLI_bvhtree_ray_cast(kcd->bvh.tree, co, dir, radius, &hit, knife_bvh_raycast_cb, kcd);
kcd->bvh.filter_cb = NULL;
kcd->bvh.filter_data = NULL;
/* Handle Hit */
if (hit.index != -1 && hit.dist != dist) {
face = kcd->bvh.looptris[hit.index][0]->f;
/* Hits returned in world space. */
if (r_hitout) {
float tri_cos[3][3];
knife_bm_tri_cagecos_get_worldspace(kcd, kcd->bvh.base_index, hit.index, tri_cos);
interp_v3_v3v3v3_uv(r_hitout, UNPACK3(tri_cos), kcd->bvh.uv);
if (r_cagehit) {
copy_v3_v3(r_cagehit, hit.co);
}
}
if (r_dist) {
*r_dist = hit.dist;
}
if (r_base_index) {
*r_base_index = kcd->bvh.base_index;
}
return face;
}
return NULL;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Geometry Utils
* \{ */
static void knife_project_v2(const KnifeTool_OpData *kcd, const float co[3], float sco[2])
{
ED_view3d_project_float_global(kcd->region, co, sco, V3D_PROJ_TEST_NOP);
}
/* Ray is returned in world space. */
static void knife_input_ray_segment(KnifeTool_OpData *kcd,
const float mval[2],
const float ofs,
float r_origin[3],
float r_origin_ofs[3])
{
/* Unproject to find view ray. */
ED_view3d_unproject_v3(kcd->vc.region, mval[0], mval[1], 0.0f, r_origin);
ED_view3d_unproject_v3(kcd->vc.region, mval[0], mval[1], ofs, r_origin_ofs);
}
/* No longer used, but may be useful in the future. */
static void UNUSED_FUNCTION(knifetool_recast_cageco)(KnifeTool_OpData *kcd,
float mval[3],
float r_cage[3])
{
float origin[3];
float origin_ofs[3];
float ray[3], ray_normal[3];
float co[3]; /* Unused. */
knife_input_ray_segment(kcd, mval, 1.0f, origin, origin_ofs);
sub_v3_v3v3(ray, origin_ofs, origin);
normalize_v3_v3(ray_normal, ray);
knife_bvh_raycast(kcd, origin, ray_normal, 0.0f, NULL, co, r_cage, NULL);
}
static bool knife_verts_edge_in_face(KnifeVert *v1, KnifeVert *v2, BMFace *f)
{
bool v1_inside, v2_inside;
bool v1_inface, v2_inface;
BMLoop *l1, *l2;
if (!f || !v1 || !v2) {
return false;
}
l1 = v1->v ? BM_face_vert_share_loop(f, v1->v) : NULL;
l2 = v2->v ? BM_face_vert_share_loop(f, v2->v) : NULL;
if ((l1 && l2) && BM_loop_is_adjacent(l1, l2)) {
/* Boundary-case, always false to avoid edge-in-face checks below. */
return false;
}
/* Find out if v1 and v2, if set, are part of the face. */
v1_inface = (l1 != NULL);
v2_inface = (l2 != NULL);
/* BM_face_point_inside_test uses best-axis projection so this isn't most accurate test... */
v1_inside = v1_inface ? false : BM_face_point_inside_test(f, v1->co);
v2_inside = v2_inface ? false : BM_face_point_inside_test(f, v2->co);
if ((v1_inface && v2_inside) || (v2_inface && v1_inside) || (v1_inside && v2_inside)) {
return true;
}
if (v1_inface && v2_inface) {
float mid[3];
/* Can have case where v1 and v2 are on shared chain between two faces.
* BM_face_splits_check_legal does visibility and self-intersection tests,
* but it is expensive and maybe a bit buggy, so use a simple
* "is the midpoint in the face" test. */
mid_v3_v3v3(mid, v1->co, v2->co);
return BM_face_point_inside_test(f, mid);
}
return false;
}
static void knife_recalc_ortho(KnifeTool_OpData *kcd)
{
kcd->is_ortho = ED_view3d_clip_range_get(
kcd->vc.depsgraph, kcd->vc.v3d, kcd->vc.rv3d, &kcd->clipsta, &kcd->clipend, true);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Knife Element Utils
*
* Currently only used in #knife_find_line_hits.
* \{ */
static BMElem *bm_elem_from_knife_vert(KnifeVert *kfv, KnifeEdge **r_kfe)
{
BMElem *ele_test;
KnifeEdge *kfe = NULL;
/* vert? */
ele_test = (BMElem *)kfv->v;
if (r_kfe || ele_test == NULL) {
if (kfv->v == NULL) {
Ref *ref;
for (ref = kfv->edges.first; ref; ref = ref->next) {
kfe = ref->ref;
if (kfe->e) {
if (r_kfe) {
*r_kfe = kfe;
}
break;
}
}
}
}
/* edge? */
if (ele_test == NULL) {
if (kfe) {
ele_test = (BMElem *)kfe->e;
}
}
/* face? */
if (ele_test == NULL) {
if (BLI_listbase_is_single(&kfe->faces)) {
ele_test = ((Ref *)kfe->faces.first)->ref;
}
}
return ele_test;
}
static BMElem *bm_elem_from_knife_edge(KnifeEdge *kfe)
{
BMElem *ele_test;
ele_test = (BMElem *)kfe->e;
if (ele_test == NULL) {
ele_test = (BMElem *)kfe->basef;
}
return ele_test;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Knife Element List Utils
* \{ */
static ListBase *knife_empty_list(KnifeTool_OpData *kcd)
{
ListBase *list;
list = BLI_memarena_alloc(kcd->arena, sizeof(ListBase));
BLI_listbase_clear(list);
return list;
}
static void knife_append_list(KnifeTool_OpData *kcd, ListBase *lst, void *elem)
{
Ref *ref;
ref = BLI_mempool_calloc(kcd->refs);
ref->ref = elem;
BLI_addtail(lst, ref);
}
static Ref *find_ref(ListBase *lb, void *ref)
{
Ref *ref1;
for (ref1 = lb->first; ref1; ref1 = ref1->next) {
if (ref1->ref == ref) {
return ref1;
}
}
return NULL;
}
static void knife_append_list_no_dup(KnifeTool_OpData *kcd, ListBase *lst, void *elem)
{
if (!find_ref(lst, elem)) {
knife_append_list(kcd, lst, elem);
}
}
static void knife_add_to_vert_edges(KnifeTool_OpData *kcd, KnifeEdge *kfe)
{
knife_append_list(kcd, &kfe->v1->edges, kfe);
knife_append_list(kcd, &kfe->v2->edges, kfe);
}
/* Add faces of an edge to a KnifeVert's faces list. No checks for dups. */
static void knife_add_edge_faces_to_vert(KnifeTool_OpData *kcd, KnifeVert *kfv, BMEdge *e)
{
BMIter bmiter;
BMFace *f;
BM_ITER_ELEM (f, &bmiter, e, BM_FACES_OF_EDGE) {
knife_append_list(kcd, &kfv->faces, f);
}
}
/* Find a face in common in the two faces lists.
* If more than one, return the first; if none, return NULL. */
static BMFace *knife_find_common_face(ListBase *faces1, ListBase *faces2)
{
Ref *ref1, *ref2;
for (ref1 = faces1->first; ref1; ref1 = ref1->next) {
for (ref2 = faces2->first; ref2; ref2 = ref2->next) {
if (ref1->ref == ref2->ref) {
return (BMFace *)(ref1->ref);
}
}
}
return NULL;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Knife Element Creation
* \{ */
static KnifeVert *new_knife_vert(KnifeTool_OpData *kcd, const float co[3], const float cageco[3])
{
KnifeVert *kfv = BLI_mempool_calloc(kcd->kverts);
kcd->totkvert++;
copy_v3_v3(kfv->co, co);
copy_v3_v3(kfv->cageco, cageco);
return kfv;
}
static KnifeEdge *new_knife_edge(KnifeTool_OpData *kcd)
{
KnifeEdge *kfe = BLI_mempool_calloc(kcd->kedges);
kcd->totkedge++;
return kfe;
}
/* Get a KnifeVert wrapper for an existing BMVert. */
static KnifeVert *get_bm_knife_vert(KnifeTool_OpData *kcd, BMVert *v, Object *ob, uint base_index)
{
KnifeVert *kfv = BLI_ghash_lookup(kcd->origvertmap, v);
const float *cageco;
if (!kfv) {
BMIter bmiter;
BMFace *f;
if (BM_elem_index_get(v) >= 0) {
cageco = kcd->objects_info[base_index].cagecos[BM_elem_index_get(v)];
}
else {
cageco = v->co;
}
float cageco_ws[3];
mul_v3_m4v3(cageco_ws, ob->obmat, cageco);
kfv = new_knife_vert(kcd, v->co, cageco_ws);
kfv->v = v;
kfv->ob = ob;
kfv->base_index = base_index;
BLI_ghash_insert(kcd->origvertmap, v, kfv);
BM_ITER_ELEM (f, &bmiter, v, BM_FACES_OF_VERT) {
knife_append_list(kcd, &kfv->faces, f);
}
}
return kfv;
}
/* Get a KnifeEdge wrapper for an existing BMEdge. */
static KnifeEdge *get_bm_knife_edge(KnifeTool_OpData *kcd, BMEdge *e, Object *ob, uint base_index)
{
KnifeEdge *kfe = BLI_ghash_lookup(kcd->origedgemap, e);
if (!kfe) {
BMIter bmiter;
BMFace *f;
kfe = new_knife_edge(kcd);
kfe->e = e;
kfe->v1 = get_bm_knife_vert(kcd, e->v1, ob, base_index);
kfe->v2 = get_bm_knife_vert(kcd, e->v2, ob, base_index);
knife_add_to_vert_edges(kcd, kfe);
BLI_ghash_insert(kcd->origedgemap, e, kfe);
BM_ITER_ELEM (f, &bmiter, e, BM_FACES_OF_EDGE) {
knife_append_list(kcd, &kfe->faces, f);
}
}
return kfe;
}
static ListBase *knife_get_face_kedges(KnifeTool_OpData *kcd,
Object *ob,
uint base_index,
BMFace *f)
{
ListBase *list = BLI_ghash_lookup(kcd->kedgefacemap, f);
if (!list) {
BMIter bmiter;
BMEdge *e;
list = knife_empty_list(kcd);
BM_ITER_ELEM (e, &bmiter, f, BM_EDGES_OF_FACE) {
knife_append_list(kcd, list, get_bm_knife_edge(kcd, e, ob, base_index));
}
BLI_ghash_insert(kcd->kedgefacemap, f, list);
}
return list;
}
static void knife_edge_append_face(KnifeTool_OpData *kcd, KnifeEdge *kfe, BMFace *f)
{
knife_append_list(kcd, knife_get_face_kedges(kcd, kfe->v1->ob, kfe->v1->base_index, f), kfe);
knife_append_list(kcd, &kfe->faces, f);
}
static KnifeVert *knife_split_edge(KnifeTool_OpData *kcd,
KnifeEdge *kfe,
const float co[3],
const float cageco[3],
KnifeEdge **r_kfe)
{
KnifeEdge *newkfe = new_knife_edge(kcd);
Ref *ref;
BMFace *f;
newkfe->v1 = kfe->v1;
newkfe->v2 = new_knife_vert(kcd, co, cageco);
newkfe->v2->ob = kfe->v1->ob;
newkfe->v2->base_index = kfe->v1->base_index;
newkfe->v2->is_cut = true;
if (kfe->e) {
knife_add_edge_faces_to_vert(kcd, newkfe->v2, kfe->e);
}
else {
/* kfe cuts across an existing face.
* If v1 and v2 are in multiple faces together (e.g., if they
* are in doubled polys) then this arbitrarily chooses one of them. */
f = knife_find_common_face(&kfe->v1->faces, &kfe->v2->faces);
if (f) {
knife_append_list(kcd, &newkfe->v2->faces, f);
}
}
newkfe->basef = kfe->basef;
ref = find_ref(&kfe->v1->edges, kfe);
BLI_remlink(&kfe->v1->edges, ref);
kfe->v1 = newkfe->v2;
kfe->v1->is_splitting = true;
BLI_addtail(&kfe->v1->edges, ref);
for (ref = kfe->faces.first; ref; ref = ref->next) {
knife_edge_append_face(kcd, newkfe, ref->ref);
}
knife_add_to_vert_edges(kcd, newkfe);
newkfe->is_cut = kfe->is_cut;
newkfe->e = kfe->e;
newkfe->splits++;
kfe->splits++;
kcd->undo->splits++;
BLI_stack_push(kcd->splitstack, (void *)&kfe);
BLI_stack_push(kcd->splitstack, (void *)&newkfe);
*r_kfe = newkfe;
return newkfe->v2;
}
/* Rejoin two edges split by #knife_split_edge. */
static void knife_join_edge(KnifeEdge *newkfe, KnifeEdge *kfe)
{
newkfe->is_invalid = true;
newkfe->v2->is_invalid = true;
kfe->v1 = newkfe->v1;
kfe->splits--;
kfe->v1->is_splitting = false;
kfe->v2->is_splitting = false;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Cut/Hit Utils
* \{ */
/* User has just clicked for first time or first time after a restart (E key).
* Copy the current position data into prev. */
static void knife_start_cut(KnifeTool_OpData *kcd)
{
kcd->prev = kcd->curr;
kcd->curr.is_space = 0; /* TODO: Why do we do this? */
kcd->mdata.is_stored = false;
if (kcd->prev.vert == NULL && kcd->prev.edge == NULL) {
float origin[3], origin_ofs[3];
float ofs_local[3];
negate_v3_v3(ofs_local, kcd->vc.rv3d->ofs);
knife_input_ray_segment(kcd, kcd->curr.mval, 1.0f, origin, origin_ofs);
if (!isect_line_plane_v3(
kcd->prev.cage, origin, origin_ofs, ofs_local, kcd->vc.rv3d->viewinv[2])) {
zero_v3(kcd->prev.cage);
}
copy_v3_v3(kcd->prev.co, kcd->prev.cage); /* TODO: do we need this? */
copy_v3_v3(kcd->curr.cage, kcd->prev.cage);
copy_v3_v3(kcd->curr.co, kcd->prev.co);
}
}
static void linehit_to_knifepos(KnifePosData *kpos, KnifeLineHit *lh)
{
kpos->bmface = lh->f;
kpos->vert = lh->v;
kpos->edge = lh->kfe;
copy_v3_v3(kpos->cage, lh->cagehit);
copy_v3_v3(kpos->co, lh->hit);
copy_v2_v2(kpos->mval, lh->schit);
}
/* Primary key: lambda along cut
* Secondary key: lambda along depth
* Tertiary key: pointer comparisons of verts if both snapped to verts
*/
static int linehit_compare(const void *vlh1, const void *vlh2)
{
const KnifeLineHit *lh1 = vlh1;
const KnifeLineHit *lh2 = vlh2;
if (lh1->l < lh2->l) {
return -1;
}
if (lh1->l > lh2->l) {
return 1;
}
if (lh1->m < lh2->m) {
return -1;
}
if (lh1->m > lh2->m) {
return 1;
}
if (lh1->v < lh2->v) {
return -1;
}
if (lh1->v > lh2->v) {
return 1;
}
return 0;
}
/*
* Sort linehits by distance along cut line, and secondarily from
* front to back (from eye), and tertiarily by snap vertex,
* and remove any duplicates.
*/
static void prepare_linehits_for_cut(KnifeTool_OpData *kcd)
{
bool is_double = false;
int n = kcd->totlinehit;
KnifeLineHit *linehits = kcd->linehits;
if (n == 0) {
return;
}
qsort(linehits, n, sizeof(KnifeLineHit), linehit_compare);
/* Remove any edge hits that are preceded or followed
* by a vertex hit that is very near. Mark such edge hits using
* l == -1 and then do another pass to actually remove.
* Also remove all but one of a series of vertex hits for the same vertex. */
for (int i = 0; i < n; i++) {
KnifeLineHit *lhi = &linehits[i];
if (lhi->v == NULL) {
continue;
}
for (int j = i - 1; j >= 0; j--) {
KnifeLineHit *lhj = &linehits[j];
if (!lhj->kfe || fabsf(lhi->l - lhj->l) > KNIFE_FLT_EPSBIG ||
fabsf(lhi->m - lhj->m) > KNIFE_FLT_EPSBIG) {
break;
}
if (lhi->kfe == lhj->kfe) {
lhj->l = -1.0f;
is_double = true;
}
}
for (int j = i + 1; j < n; j++) {
KnifeLineHit *lhj = &linehits[j];
if (fabsf(lhi->l - lhj->l) > KNIFE_FLT_EPSBIG || fabsf(lhi->m - lhj->m) > KNIFE_FLT_EPSBIG) {
break;
}
if ((lhj->kfe && (lhi->kfe == lhj->kfe)) || (lhi->v == lhj->v)) {
lhj->l = -1.0f;
is_double = true;
}
}
}
if (is_double) {
/* Delete-in-place loop: copying from pos j to pos i+1. */
int i = 0;
int j = 1;
while (j < n) {
KnifeLineHit *lhi = &linehits[i];
KnifeLineHit *lhj = &linehits[j];
if (lhj->l == -1.0f) {
j++; /* Skip copying this one. */
}
else {
/* Copy unless a no-op. */
if (lhi->l == -1.0f) {
/* Could happen if linehits[0] is being deleted. */
memcpy(&linehits[i], &linehits[j], sizeof(KnifeLineHit));
}
else {
if (i + 1 != j) {
memcpy(&linehits[i + 1], &linehits[j], sizeof(KnifeLineHit));
}
i++;
}
j++;
}
}
kcd->totlinehit = i + 1;
}
}
/* Add hit to list of hits in facehits[f], where facehits is a map, if not already there. */
static void add_hit_to_facehits(KnifeTool_OpData *kcd,
GHash *facehits,
BMFace *f,
KnifeLineHit *hit)
{
ListBase *list = BLI_ghash_lookup(facehits, f);
if (!list) {
list = knife_empty_list(kcd);
BLI_ghash_insert(facehits, f, list);
}
knife_append_list_no_dup(kcd, list, hit);
}
/**
* Special purpose function, if the linehit is connected to a real edge/vert.
* Return true if \a co is outside the face.
*/
static bool knife_add_single_cut__is_linehit_outside_face(BMFace *f,
const KnifeLineHit *lh,
const float co[3])
{
if (lh->v && lh->v->v) {
BMLoop *l; /* side-of-loop */
if ((l = BM_face_vert_share_loop(f, lh->v->v)) &&
(BM_loop_point_side_of_loop_test(l, co) < 0.0f)) {
return true;
}
}
else if ((lh->kfe && lh->kfe->e)) {
BMLoop *l; /* side-of-edge */
if ((l = BM_face_edge_share_loop(f, lh->kfe->e)) &&
(BM_loop_point_side_of_edge_test(l, co) < 0.0f)) {
return true;
}
}
return false;
}
static void knife_add_single_cut(KnifeTool_OpData *kcd,
KnifeLineHit *lh1,
KnifeLineHit *lh2,
BMFace *f)
{
KnifeEdge *kfe, *kfe2;
BMEdge *e_base;
if ((lh1->v && lh1->v == lh2->v) || (lh1->kfe && lh1->kfe == lh2->kfe)) {
return;
}
/* If the cut is on an edge. */
if ((lh1->v && lh2->v) && (lh1->v->v && lh2->v && lh2->v->v) &&
(e_base = BM_edge_exists(lh1->v->v, lh2->v->v))) {
return;
}
if (knife_add_single_cut__is_linehit_outside_face(f, lh1, lh2->hit) ||
knife_add_single_cut__is_linehit_outside_face(f, lh2, lh1->hit)) {
return;
}
/* Check if edge actually lies within face (might not, if this face is concave). */
if ((lh1->v && !lh1->kfe) && (lh2->v && !lh2->kfe)) {
if (!knife_verts_edge_in_face(lh1->v, lh2->v, f)) {
return;
}
}
kfe = new_knife_edge(kcd);
kfe->is_cut = true;
kfe->basef = f;
if (lh1->v) {
kfe->v1 = lh1->v;
}
else if (lh1->kfe) {
kfe->v1 = knife_split_edge(kcd, lh1->kfe, lh1->hit, lh1->cagehit, &kfe2);
lh1->v = kfe->v1; /* Record the #KnifeVert for this hit. */
}
else {
BLI_assert(lh1->f);
kfe->v1 = new_knife_vert(kcd, lh1->hit, lh1->cagehit);
kfe->v1->ob = lh1->ob;
kfe->v1->base_index = lh1->base_index;
kfe->v1->is_cut = true;
kfe->v1->is_face = true;
knife_append_list(kcd, &kfe->v1->faces, lh1->f);
lh1->v = kfe->v1; /* Record the #KnifeVert for this hit. */
}
if (lh2->v) {
kfe->v2 = lh2->v;
}
else if (lh2->kfe) {
kfe->v2 = knife_split_edge(kcd, lh2->kfe, lh2->hit, lh2->cagehit, &kfe2);
lh2->v = kfe->v2; /* Future uses of lh2 won't split again. */
}
else {
BLI_assert(lh2->f);
kfe->v2 = new_knife_vert(kcd, lh2->hit, lh2->cagehit);
kfe->v2->ob = lh2->ob;
kfe->v2->base_index = lh2->base_index;
kfe->v2->is_cut = true;
kfe->v2->is_face = true;
knife_append_list(kcd, &kfe->v2->faces, lh2->f);
lh2->v = kfe->v2; /* Record the KnifeVert for this hit. */
}
knife_add_to_vert_edges(kcd, kfe);
if (kfe->basef && !find_ref(&kfe->faces, kfe->basef)) {
knife_edge_append_face(kcd, kfe, kfe->basef);
}
/* Update current undo frame cut count. */
kcd->undo->cuts++;
}
/* Given a list of KnifeLineHits for one face, sorted by l
* and then by m, make the required KnifeVerts and
* KnifeEdges.
*/
static void knife_cut_face(KnifeTool_OpData *kcd, BMFace *f, ListBase *hits)
{
Ref *r;
if (BLI_listbase_count_at_most(hits, 2) != 2) {
return;
}
for (r = hits->first; r->next; r = r->next) {
knife_add_single_cut(kcd, r->ref, r->next->ref, f);
}
}
static void knife_make_face_cuts(KnifeTool_OpData *kcd, BMesh *bm, BMFace *f, ListBase *kfedges)
{
KnifeEdge *kfe;
Ref *ref;
int edge_array_len = BLI_listbase_count(kfedges);
int i;
BMEdge **edge_array = BLI_array_alloca(edge_array, edge_array_len);
/* Point to knife edges we've created edges in, edge_array aligned. */
KnifeEdge **kfe_array = BLI_array_alloca(kfe_array, edge_array_len);
BLI_assert(BLI_gset_len(kcd->edgenet.edge_visit) == 0);
i = 0;
for (ref = kfedges->first; ref; ref = ref->next) {
bool is_new_edge = false;
kfe = ref->ref;
if (kfe->is_invalid) {
continue;
}
if (kfe->e == NULL) {
if (kfe->v1->v && kfe->v2->v) {
kfe->e = BM_edge_exists(kfe->v1->v, kfe->v2->v);
}
}
if (kfe->e) {
if (BM_edge_in_face(kfe->e, f)) {
/* Shouldn't happen, but in this case just ignore. */
continue;
}
}
else {
if (kfe->v1->v == NULL) {
kfe->v1->v = BM_vert_create(bm, kfe->v1->co, NULL, 0);
}
if (kfe->v2->v == NULL) {
kfe->v2->v = BM_vert_create(bm, kfe->v2->co, NULL, 0);
}
BLI_assert(kfe->e == NULL);
kfe->e = BM_edge_create(bm, kfe->v1->v, kfe->v2->v, NULL, 0);
if (kfe->e) {
if (kcd->select_result || BM_elem_flag_test(f, BM_ELEM_SELECT)) {
BM_edge_select_set(bm, kfe->e, true);
}
is_new_edge = true;
}
}
BLI_assert(kfe->e);
if (BLI_gset_add(kcd->edgenet.edge_visit, kfe->e)) {
kfe_array[i] = is_new_edge ? kfe : 0;
edge_array[i] = kfe->e;
i += 1;
}
}
if (i) {
const int edge_array_len_orig = i;
edge_array_len = i;
#ifdef USE_NET_ISLAND_CONNECT
uint edge_array_holes_len;
BMEdge **edge_array_holes;
if (BM_face_split_edgenet_connect_islands(bm,
f,
edge_array,
edge_array_len,
true,
kcd->edgenet.arena,
&edge_array_holes,
&edge_array_holes_len)) {
if (BM_elem_flag_test(f, BM_ELEM_SELECT)) {
for (i = edge_array_len; i < edge_array_holes_len; i++) {
BM_edge_select_set(bm, edge_array_holes[i], true);
}
}
edge_array_len = edge_array_holes_len;
edge_array = edge_array_holes; /* Owned by the arena. */
}
#endif
{
BMFace **face_arr = NULL;
int face_arr_len;
BM_face_split_edgenet(bm, f, edge_array, edge_array_len, &face_arr, &face_arr_len);
if (face_arr) {
MEM_freeN(face_arr);
}
}
/* Remove dangling edges, not essential - but nice for users. */
for (i = 0; i < edge_array_len_orig; i++) {
if (kfe_array[i] == NULL) {
continue;
}
if (BM_edge_is_wire(kfe_array[i]->e)) {
BM_edge_kill(bm, kfe_array[i]->e);
kfe_array[i]->e = NULL;
}
}
#ifdef USE_NET_ISLAND_CONNECT
BLI_memarena_clear(kcd->edgenet.arena);
#endif
}
BLI_gset_clear(kcd->edgenet.edge_visit, NULL);
}
static int sort_verts_by_dist_cb(void *co_p, const void *cur_a_p, const void *cur_b_p)
{
const KnifeVert *cur_a = ((const Ref *)cur_a_p)->ref;
const KnifeVert *cur_b = ((const Ref *)cur_b_p)->ref;
const float *co = co_p;
const float a_sq = len_squared_v3v3(co, cur_a->co);
const float b_sq = len_squared_v3v3(co, cur_b->co);
if (a_sq < b_sq) {
return -1;
}
if (a_sq > b_sq) {
return 1;
}
return 0;
}
/* Use the network of KnifeEdges and KnifeVerts accumulated to make real BMVerts and BMEdedges. */
static void knife_make_cuts(KnifeTool_OpData *kcd, Object *ob)
{
BMEditMesh *em = BKE_editmesh_from_object(ob);
BMesh *bm = em->bm;
KnifeEdge *kfe;
KnifeVert *kfv;
BMFace *f;
BMEdge *e, *enew;
ListBase *list;
Ref *ref;
float pct;
SmallHashIter hiter;
BLI_mempool_iter iter;
SmallHash fhash_, *fhash = &fhash_;
SmallHash ehash_, *ehash = &ehash_;
BLI_smallhash_init(fhash);
BLI_smallhash_init(ehash);
/* Put list of cutting edges for a face into fhash, keyed by face. */
BLI_mempool_iternew(kcd->kedges, &iter);
for (kfe = BLI_mempool_iterstep(&iter); kfe; kfe = BLI_mempool_iterstep(&iter)) {
if (kfe->is_invalid || kfe->v1->ob != ob) {
continue;
}
/* Select edges that lie directly on the cut. */
if (kcd->select_result) {
if (kfe->e && kfe->is_cut) {
BM_edge_select_set(bm, kfe->e, true);
}
}
f = kfe->basef;
if (!f || kfe->e) {
continue;
}
list = BLI_smallhash_lookup(fhash, (uintptr_t)f);
if (!list) {
list = knife_empty_list(kcd);
BLI_smallhash_insert(fhash, (uintptr_t)f, list);
}
knife_append_list(kcd, list, kfe);
}
/* Put list of splitting vertices for an edge into ehash, keyed by edge. */
BLI_mempool_iternew(kcd->kverts, &iter);
for (kfv = BLI_mempool_iterstep(&iter); kfv; kfv = BLI_mempool_iterstep(&iter)) {
if (kfv->v || kfv->is_invalid || kfv->ob != ob) {
continue; /* Already have a BMVert. */
}
for (ref = kfv->edges.first; ref; ref = ref->next) {
kfe = ref->ref;
e = kfe->e;
if (!e) {
continue;
}
list = BLI_smallhash_lookup(ehash, (uintptr_t)e);
if (!list) {
list = knife_empty_list(kcd);
BLI_smallhash_insert(ehash, (uintptr_t)e, list);
}
/* There can be more than one kfe in kfv's list with same e. */
if (!find_ref(list, kfv)) {
knife_append_list(kcd, list, kfv);
}
}
}
/* Split bmesh edges where needed. */
for (list = BLI_smallhash_iternew(ehash, &hiter, (uintptr_t *)&e); list;
list = BLI_smallhash_iternext(&hiter, (uintptr_t *)&e)) {
BLI_listbase_sort_r(list, sort_verts_by_dist_cb, e->v1->co);
for (ref = list->first; ref; ref = ref->next) {
kfv = ref->ref;
pct = line_point_factor_v3(kfv->co, e->v1->co, e->v2->co);
kfv->v = BM_edge_split(bm, e, e->v1, &enew, pct);
}
}
if (kcd->only_select) {
EDBM_flag_disable_all(em, BM_ELEM_SELECT);
}
/* Do cuts for each face. */
for (list = BLI_smallhash_iternew(fhash, &hiter, (uintptr_t *)&f); list;
list = BLI_smallhash_iternext(&hiter, (uintptr_t *)&f)) {
knife_make_face_cuts(kcd, bm, f, list);
}
BLI_smallhash_release(fhash);
BLI_smallhash_release(ehash);
}
/* User has just left-clicked after the first time.
* Add all knife cuts implied by line from prev to curr.
* If that line crossed edges then kcd->linehits will be non-NULL.
* Make all of the KnifeVerts and KnifeEdges implied by this cut.
*/
static void knife_add_cut(KnifeTool_OpData *kcd)
{
int i;
GHash *facehits;
BMFace *f;
Ref *r;
GHashIterator giter;
ListBase *list;
/* Allocate new undo frame on stack, unless cut is being dragged. */
if (!kcd->is_drag_undo) {
kcd->undo = BLI_stack_push_r(kcd->undostack);
kcd->undo->pos = kcd->prev;
kcd->undo->cuts = 0;
kcd->undo->splits = 0;
kcd->undo->mdata = kcd->mdata;
kcd->is_drag_undo = true;
}
/* Save values for angle drawing calculations. */
copy_v3_v3(kcd->mdata.cage, kcd->prev.cage);
copy_v2_v2(kcd->mdata.mval, kcd->prev.mval);
kcd->mdata.is_stored = true;
prepare_linehits_for_cut(kcd);
if (kcd->totlinehit == 0) {
if (kcd->is_drag_hold == false) {
kcd->prev = kcd->curr;
}
return;
}
/* Consider most recent linehit in angle drawing calculations. */
if (kcd->totlinehit >= 2) {
copy_v3_v3(kcd->mdata.cage, kcd->linehits[kcd->totlinehit - 2].cagehit);
}
/* Make facehits: map face -> list of linehits touching it. */
facehits = BLI_ghash_ptr_new("knife facehits");
for (i = 0; i < kcd->totlinehit; i++) {
KnifeLineHit *lh = &kcd->linehits[i];
if (lh->f) {
add_hit_to_facehits(kcd, facehits, lh->f, lh);
}
if (lh->v) {
for (r = lh->v->faces.first; r; r = r->next) {
add_hit_to_facehits(kcd, facehits, r->ref, lh);
}
}
if (lh->kfe) {
for (r = lh->kfe->faces.first; r; r = r->next) {
add_hit_to_facehits(kcd, facehits, r->ref, lh);
}
}
}
/* NOTE: as following loop progresses, the 'v' fields of
* the linehits will be filled in (as edges are split or
* in-face verts are made), so it may be true that both
* the v and the kfe or f fields will be non-NULL. */
GHASH_ITER (giter, facehits) {
f = (BMFace *)BLI_ghashIterator_getKey(&giter);
list = (ListBase *)BLI_ghashIterator_getValue(&giter);
knife_cut_face(kcd, f, list);
}
/* Set up for next cut. */
kcd->prev = kcd->curr;
if (kcd->prev.bmface) {
/* Was "in face" but now we have a KnifeVert it is snapped to. */
KnifeLineHit *lh = &kcd->linehits[kcd->totlinehit - 1];
kcd->prev.vert = lh->v;
kcd->prev.bmface = NULL;
}
if (kcd->is_drag_hold) {
KnifeLineHit *lh = &kcd->linehits[kcd->totlinehit - 1];
linehit_to_knifepos(&kcd->prev, lh);
}
BLI_ghash_free(facehits, NULL, NULL);
MEM_freeN(kcd->linehits);
kcd->linehits = NULL;
kcd->totlinehit = 0;
}
static void knife_finish_cut(KnifeTool_OpData *kcd)
{
if (kcd->linehits) {
MEM_freeN(kcd->linehits);
kcd->linehits = NULL;
kcd->totlinehit = 0;
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Screen Line Hits (#knife_find_line_hits)
* \{ */
/* Record the index in kcd->em->looptris of first looptri triple for a given face,
* given an index for some triple in that array.
* This assumes that all of the triangles for a given face are contiguous
* in that array (as they are by the current tessellation routines).
* Actually store index + 1 in the hash, because 0 looks like "no entry"
* to hash lookup routine; will reverse this in the get routine.
* Doing this lazily rather than all at once for all faces.
*/
static void set_lowest_face_tri(KnifeTool_OpData *kcd, BMEditMesh *em, BMFace *f, int index)
{
int i;
if (BLI_ghash_lookup(kcd->facetrimap, f)) {
return;
}
BLI_assert(index >= 0 && index < em->tottri);
BLI_assert(em->looptris[index][0]->f == f);
for (i = index - 1; i >= 0; i--) {
if (em->looptris[i][0]->f != f) {
i++;
break;
}
}
if (i == -1) {
i++;
}
BLI_ghash_insert(kcd->facetrimap, f, POINTER_FROM_INT(i + 1));
}
/* This should only be called for faces that have had a lowest face tri set by previous function.
*/
static int get_lowest_face_tri(KnifeTool_OpData *kcd, BMFace *f)
{
int ans;
ans = POINTER_AS_INT(BLI_ghash_lookup(kcd->facetrimap, f));
BLI_assert(ans != 0);
return ans - 1;
}
/**
* Find intersection of v1-v2 with face f.
* Only take intersections that are at least \a face_tol_sq (in screen space) away
* from other intersection elements.
* If v1-v2 is coplanar with f, call that "no intersection though
* it really means "infinite number of intersections".
* In such a case we should have gotten hits on edges or verts of the face.
*/
static bool knife_ray_intersect_face(KnifeTool_OpData *kcd,
const float s[2],
const float v1[3],
const float v2[3],
Object *ob,
uint base_index,
BMFace *f,
const float face_tol_sq,
float hit_co[3],
float hit_cageco[3])
{
BMEditMesh *em = BKE_editmesh_from_object(ob);
int tottri, tri_i;
float raydir[3];
float tri_norm[3], tri_plane[4];
float se1[2], se2[2];
float d, lambda;
BMLoop **tri;
ListBase *list;
Ref *ref;
KnifeEdge *kfe;
sub_v3_v3v3(raydir, v2, v1);
normalize_v3(raydir);
tri_i = get_lowest_face_tri(kcd, f);
tottri = em->tottri;
BLI_assert(tri_i >= 0 && tri_i < tottri);
for (; tri_i < tottri; tri_i++) {
float tri_cos[3][3];
float ray_tri_uv[2];
tri = em->looptris[tri_i];
if (tri[0]->f != f) {
break;
}
knife_bm_tri_cagecos_get_worldspace(kcd, base_index, tri_i, tri_cos);
/* Using epsilon test in case ray is directly through an internal
* tessellation edge and might not hit either tessellation tri with
* an exact test;
* We will exclude hits near real edges by a later test. */
if (isect_ray_tri_epsilon_v3(
v1, raydir, UNPACK3(tri_cos), &lambda, ray_tri_uv, KNIFE_FLT_EPS)) {
/* Check if line coplanar with tri. */
normal_tri_v3(tri_norm, UNPACK3(tri_cos));
plane_from_point_normal_v3(tri_plane, tri_cos[0], tri_norm);
if ((dist_squared_to_plane_v3(v1, tri_plane) < KNIFE_FLT_EPS) &&
(dist_squared_to_plane_v3(v2, tri_plane) < KNIFE_FLT_EPS)) {
return false;
}
interp_v3_v3v3v3_uv(hit_cageco, UNPACK3(tri_cos), ray_tri_uv);
/* Now check that far enough away from verts and edges. */
list = knife_get_face_kedges(kcd, ob, base_index, f);
for (ref = list->first; ref; ref = ref->next) {
kfe = ref->ref;
if (kfe->is_invalid) {
continue;
}
knife_project_v2(kcd, kfe->v1->cageco, se1);
knife_project_v2(kcd, kfe->v2->cageco, se2);
d = dist_squared_to_line_segment_v2(s, se1, se2);
if (d < face_tol_sq) {
return false;
}
}
interp_v3_v3v3v3_uv(hit_co, tri[0]->v->co, tri[1]->v->co, tri[2]->v->co, ray_tri_uv);
return true;
}
}
return false;
}
/**
* Calculate the center and maximum excursion of mesh.
* (Considers all meshes in multi-object edit mode)
*/
static void calc_ortho_extent(KnifeTool_OpData *kcd)
{
Object *ob;
BMEditMesh *em;
BMIter iter;
BMVert *v;
float min[3], max[3];
float ws[3];
INIT_MINMAX(min, max);
for (uint b = 0; b < kcd->objects_len; b++) {
ob = kcd->objects[b];
em = BKE_editmesh_from_object(ob);
const float(*cagecos)[3] = kcd->objects_info[b].cagecos;
if (cagecos) {
for (int i = 0; i < em->bm->totvert; i++) {
copy_v3_v3(ws, cagecos[i]);
mul_m4_v3(ob->obmat, ws);
minmax_v3v3_v3(min, max, ws);
}
}
else {
BM_ITER_MESH (v, &iter, em->bm, BM_VERTS_OF_MESH) {
copy_v3_v3(ws, v->co);
mul_m4_v3(ob->obmat, ws);
minmax_v3v3_v3(min, max, ws);
}
}
}
kcd->ortho_extent = len_v3v3(min, max) / 2;
mid_v3_v3v3(kcd->ortho_extent_center, min, max);
}
/* Do edges e1 and e2 go between exactly the same coordinates? */
static bool coinciding_edges(BMEdge *e1, BMEdge *e2)
{
const float *co11, *co12, *co21, *co22;
co11 = e1->v1->co;
co12 = e1->v2->co;
co21 = e2->v1->co;
co22 = e2->v2->co;
if ((equals_v3v3(co11, co21) && equals_v3v3(co12, co22)) ||
(equals_v3v3(co11, co22) && equals_v3v3(co12, co21))) {
return true;
}
return false;
}
/* Callback used in point_is_visible to exclude hits on the faces that are the same
* as or contain the hitting element (which is in user_data).
* Also (see T44492) want to exclude hits on faces that butt up to the hitting element
* (e.g., when you double an edge by an edge split).
*/
static bool bm_ray_cast_cb_elem_not_in_face_check(BMFace *f, void *user_data)
{
bool ans;
BMEdge *e, *e2;
BMIter iter;
switch (((BMElem *)user_data)->head.htype) {
case BM_FACE:
ans = (BMFace *)user_data != f;
break;
case BM_EDGE:
e = (BMEdge *)user_data;
ans = !BM_edge_in_face(e, f);
if (ans) {
/* Is it a boundary edge, coincident with a split edge? */
if (BM_edge_is_boundary(e)) {
BM_ITER_ELEM (e2, &iter, f, BM_EDGES_OF_FACE) {
if (coinciding_edges(e, e2)) {
ans = false;
break;
}
}
}
}
break;
case BM_VERT:
ans = !BM_vert_in_face((BMVert *)user_data, f);
break;
default:
ans = true;
break;
}
return ans;
}
/**
* Check if \a p is visible (not clipped, not occluded by another face).
* s in screen projection of p.
*
* \param ele_test: Optional vert/edge/face to use when \a p is on the surface of the geometry,
* intersecting faces matching this face (or connected when an vert/edge) will be ignored.
*/
static bool point_is_visible(KnifeTool_OpData *kcd,
const float p[3],
const float s[2],
BMElem *ele_test)
{
BMFace *f_hit;
/* If box clipping on, make sure p is not clipped. */
if (RV3D_CLIPPING_ENABLED(kcd->vc.v3d, kcd->vc.rv3d) &&
ED_view3d_clipping_test(kcd->vc.rv3d, p, false)) {
return false;
}
/* If not cutting through, make sure no face is in front of p. */
if (!kcd->cut_through) {
float dist;
float view[3], p_ofs[3];
/* TODO: I think there's a simpler way to get the required raycast ray. */
ED_view3d_unproject_v3(kcd->vc.region, s[0], s[1], 0.0f, view);
/* Make p_ofs a little towards view, so ray doesn't hit p's face. */
sub_v3_v3(view, p);
dist = normalize_v3(view);
copy_v3_v3(p_ofs, p);
/* Avoid projecting behind the viewpoint. */
if (kcd->is_ortho && (kcd->vc.rv3d->persp != RV3D_CAMOB)) {
dist = kcd->vc.v3d->clip_end * 2.0f;
}
if (RV3D_CLIPPING_ENABLED(kcd->vc.v3d, kcd->vc.rv3d)) {
float view_clip[2][3];
/* NOTE: view_clip[0] should never get clipped. */
copy_v3_v3(view_clip[0], p_ofs);
madd_v3_v3v3fl(view_clip[1], p_ofs, view, dist);
if (clip_segment_v3_plane_n(view_clip[0],
view_clip[1],
kcd->vc.rv3d->clip_local,
6,
view_clip[0],
view_clip[1])) {
dist = len_v3v3(p_ofs, view_clip[1]);
}
}
/* See if there's a face hit between p1 and the view. */
if (ele_test) {
f_hit = knife_bvh_raycast_filter(kcd,
p_ofs,
view,
KNIFE_FLT_EPS,
&dist,
NULL,
NULL,
NULL,
bm_ray_cast_cb_elem_not_in_face_check,
ele_test);
}
else {
f_hit = knife_bvh_raycast(kcd, p_ofs, view, KNIFE_FLT_EPS, &dist, NULL, NULL, NULL);
}
if (f_hit) {
return false;
}
}
return true;
}
/* Clip the line (v1, v2) to planes perpendicular to it and distances d from
* the closest point on the line to the origin. */
static void clip_to_ortho_planes(float v1[3], float v2[3], const float center[3], const float d)
{
float closest[3], dir[3];
sub_v3_v3v3(dir, v1, v2);
normalize_v3(dir);
/* could be v1 or v2 */
sub_v3_v3(v1, center);
project_plane_normalized_v3_v3v3(closest, v1, dir);
add_v3_v3(closest, center);
madd_v3_v3v3fl(v1, closest, dir, d);
madd_v3_v3v3fl(v2, closest, dir, -d);
}
static void set_linehit_depth(KnifeTool_OpData *kcd, KnifeLineHit *lh)
{
lh->m = dot_m4_v3_row_z(kcd->vc.rv3d->persmatob, lh->cagehit);
}
/* Finds visible (or all, if cutting through) edges that intersects the current screen drag line.
*/
static void knife_find_line_hits(KnifeTool_OpData *kcd)
{
SmallHash faces, kfes, kfvs, fobs;
float v1[3], v2[3], v3[3], v4[3], s1[2], s2[2];
int *results, *result;
BMLoop **ls;
BMFace *f;
KnifeEdge *kfe;
KnifeVert *v;
ListBase *list;
Ref *ref;
KnifeLineHit *linehits = NULL;
BLI_array_declare(linehits);
SmallHashIter hiter;
KnifeLineHit hit;
void *val;
void **val_p;
float s[2], se1[2], se2[2], sint[2];
float r1[3], r2[3];
float d1, d2, lambda;
float vert_tol, vert_tol_sq;
float line_tol, line_tol_sq;
float face_tol, face_tol_sq;
uint tot;
int i;
if (kcd->linehits) {
MEM_freeN(kcd->linehits);
kcd->linehits = NULL;
kcd->totlinehit = 0;
}
copy_v3_v3(v1, kcd->prev.cage);
copy_v3_v3(v2, kcd->curr.cage);
/* Project screen line's 3d coordinates back into 2d. */
knife_project_v2(kcd, v1, s1);
knife_project_v2(kcd, v2, s2);
if (kcd->is_interactive) {
if (len_squared_v2v2(s1, s2) < 1.0f) {
return;
}
}
else {
if (len_squared_v2v2(s1, s2) < KNIFE_FLT_EPS_SQUARED) {
return;
}
}
/* Unproject screen line. */
ED_view3d_win_to_segment_clipped(kcd->vc.depsgraph, kcd->region, kcd->vc.v3d, s1, v1, v3, true);
ED_view3d_win_to_segment_clipped(kcd->vc.depsgraph, kcd->region, kcd->vc.v3d, s2, v2, v4, true);
/* Numeric error, 'v1' -> 'v2', 'v2' -> 'v4'
* can end up being ~2000 units apart with an orthogonal perspective.
*
* (from ED_view3d_win_to_segment_clipped() above)
* This gives precision error; rather than solving properly
* (which may involve using doubles everywhere!),
* limit the distance between these points. */
if (kcd->is_ortho && (kcd->vc.rv3d->persp != RV3D_CAMOB)) {
if (kcd->ortho_extent == 0.0f) {
calc_ortho_extent(kcd);
}
clip_to_ortho_planes(v1, v3, kcd->ortho_extent_center, kcd->ortho_extent + 10.0f);
clip_to_ortho_planes(v2, v4, kcd->ortho_extent_center, kcd->ortho_extent + 10.0f);
}
float plane[4];
{
float v1_v2[3], v1_v3[3];
sub_v3_v3v3(v1_v2, v2, v1);
sub_v3_v3v3(v1_v3, v3, v1);
cross_v3_v3v3(plane, v1_v2, v1_v3);
plane_from_point_normal_v3(plane, v1, plane);
}
/* First use BVH tree to find faces, knife edges, and knife verts that might
* intersect the cut plane with rays v1-v3 and v2-v4.
* This de-duplicates the candidates before doing more expensive intersection tests. */
results = BLI_bvhtree_intersect_plane(kcd->bvh.tree, plane, &tot);
if (!results) {
return;
}
BLI_smallhash_init(&faces);
BLI_smallhash_init(&kfes);
BLI_smallhash_init(&kfvs);
BLI_smallhash_init(&fobs);
Object *ob;
BMEditMesh *em;
uint b = 0;
for (i = 0, result = results; i < tot; i++, result++) {
for (b = 0; b < kcd->objects_len; b++) {
ob = kcd->objects[b];
em = BKE_editmesh_from_object(ob);
if (*result >= 0 && *result < em->tottri) {
ls = (BMLoop **)em->looptris[*result];
break;
}
*result -= em->tottri;
}
f = ls[0]->f;
set_lowest_face_tri(kcd, em, f, *result);
/* Occlude but never cut unselected faces (when only_select is used). */
if (kcd->only_select && !BM_elem_flag_test(f, BM_ELEM_SELECT)) {
continue;
}
/* For faces, store index of lowest hit looptri in hash. */
if (BLI_smallhash_haskey(&faces, (uintptr_t)f)) {
continue;
}
/* Don't care what the value is except that it is non-NULL, for iterator. */
BLI_smallhash_insert(&faces, (uintptr_t)f, f);
BLI_smallhash_insert(&fobs, (uintptr_t)f, (void *)(uintptr_t)b);
list = knife_get_face_kedges(kcd, ob, b, f);
for (ref = list->first; ref; ref = ref->next) {
kfe = ref->ref;
if (kfe->is_invalid) {
continue;
}
if (BLI_smallhash_haskey(&kfes, (uintptr_t)kfe)) {
continue;
}
BLI_smallhash_insert(&kfes, (uintptr_t)kfe, kfe);
v = kfe->v1;
BLI_smallhash_reinsert(&kfvs, (uintptr_t)v, v);
v = kfe->v2;
BLI_smallhash_reinsert(&kfvs, (uintptr_t)v, v);
}
}
/* Now go through the candidates and find intersections. */
/* These tolerances, in screen space, are for intermediate hits,
* as ends are already snapped to screen. */
if (kcd->is_interactive) {
vert_tol = KNIFE_FLT_EPS_PX_VERT;
line_tol = KNIFE_FLT_EPS_PX_EDGE;
face_tol = KNIFE_FLT_EPS_PX_FACE;
}
else {
/* Use 1/100th of a pixel, see T43896 (too big), T47910 (too small).
*
* Update, leave this as is until we investigate not using pixel coords
* for geometry calculations: T48023. */
vert_tol = line_tol = face_tol = 0.5f;
}
vert_tol_sq = vert_tol * vert_tol;
line_tol_sq = line_tol * line_tol;
face_tol_sq = face_tol * face_tol;
/* Assume these tolerances swamp floating point rounding errors in calculations below. */
/* First look for vertex hits. */
for (val_p = BLI_smallhash_iternew_p(&kfvs, &hiter, (uintptr_t *)&v); val_p;
val_p = BLI_smallhash_iternext_p(&hiter, (uintptr_t *)&v)) {
KnifeEdge *kfe_hit = NULL;
bool kfv_is_in_cut = false;
if (ELEM(v, kcd->prev.vert, kcd->curr.vert)) {
/* This KnifeVert was captured by the snap system.
* Since the tolerance distance can be different, add this vertex directly.
* Otherwise, the cut may fail or a close cut on a connected edge can be performed. */
bm_elem_from_knife_vert(v, &kfe_hit);
copy_v2_v2(s, (v == kcd->prev.vert) ? kcd->prev.mval : kcd->curr.mval);
kfv_is_in_cut = true;
}
else {
knife_project_v2(kcd, v->cageco, s);
float d = dist_squared_to_line_segment_v2(s, s1, s2);
if ((d <= vert_tol_sq) &&
(point_is_visible(kcd, v->cageco, s, bm_elem_from_knife_vert(v, &kfe_hit)))) {
kfv_is_in_cut = true;
}
}
if (kfv_is_in_cut) {
memset(&hit, 0, sizeof(hit));
hit.v = v;
/* If this isn't from an existing BMVert, it may have been added to a BMEdge originally.
* Knowing if the hit comes from an edge is important for edge-in-face checks later on.
* See: #knife_add_single_cut -> #knife_verts_edge_in_face, T42611. */
if (kfe_hit) {
hit.kfe = kfe_hit;
}
hit.ob = v->ob;
hit.base_index = v->base_index;
copy_v3_v3(hit.hit, v->co);
copy_v3_v3(hit.cagehit, v->cageco);
copy_v2_v2(hit.schit, s);
set_linehit_depth(kcd, &hit);
BLI_array_append(linehits, hit);
}
else {
/* This vertex isn't used so remove from `kfvs`.
* This is useful to detect KnifeEdges that can be skipped.
* And it optimizes smallhash_iternext a little bit. */
*val_p = NULL;
}
}
/* Now edge hits; don't add if a vertex at end of edge should have hit. */
for (val = BLI_smallhash_iternew(&kfes, &hiter, (uintptr_t *)&kfe); val;
val = BLI_smallhash_iternext(&hiter, (uintptr_t *)&kfe)) {
/* If we intersect any of the vertices, don't attempt to intersect the edge. */
if (BLI_smallhash_lookup(&kfvs, (intptr_t)kfe->v1) ||
BLI_smallhash_lookup(&kfvs, (intptr_t)kfe->v2)) {
continue;
}
knife_project_v2(kcd, kfe->v1->cageco, se1);
knife_project_v2(kcd, kfe->v2->cageco, se2);
int isect_kind = 1;
if (kfe == kcd->prev.edge) {
/* This KnifeEdge was captured by the snap system. */
copy_v2_v2(sint, kcd->prev.mval);
}
else if (kfe == kcd->curr.edge) {
/* This KnifeEdge was captured by the snap system. */
copy_v2_v2(sint, kcd->curr.mval);
}
else {
isect_kind = isect_seg_seg_v2_point_ex(s1, s2, se1, se2, 0.0f, sint);
if (isect_kind == -1) {
/* isect_seg_seg_v2_point doesn't do tolerance test around ends of s1-s2. */
closest_to_line_segment_v2(sint, s1, se1, se2);
if (len_squared_v2v2(sint, s1) <= line_tol_sq) {
isect_kind = 1;
}
else {
closest_to_line_segment_v2(sint, s2, se1, se2);
if (len_squared_v2v2(sint, s2) <= line_tol_sq) {
isect_kind = 1;
}
}
}
}
if (isect_kind == 1) {
d1 = len_v2v2(sint, se1);
d2 = len_v2v2(se2, se1);
if (!(d1 <= line_tol || d2 <= line_tol || fabsf(d1 - d2) <= line_tol)) {
float p_cage[3], p_cage_tmp[3];
lambda = d1 / d2;
/* Can't just interpolate between ends of kfe because
* that doesn't work with perspective transformation.
* Need to find 3d intersection of ray through sint. */
knife_input_ray_segment(kcd, sint, 1.0f, r1, r2);
isect_kind = isect_line_line_v3(
kfe->v1->cageco, kfe->v2->cageco, r1, r2, p_cage, p_cage_tmp);
if (isect_kind >= 1 && point_is_visible(kcd, p_cage, sint, bm_elem_from_knife_edge(kfe))) {
memset(&hit, 0, sizeof(hit));
if (kcd->snap_midpoints) {
/* Choose intermediate point snap too. */
mid_v3_v3v3(p_cage, kfe->v1->cageco, kfe->v2->cageco);
mid_v2_v2v2(sint, se1, se2);
lambda = 0.5f;
}
hit.kfe = kfe;
transform_point_by_seg_v3(
hit.hit, p_cage, kfe->v1->co, kfe->v2->co, kfe->v1->cageco, kfe->v2->cageco);
hit.ob = kfe->v1->ob;
hit.base_index = kfe->v1->base_index;
copy_v3_v3(hit.cagehit, p_cage);
copy_v2_v2(hit.schit, sint);
hit.perc = lambda;
set_linehit_depth(kcd, &hit);
BLI_array_append(linehits, hit);
}
}
}
}
/* Now face hits; don't add if a vertex or edge in face should have hit. */
const bool use_hit_prev = (kcd->prev.vert == NULL) && (kcd->prev.edge == NULL);
const bool use_hit_curr = (kcd->curr.vert == NULL) && (kcd->curr.edge == NULL) &&
!kcd->is_drag_hold;
if (use_hit_prev || use_hit_curr) {
for (val = BLI_smallhash_iternew(&faces, &hiter, (uintptr_t *)&f); val;
val = BLI_smallhash_iternext(&hiter, (uintptr_t *)&f)) {
float p[3], p_cage[3];
uint base_index = (uint)(uintptr_t)BLI_smallhash_lookup(&fobs, (uintptr_t)f);
ob = kcd->objects[base_index];
if (use_hit_prev &&
knife_ray_intersect_face(kcd, s1, v1, v3, ob, base_index, f, face_tol_sq, p, p_cage)) {
if (point_is_visible(kcd, p_cage, s1, (BMElem *)f)) {
memset(&hit, 0, sizeof(hit));
hit.f = f;
hit.ob = ob;
hit.base_index = base_index;
copy_v3_v3(hit.hit, p);
copy_v3_v3(hit.cagehit, p_cage);
copy_v2_v2(hit.schit, s1);
set_linehit_depth(kcd, &hit);
BLI_array_append(linehits, hit);
}
}
if (use_hit_curr &&
knife_ray_intersect_face(kcd, s2, v2, v4, ob, base_index, f, face_tol_sq, p, p_cage)) {
if (point_is_visible(kcd, p_cage, s2, (BMElem *)f)) {
memset(&hit, 0, sizeof(hit));
hit.f = f;
hit.ob = ob;
hit.base_index = base_index;
copy_v3_v3(hit.hit, p);
copy_v3_v3(hit.cagehit, p_cage);
copy_v2_v2(hit.schit, s2);
set_linehit_depth(kcd, &hit);
BLI_array_append(linehits, hit);
}
}
}
}
kcd->linehits = linehits;
kcd->totlinehit = BLI_array_len(linehits);
/* Find position along screen line, used for sorting. */
for (i = 0; i < kcd->totlinehit; i++) {
KnifeLineHit *lh = kcd->linehits + i;
lh->l = len_v2v2(lh->schit, s1) / len_v2v2(s2, s1);
}
BLI_smallhash_release(&faces);
BLI_smallhash_release(&kfes);
BLI_smallhash_release(&kfvs);
BLI_smallhash_release(&fobs);
MEM_freeN(results);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name KnifePosData Utils
* \{ */
static void knife_pos_data_clear(KnifePosData *kpd)
{
zero_v3(kpd->co);
zero_v3(kpd->cage);
kpd->vert = NULL;
kpd->edge = NULL;
kpd->bmface = NULL;
zero_v2(kpd->mval);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Snapping (#knife_snap_update_from_mval)
* \{ */
static BMFace *knife_find_closest_face(KnifeTool_OpData *kcd,
Object **r_ob,
uint *r_base_index,
bool *is_space,
float r_co[3],
float r_cageco[3])
{
BMFace *f;
float dist = KMAXDIST;
float origin[3];
float origin_ofs[3];
float ray[3], ray_normal[3];
/* Unproject to find view ray. */
knife_input_ray_segment(kcd, kcd->curr.mval, 1.0f, origin, origin_ofs);
sub_v3_v3v3(ray, origin_ofs, origin);
normalize_v3_v3(ray_normal, ray);
f = knife_bvh_raycast(kcd, origin, ray_normal, 0.0f, NULL, r_co, r_cageco, r_base_index);
if (f && kcd->only_select && BM_elem_flag_test(f, BM_ELEM_SELECT) == 0) {
f = NULL;
}
if (is_space) {
*is_space = !f;
}
if (f) {
*r_ob = kcd->objects[*r_base_index];
}
else {
if (kcd->is_interactive) {
/* Try to use back-buffer selection method if ray casting failed.
*
* Apply the mouse coordinates to a copy of the view-context
* since we don't want to rely on this being set elsewhere. */
ViewContext vc = kcd->vc;
vc.mval[0] = (int)kcd->curr.mval[0];
vc.mval[1] = (int)kcd->curr.mval[1];
f = EDBM_face_find_nearest(&vc, &dist);
/* Cheat for now; just put in the origin instead
* of a true coordinate on the face.
* This just puts a point 1.0f in front of the view. */
add_v3_v3v3(r_co, origin, ray);
/* Use this value for the cage location too as it's used to find near edges/vertices. */
copy_v3_v3(r_cageco, r_co);
}
}
return f;
}
/**
* Find the 2d screen space density of vertices within a radius.
* Used to scale snapping distance for picking edges/verts.
*
* Arguments `f` and `cageco` should be the result of a call to #knife_find_closest_face.
*/
static int knife_sample_screen_density_from_closest_face(KnifeTool_OpData *kcd,
const float radius,
Object *ob,
uint base_index,
BMFace *f,
const float cageco[3])
{
const float radius_sq = radius * radius;
ListBase *list;
Ref *ref;
float sco[2];
float dis_sq;
int c = 0;
knife_project_v2(kcd, cageco, sco);
list = knife_get_face_kedges(kcd, ob, base_index, f);
for (ref = list->first; ref; ref = ref->next) {
KnifeEdge *kfe = ref->ref;
int i;
if (kfe->is_invalid) {
continue;
}
for (i = 0; i < 2; i++) {
KnifeVert *kfv = i ? kfe->v2 : kfe->v1;
float kfv_sco[2];
if (kfv->is_invalid) {
continue;
}
knife_project_v2(kcd, kfv->cageco, kfv_sco);
dis_sq = len_squared_v2v2(kfv_sco, sco);
if (dis_sq < radius_sq) {
if (RV3D_CLIPPING_ENABLED(kcd->vc.v3d, kcd->vc.rv3d)) {
if (ED_view3d_clipping_test(kcd->vc.rv3d, kfv->cageco, false) == 0) {
c++;
}
}
else {
c++;
}
}
}
}
return c;
}
/**
* \return the snapping distance for edges/verts, scaled by the density of the
* surrounding mesh (in screen space).
*
* \note Face values in `kcd->curr` must be up to date.
*/
static float knife_snap_size(KnifeTool_OpData *kcd, float maxsize)
{
BLI_assert(kcd->is_interactive == true);
int density = 0;
if (!kcd->curr.is_space) {
density = (float)knife_sample_screen_density_from_closest_face(
kcd, maxsize * 2.0f, kcd->curr.ob, kcd->curr.base_index, kcd->curr.bmface, kcd->curr.cage);
}
return density ? min_ff(maxsize / ((float)density * 0.5f), maxsize) : maxsize;
}
/* Snap to edge when in a constrained mode.
* Returns 'lambda' calculated (in screen-space). */
static bool knife_snap_edge_constrained(KnifeTool_OpData *kcd,
const float sco[3],
const float kfv1_sco[2],
const float kfv2_sco[2],
float *r_dist_sq,
float *r_lambda)
{
/* If snapping, check we're in bounds. */
float sco_snap[2];
isect_line_line_v2_point(kfv1_sco, kfv2_sco, kcd->prev.mval, kcd->curr.mval, sco_snap);
float lambda = line_point_factor_v2(sco_snap, kfv1_sco, kfv2_sco);
/* Be strict when constrained within edge. */
if ((lambda < 0.0f - KNIFE_FLT_EPSBIG) || (lambda > 1.0f + KNIFE_FLT_EPSBIG)) {
return false;
}
float dis_sq = len_squared_v2v2(sco, sco_snap);
if (dis_sq < *r_dist_sq) {
*r_dist_sq = dis_sq;
*r_lambda = lambda;
return true;
}
return false;
}
/* Use when lambda is in screen-space. */
static void knife_interp_v3_v3v3(const KnifeTool_OpData *kcd,
float r_co[3],
const float v1[3],
const float v2[3],
float lambda_ss)
{
if (kcd->is_ortho) {
interp_v3_v3v3(r_co, v1, v2, lambda_ss);
}
else {
/* Transform into screen-space, interp, then transform back. */
float v1_ss[3], v2_ss[3];
mul_v3_project_m4_v3(v1_ss, (float(*)[4])kcd->vc.rv3d->persmat, v1);
mul_v3_project_m4_v3(v2_ss, (float(*)[4])kcd->vc.rv3d->persmat, v2);
interp_v3_v3v3(r_co, v1_ss, v2_ss, lambda_ss);
mul_project_m4_v3((float(*)[4])kcd->vc.rv3d->persinv, r_co);
}
}
/* p is closest point on edge to the mouse cursor. */
static KnifeEdge *knife_find_closest_edge_of_face(
KnifeTool_OpData *kcd, Object *ob, uint base_index, BMFace *f, float p[3], float cagep[3])
{
float sco[2];
float maxdist;
if (kcd->is_interactive) {
maxdist = knife_snap_size(kcd, kcd->ethresh);
if (kcd->ignore_vert_snapping) {
maxdist *= 0.5f;
}
}
else {
maxdist = KNIFE_FLT_EPS;
}
const float maxdist_sq = maxdist * maxdist;
KnifeEdge *cure = NULL;
float cur_cagep[3];
ListBase *list;
Ref *ref;
float dis_sq, curdis_sq = maxdist_sq;
knife_project_v2(kcd, cagep, sco);
/* Look through all edges associated with this face. */
list = knife_get_face_kedges(kcd, ob, base_index, f);
for (ref = list->first; ref; ref = ref->next) {
KnifeEdge *kfe = ref->ref;
float kfv1_sco[2], kfv2_sco[2], test_cagep[3];
float lambda;
if (kfe->is_invalid) {
continue;
}
/* Project edge vertices into screen space. */
knife_project_v2(kcd, kfe->v1->cageco, kfv1_sco);
knife_project_v2(kcd, kfe->v2->cageco, kfv2_sco);
/* Check if we're close enough and calculate 'lambda'. */
/* In constrained mode calculate lambda differently, unless constrained along kcd->prev.edge */
if ((kcd->is_angle_snapping || kcd->axis_constrained) && (kfe != kcd->prev.edge) &&
(kcd->mode == MODE_DRAGGING)) {
dis_sq = curdis_sq;
if (!knife_snap_edge_constrained(kcd, sco, kfv1_sco, kfv2_sco, &dis_sq, &lambda)) {
continue;
}
}
else {
dis_sq = dist_squared_to_line_segment_v2(sco, kfv1_sco, kfv2_sco);
if (dis_sq < curdis_sq) {
lambda = line_point_factor_v2(sco, kfv1_sco, kfv2_sco);
}
else {
continue;
}
}
/* Now we have 'lambda' calculated (in screen-space). */
knife_interp_v3_v3v3(kcd, test_cagep, kfe->v1->cageco, kfe->v2->cageco, lambda);
if (RV3D_CLIPPING_ENABLED(kcd->vc.v3d, kcd->vc.rv3d)) {
/* Check we're in the view */
if (ED_view3d_clipping_test(kcd->vc.rv3d, test_cagep, false)) {
continue;
}
}
cure = kfe;
curdis_sq = dis_sq;
copy_v3_v3(cur_cagep, test_cagep);
}
if (cure && !kcd->ignore_edge_snapping) {
KnifeVert *edgesnap = NULL;
if (kcd->snap_midpoints) {
mid_v3_v3v3(p, cure->v1->co, cure->v2->co);
mid_v3_v3v3(cagep, cure->v1->cageco, cure->v2->cageco);
}
else {
float lambda = line_point_factor_v3(cur_cagep, cure->v1->cageco, cure->v2->cageco);
copy_v3_v3(cagep, cur_cagep);
interp_v3_v3v3(p, cure->v1->co, cure->v2->co, lambda);
}
/* Update mouse coordinates to the snapped-to edge's screen coordinates
* this is important for angle snap, which uses the previous mouse position. */
edgesnap = new_knife_vert(kcd, p, cagep);
edgesnap->ob = ob;
edgesnap->base_index = base_index;
knife_project_v2(kcd, edgesnap->cageco, kcd->curr.mval);
}
return cure;
}
/* Find a vertex near the mouse cursor, if it exists. */
static KnifeVert *knife_find_closest_vert_of_edge(KnifeTool_OpData *kcd,
KnifeEdge *kfe,
float p[3],
float cagep[3])
{
float sco[2];
float maxdist;
if (kcd->is_interactive) {
maxdist = knife_snap_size(kcd, kcd->vthresh);
if (kcd->ignore_vert_snapping) {
maxdist *= 0.5f;
}
}
else {
maxdist = KNIFE_FLT_EPS;
}
const float maxdist_sq = maxdist * maxdist;
KnifeVert *curv = NULL;
float cur_kfv_sco[2];
float dis_sq, curdis_sq = FLT_MAX;
knife_project_v2(kcd, cagep, sco);
for (int i = 0; i < 2; i++) {
KnifeVert *kfv = i ? kfe->v2 : kfe->v1;
float kfv_sco[2];
knife_project_v2(kcd, kfv->cageco, kfv_sco);
/* Be strict when in a constrained mode, the vertex needs to be very close to the cut line,
* or we ignore. */
if ((kcd->is_angle_snapping || kcd->axis_constrained) && (kcd->mode == MODE_DRAGGING)) {
if (dist_squared_to_line_segment_v2(kfv_sco, kcd->prev.mval, kcd->curr.mval) >
KNIFE_FLT_EPSBIG) {
continue;
}
}
dis_sq = len_squared_v2v2(kfv_sco, sco);
if (dis_sq < curdis_sq && dis_sq < maxdist_sq) {
if (!RV3D_CLIPPING_ENABLED(kcd->vc.v3d, kcd->vc.rv3d) ||
!ED_view3d_clipping_test(kcd->vc.rv3d, kfv->cageco, false)) {
curv = kfv;
curdis_sq = dis_sq;
copy_v2_v2(cur_kfv_sco, kfv_sco);
}
}
}
if (curv && !kcd->ignore_vert_snapping) {
copy_v3_v3(p, curv->co);
copy_v3_v3(cagep, curv->cageco);
/* Update mouse coordinates to the snapped-to vertex's screen coordinates
* this is important for angle snap, which uses the previous mouse position. */
copy_v2_v2(kcd->curr.mval, cur_kfv_sco);
}
return curv;
}
/**
* Snaps a 2d vector to an angle, relative to \a v_ref.
*/
static float snap_v2_angle(float r[2], const float v[2], const float v_ref[2], float angle_snap)
{
float m2[2][2];
float v_unit[2];
float angle, angle_delta;
BLI_ASSERT_UNIT_V2(v_ref);
normalize_v2_v2(v_unit, v);
angle = angle_signed_v2v2(v_unit, v_ref);
angle_delta = (roundf(angle / angle_snap) * angle_snap) - angle;
angle_to_mat2(m2, angle_delta);
mul_v2_m2v2(r, m2, v);
return angle + angle_delta;
}
/* Update both kcd->curr.mval and kcd->mval to snap to required angle. */
static bool knife_snap_angle_screen(KnifeTool_OpData *kcd)
{
const float dvec_ref[2] = {1.0f, 0.0f};
float dvec[2], dvec_snap[2];
float snap_step;
/* Currently user can input any float between 0 and 180. */
if (kcd->angle_snapping_increment > KNIFE_MIN_ANGLE_SNAPPING_INCREMENT &&
kcd->angle_snapping_increment <= KNIFE_MAX_ANGLE_SNAPPING_INCREMENT) {
snap_step = DEG2RADF(kcd->angle_snapping_increment);
}
else {
snap_step = DEG2RADF(KNIFE_DEFAULT_ANGLE_SNAPPING_INCREMENT);
}
sub_v2_v2v2(dvec, kcd->curr.mval, kcd->prev.mval);
if (is_zero_v2(dvec)) {
return false;
}
kcd->angle = snap_v2_angle(dvec_snap, dvec, dvec_ref, snap_step);
add_v2_v2v2(kcd->curr.mval, kcd->prev.mval, dvec_snap);
copy_v2_v2(kcd->mval, kcd->curr.mval);
return true;
}
/**
* Snaps a 3d vector to an angle, relative to \a v_ref, along the plane with normal \a plane_no.
*/
static float snap_v3_angle_plane(
float r[3], const float v[3], const float v_ref[3], const float plane_no[3], float snap_step)
{
/* Calculate angle between current cut vector and reference vector. */
float angle, angle_delta;
angle = angle_signed_on_axis_v3v3_v3(v, v_ref, plane_no);
/* Use this to calculate the angle to rotate by based on snap_step. */
angle_delta = (roundf(angle / snap_step) * snap_step) - angle;
/* Snap to angle. */
rotate_v3_v3v3fl(r, v, plane_no, angle_delta);
return angle + angle_delta;
}
/* Snap to required angle along the plane of the face nearest to kcd->prev. */
static bool knife_snap_angle_relative(KnifeTool_OpData *kcd)
{
Ref *ref;
KnifeEdge *kfe;
KnifeVert *kfv;
BMFace *f;
float refv[3];
/* Ray for kcd->curr. */
float curr_origin[3];
float curr_origin_ofs[3];
float curr_ray[3], curr_ray_normal[3];
float curr_co[3], curr_cage[3]; /* Unused. */
float plane[4];
float ray_hit[3];
float lambda;
knife_input_ray_segment(kcd, kcd->curr.mval, 1.0f, curr_origin, curr_origin_ofs);
sub_v3_v3v3(curr_ray, curr_origin_ofs, curr_origin);
normalize_v3_v3(curr_ray_normal, curr_ray);
BMFace *fcurr = knife_bvh_raycast(
kcd, curr_origin, curr_ray_normal, 0.0f, NULL, curr_co, curr_cage, NULL);
if (!fcurr) {
return false;
}
/* Calculate a reference vector using previous cut segment, edge or vertex.
* If none exists then exit. */
if (kcd->prev.vert) {
int count = 0;
for (ref = kcd->prev.vert->edges.first; ref; ref = ref->next) {
kfe = ((KnifeEdge *)(ref->ref));
if (kfe->is_invalid) {
continue;
}
if (kfe->e) {
if (!BM_edge_in_face(kfe->e, fcurr)) {
continue;
}
}
if (count == kcd->snap_edge) {
kfv = compare_v3v3(kfe->v1->cageco, kcd->prev.cage, KNIFE_FLT_EPSBIG) ? kfe->v2 : kfe->v1;
sub_v3_v3v3(refv, kfv->cageco, kcd->prev.cage);
kcd->snap_ref_edge = kfe;
break;
}
count++;
}
}
else if (kcd->prev.edge) {
kfv = compare_v3v3(kcd->prev.edge->v1->cageco, kcd->prev.cage, KNIFE_FLT_EPSBIG) ?
kcd->prev.edge->v2 :
kcd->prev.edge->v1;
sub_v3_v3v3(refv, kfv->cageco, kcd->prev.cage);
kcd->snap_ref_edge = kcd->prev.edge;
}
else {
return false;
}
/* Choose best face for plane. */
BMFace *fprev = NULL;
if (kcd->prev.vert && kcd->prev.vert->v) {
for (ref = kcd->prev.vert->faces.first; ref; ref = ref->next) {
f = ((BMFace *)(ref->ref));
if (f == fcurr) {
fprev = f;
}
}
}
else if (kcd->prev.edge) {
for (ref = kcd->prev.edge->faces.first; ref; ref = ref->next) {
f = ((BMFace *)(ref->ref));
if (f == fcurr) {
fprev = f;
}
}
}
else {
/* Cut segment was started in a face. */
float prev_origin[3];
float prev_origin_ofs[3];
float prev_ray[3], prev_ray_normal[3];
float prev_co[3], prev_cage[3]; /* Unused. */
knife_input_ray_segment(kcd, kcd->prev.mval, 1.0f, prev_origin, prev_origin_ofs);
sub_v3_v3v3(prev_ray, prev_origin_ofs, prev_origin);
normalize_v3_v3(prev_ray_normal, prev_ray);
/* kcd->prev.face is usually not set. */
fprev = knife_bvh_raycast(
kcd, prev_origin, prev_ray_normal, 0.0f, NULL, prev_co, prev_cage, NULL);
}
if (!fprev || fprev != fcurr) {
return false;
}
/* Re-calculate current ray in object space. */
knife_input_ray_segment(kcd, kcd->curr.mval, 1.0f, curr_origin, curr_origin_ofs);
sub_v3_v3v3(curr_ray, curr_origin_ofs, curr_origin);
normalize_v3_v3(curr_ray_normal, curr_ray);
plane_from_point_normal_v3(plane, kcd->prev.cage, fprev->no);
if (isect_ray_plane_v3(curr_origin, curr_ray_normal, plane, &lambda, false)) {
madd_v3_v3v3fl(ray_hit, curr_origin, curr_ray_normal, lambda);
/* Calculate snap step. */
float snap_step;
if (kcd->angle_snapping_increment > KNIFE_MIN_ANGLE_SNAPPING_INCREMENT &&
kcd->angle_snapping_increment <= KNIFE_MAX_ANGLE_SNAPPING_INCREMENT) {
snap_step = DEG2RADF(kcd->angle_snapping_increment);
}
else {
snap_step = DEG2RADF(KNIFE_DEFAULT_ANGLE_SNAPPING_INCREMENT);
}
float v1[3];
float v2[3];
float rotated_vec[3];
/* Maybe check for vectors being zero here? */
sub_v3_v3v3(v1, ray_hit, kcd->prev.cage);
copy_v3_v3(v2, refv);
kcd->angle = snap_v3_angle_plane(rotated_vec, v1, v2, fprev->no, snap_step);
add_v3_v3(rotated_vec, kcd->prev.cage);
knife_project_v2(kcd, rotated_vec, kcd->curr.mval);
copy_v2_v2(kcd->mval, kcd->curr.mval);
return true;
}
return false;
}
static int knife_calculate_snap_ref_edges(KnifeTool_OpData *kcd)
{
Ref *ref;
KnifeEdge *kfe;
/* Ray for kcd->curr. */
float curr_origin[3];
float curr_origin_ofs[3];
float curr_ray[3], curr_ray_normal[3];
float curr_co[3], curr_cage[3]; /* Unused. */
knife_input_ray_segment(kcd, kcd->curr.mval, 1.0f, curr_origin, curr_origin_ofs);
sub_v3_v3v3(curr_ray, curr_origin_ofs, curr_origin);
normalize_v3_v3(curr_ray_normal, curr_ray);
BMFace *fcurr = knife_bvh_raycast(
kcd, curr_origin, curr_ray_normal, 0.0f, NULL, curr_co, curr_cage, NULL);
int count = 0;
if (!fcurr) {
return count;
}
if (kcd->prev.vert) {
for (ref = kcd->prev.vert->edges.first; ref; ref = ref->next) {
kfe = ((KnifeEdge *)(ref->ref));
if (kfe->is_invalid) {
continue;
}
if (kfe->e) {
if (!BM_edge_in_face(kfe->e, fcurr)) {
continue;
}
}
count++;
}
}
else if (kcd->prev.edge) {
return 1;
}
return count;
}
/* Reset the snapping angle num input. */
static void knife_reset_snap_angle_input(KnifeTool_OpData *kcd)
{
kcd->num.val[0] = 0;
while (kcd->num.str_cur > 0) {
kcd->num.str[kcd->num.str_cur - 1] = '\0';
kcd->num.str_cur--;
}
}
/**
* Constrains the current cut to an axis.
* If scene orientation is set to anything other than global it takes priority.
* Otherwise kcd->constrain_axis_mode is used.
*/
static void knife_constrain_axis(KnifeTool_OpData *kcd)
{
/* Obtain current mouse position in world space. */
float curr_cage_adjusted[3];
ED_view3d_win_to_3d(
kcd->vc.v3d, kcd->region, kcd->prev.cage, kcd->curr.mval, curr_cage_adjusted);
/* Constrain axes. */
Scene *scene = kcd->scene;
ViewLayer *view_layer = kcd->vc.view_layer;
Object *obedit = (kcd->prev.ob) ? kcd->prev.ob : kcd->vc.obedit;
RegionView3D *rv3d = kcd->region->regiondata;
const short scene_orientation = BKE_scene_orientation_get_index(scene, SCE_ORIENT_DEFAULT);
/* Scene orientation takes priority. */
const short orientation_type = scene_orientation ? scene_orientation :
kcd->constrain_axis_mode - 1;
const int pivot_point = scene->toolsettings->transform_pivot_point;
float mat[3][3];
ED_transform_calc_orientation_from_type_ex(
scene, view_layer, kcd->vc.v3d, rv3d, obedit, obedit, orientation_type, pivot_point, mat);
/* Apply orientation matrix (can be simplified?). */
float co[3][3];
copy_v3_v3(co[0], kcd->prev.cage);
copy_v3_v3(co[2], curr_cage_adjusted);
invert_m3(mat);
mul_m3_m3_pre(co, mat);
for (int i = 0; i <= 2; i++) {
if ((kcd->constrain_axis - 1) != i) {
/* kcd->curr_cage_adjusted[i] = prev_cage_adjusted[i]; */
co[2][i] = co[0][i];
}
}
invert_m3(mat);
mul_m3_m3_pre(co, mat);
copy_v3_v3(kcd->prev.cage, co[0]);
copy_v3_v3(curr_cage_adjusted, co[2]);
/* Set mval to closest point on constrained line in screen space. */
float curr_screenspace[2];
float prev_screenspace[2];
knife_project_v2(kcd, curr_cage_adjusted, curr_screenspace);
knife_project_v2(kcd, kcd->prev.cage, prev_screenspace);
float intersection[2];
if (closest_to_line_v2(intersection, kcd->curr.mval, prev_screenspace, curr_screenspace)) {
copy_v2_v2(kcd->curr.mval, intersection);
}
else {
copy_v2_v2(kcd->curr.mval, curr_screenspace);
}
copy_v2_v2(kcd->mval, kcd->curr.mval);
}
/**
* \return true when `kcd->curr.co` & `kcd->curr.cage` are set.
*
* In this case `is_space` is nearly always false.
* There are some situations when vertex or edge can be snapped to, when `is_space` is true.
* In this case the selection-buffer is used to select the face,
* then the closest `vert` or `edge` is set, and those will enable `is_co_set`.
*/
static bool knife_snap_update_from_mval(KnifeTool_OpData *kcd, const float mval[2])
{
knife_pos_data_clear(&kcd->curr);
copy_v2_v2(kcd->curr.mval, mval);
/* view matrix may have changed, reproject */
knife_project_v2(kcd, kcd->prev.cage, kcd->prev.mval);
kcd->is_angle_snapping = false;
if (kcd->mode == MODE_DRAGGING) {
if (kcd->angle_snapping) {
if (kcd->angle_snapping_mode == KNF_CONSTRAIN_ANGLE_MODE_SCREEN) {
kcd->is_angle_snapping = knife_snap_angle_screen(kcd);
}
else if (kcd->angle_snapping_mode == KNF_CONSTRAIN_ANGLE_MODE_RELATIVE) {
kcd->is_angle_snapping = knife_snap_angle_relative(kcd);
if (kcd->is_angle_snapping) {
kcd->snap_ref_edges_count = knife_calculate_snap_ref_edges(kcd);
}
}
}
if (kcd->axis_constrained) {
knife_constrain_axis(kcd);
}
}
{
kcd->curr.ob = kcd->vc.obedit;
kcd->curr.bmface = knife_find_closest_face(kcd,
&kcd->curr.ob,
&kcd->curr.base_index,
&kcd->curr.is_space,
kcd->curr.co,
kcd->curr.cage);
if (kcd->curr.bmface) {
kcd->curr.edge = knife_find_closest_edge_of_face(
kcd, kcd->curr.ob, kcd->curr.base_index, kcd->curr.bmface, kcd->curr.co, kcd->curr.cage);
}
if (kcd->curr.edge) {
kcd->curr.vert = knife_find_closest_vert_of_edge(
kcd, kcd->curr.edge, kcd->curr.co, kcd->curr.cage);
if (kcd->ignore_edge_snapping) {
kcd->curr.edge = NULL;
}
}
}
return kcd->curr.vert || kcd->curr.edge || (kcd->curr.bmface && !kcd->curr.is_space);
}
/**
* TODO: Undo currently assumes that the most recent cut segment added is
* the last valid KnifeEdge in the kcd->kedges mempool. This could break in
* the future so it may be better to store the KnifeEdges for each KnifeUndoFrame
* on a stack. This stack could then be used instead of iterating over the mempool.
*/
static void knifetool_undo(KnifeTool_OpData *kcd)
{
Ref *ref;
KnifeEdge *kfe, *newkfe;
KnifeEdge *lastkfe = NULL;
KnifeVert *v1, *v2;
KnifeUndoFrame *undo;
BLI_mempool_iter iterkfe;
undo = BLI_stack_peek(kcd->undostack);
/* Undo edge splitting. */
for (int i = 0; i < undo->splits; i++) {
BLI_stack_pop(kcd->splitstack, &newkfe);
BLI_stack_pop(kcd->splitstack, &kfe);
knife_join_edge(newkfe, kfe);
}
for (int i = 0; i < undo->cuts; i++) {
BLI_mempool_iternew(kcd->kedges, &iterkfe);
for (kfe = BLI_mempool_iterstep(&iterkfe); kfe; kfe = BLI_mempool_iterstep(&iterkfe)) {
if (!kfe->is_cut || kfe->is_invalid || kfe->splits) {
continue;
}
lastkfe = kfe;
}
if (lastkfe) {
lastkfe->is_invalid = true;
/* TODO: Are they always guaranteed to be in this order? */
v1 = lastkfe->v1;
v2 = lastkfe->v2;
/* Only remove first vertex if it is the start segment of the cut. */
if (!v1->is_invalid && !v1->is_splitting) {
v1->is_invalid = true;
/* If the first vertex is touching any other cut edges don't remove it. */
for (ref = v1->edges.first; ref; ref = ref->next) {
kfe = ref->ref;
if (kfe->is_cut && !kfe->is_invalid) {
v1->is_invalid = false;
break;
}
}
}
/* Only remove second vertex if it is the end segment of the cut. */
if (!v2->is_invalid && !v2->is_splitting) {
v2->is_invalid = true;
/* If the second vertex is touching any other cut edges don't remove it. */
for (ref = v2->edges.first; ref; ref = ref->next) {
kfe = ref->ref;
if (kfe->is_cut && !kfe->is_invalid) {
v2->is_invalid = false;
break;
}
}
}
}
}
if (kcd->mode == MODE_DRAGGING) {
/* Restore kcd->prev. */
kcd->prev = undo->pos;
}
/* Restore data for distance and angle measurements. */
kcd->mdata = undo->mdata;
BLI_stack_discard(kcd->undostack);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name #KnifeObjectInfo (#kcd->objects_info) Init and Free
* \{ */
static void knifetool_init_obinfo(KnifeTool_OpData *kcd,
Object *ob,
uint base_index,
bool use_tri_indices)
{
Scene *scene_eval = (Scene *)DEG_get_evaluated_id(kcd->vc.depsgraph, &kcd->scene->id);
Object *obedit_eval = (Object *)DEG_get_evaluated_id(kcd->vc.depsgraph, &ob->id);
BMEditMesh *em_eval = BKE_editmesh_from_object(obedit_eval);
BM_mesh_elem_index_ensure(em_eval->bm, BM_VERT);
KnifeObjectInfo *obinfo = &kcd->objects_info[base_index];
obinfo->em = em_eval;
obinfo->cagecos = (const float(*)[3])BKE_editmesh_vert_coords_alloc(
kcd->vc.depsgraph, em_eval, scene_eval, obedit_eval, NULL);
if (use_tri_indices) {
BMLoop *(*looptris)[3] = em_eval->looptris;
int(*tri_indices)[3] = MEM_mallocN(sizeof(int[3]) * em_eval->tottri, __func__);
for (int i = 0; i < em_eval->tottri; i++) {
BMLoop **tri = looptris[i];
tri_indices[i][0] = BM_elem_index_get(tri[0]->v);
tri_indices[i][1] = BM_elem_index_get(tri[1]->v);
tri_indices[i][2] = BM_elem_index_get(tri[2]->v);
}
obinfo->tri_indices = tri_indices;
}
}
static void knifetool_free_obinfo(KnifeTool_OpData *kcd, uint base_index)
{
MEM_SAFE_FREE(kcd->objects_info[base_index].cagecos);
MEM_SAFE_FREE(kcd->objects_info[base_index].tri_indices);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name #KnifeTool_OpData (#op->customdata) Init and Free
* \{ */
static void knife_init_colors(KnifeColors *colors)
{
/* Possible BMESH_TODO: add explicit themes or calculate these by
* figuring out contrasting colors with grid / edges / verts
* a la UI_make_axis_color. */
UI_GetThemeColorType3ubv(TH_NURB_VLINE, SPACE_VIEW3D, colors->line);
UI_GetThemeColorType3ubv(TH_NURB_ULINE, SPACE_VIEW3D, colors->edge);
UI_GetThemeColorType3ubv(TH_NURB_SEL_ULINE, SPACE_VIEW3D, colors->edge_extra);
UI_GetThemeColorType3ubv(TH_HANDLE_SEL_VECT, SPACE_VIEW3D, colors->curpoint);
UI_GetThemeColorType3ubv(TH_HANDLE_SEL_VECT, SPACE_VIEW3D, colors->curpoint_a);
colors->curpoint_a[3] = 102;
UI_GetThemeColorType3ubv(TH_ACTIVE_SPLINE, SPACE_VIEW3D, colors->point);
UI_GetThemeColorType3ubv(TH_ACTIVE_SPLINE, SPACE_VIEW3D, colors->point_a);
colors->point_a[3] = 102;
UI_GetThemeColorType3ubv(TH_AXIS_X, SPACE_VIEW3D, colors->xaxis);
UI_GetThemeColorType3ubv(TH_AXIS_Y, SPACE_VIEW3D, colors->yaxis);
UI_GetThemeColorType3ubv(TH_AXIS_Z, SPACE_VIEW3D, colors->zaxis);
UI_GetThemeColorType3ubv(TH_TRANSFORM, SPACE_VIEW3D, colors->axis_extra);
}
/* called when modal loop selection gets set up... */
static void knifetool_init(ViewContext *vc,
KnifeTool_OpData *kcd,
const bool only_select,
const bool cut_through,
const bool xray,
const int visible_measurements,
const int angle_snapping,
const float angle_snapping_increment,
const bool is_interactive)
{
/* Needed so multiple non-interactive cuts (also called knife-project)
* doesn't access indices of loops that were created by cutting, see: T97153. */
bool use_tri_indices = !is_interactive;
kcd->vc = *vc;
Scene *scene = vc->scene;
/* Assign the drawing handle for drawing preview line... */
kcd->scene = scene;
kcd->region = vc->region;
kcd->objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data(
vc->view_layer, vc->v3d, &kcd->objects_len);
Object *ob;
BMEditMesh *em;
kcd->objects_info = MEM_callocN(sizeof(*kcd->objects_info) * kcd->objects_len, "knife cagecos");
for (uint b = 0; b < kcd->objects_len; b++) {
ob = kcd->objects[b];
em = BKE_editmesh_from_object(ob);
knifetool_init_obinfo(kcd, ob, b, use_tri_indices);
/* Can't usefully select resulting edges in face mode. */
kcd->select_result = (em->selectmode != SCE_SELECT_FACE);
}
knife_bvh_init(kcd);
/* Cut all the way through the mesh if use_occlude_geometry button not pushed. */
kcd->is_interactive = is_interactive;
kcd->cut_through = cut_through;
kcd->only_select = only_select;
kcd->depth_test = xray;
kcd->dist_angle_mode = visible_measurements;
kcd->show_dist_angle = (kcd->dist_angle_mode != KNF_MEASUREMENT_NONE);
kcd->angle_snapping_mode = angle_snapping;
kcd->angle_snapping = (kcd->angle_snapping_mode != KNF_CONSTRAIN_ANGLE_MODE_NONE);
kcd->angle_snapping_increment = angle_snapping_increment;
kcd->arena = BLI_memarena_new(MEM_SIZE_OPTIMAL(1 << 15), "knife");
#ifdef USE_NET_ISLAND_CONNECT
kcd->edgenet.arena = BLI_memarena_new(MEM_SIZE_OPTIMAL(1 << 15), __func__);
#endif
kcd->edgenet.edge_visit = BLI_gset_ptr_new(__func__);
kcd->vthresh = KMAXDIST - 1;
kcd->ethresh = KMAXDIST;
knife_recalc_ortho(kcd);
ED_region_tag_redraw(kcd->region);
kcd->refs = BLI_mempool_create(sizeof(Ref), 0, 2048, 0);
kcd->kverts = BLI_mempool_create(sizeof(KnifeVert), 0, 512, BLI_MEMPOOL_ALLOW_ITER);
kcd->kedges = BLI_mempool_create(sizeof(KnifeEdge), 0, 512, BLI_MEMPOOL_ALLOW_ITER);
kcd->undostack = BLI_stack_new(sizeof(KnifeUndoFrame), "knife undostack");
kcd->splitstack = BLI_stack_new(sizeof(KnifeEdge *), "knife splitstack");
kcd->origedgemap = BLI_ghash_ptr_new("knife origedgemap");
kcd->origvertmap = BLI_ghash_ptr_new("knife origvertmap");
kcd->kedgefacemap = BLI_ghash_ptr_new("knife kedgefacemap");
kcd->facetrimap = BLI_ghash_ptr_new("knife facetrimap");
knife_pos_data_clear(&kcd->curr);
knife_pos_data_clear(&kcd->prev);
if (is_interactive) {
kcd->draw_handle = ED_region_draw_cb_activate(
kcd->region->type, knifetool_draw, kcd, REGION_DRAW_POST_VIEW);
knife_init_colors(&kcd->colors);
}
kcd->no_cuts = true;
kcd->axis_string[0] = ' ';
kcd->axis_string[1] = '\0';
/* Initialize number input handling for angle snapping. */
initNumInput(&kcd->num);
kcd->num.idx_max = 0;
kcd->num.val_flag[0] |= NUM_NO_NEGATIVE;
kcd->num.unit_sys = scene->unit.system;
kcd->num.unit_type[0] = B_UNIT_NONE;
}
/* called when modal loop selection is done... */
static void knifetool_exit_ex(KnifeTool_OpData *kcd)
{
if (!kcd) {
return;
}
if (kcd->is_interactive) {
WM_cursor_modal_restore(kcd->vc.win);
/* Deactivate the extra drawing stuff in 3D-View. */
ED_region_draw_cb_exit(kcd->region->type, kcd->draw_handle);
}
/* Free the custom data. */
BLI_mempool_destroy(kcd->refs);
BLI_mempool_destroy(kcd->kverts);
BLI_mempool_destroy(kcd->kedges);
BLI_stack_free(kcd->undostack);
BLI_stack_free(kcd->splitstack);
BLI_ghash_free(kcd->origedgemap, NULL, NULL);
BLI_ghash_free(kcd->origvertmap, NULL, NULL);
BLI_ghash_free(kcd->kedgefacemap, NULL, NULL);
BLI_ghash_free(kcd->facetrimap, NULL, NULL);
BLI_memarena_free(kcd->arena);
#ifdef USE_NET_ISLAND_CONNECT
BLI_memarena_free(kcd->edgenet.arena);
#endif
BLI_gset_free(kcd->edgenet.edge_visit, NULL);
/* Tag for redraw. */
ED_region_tag_redraw(kcd->region);
/* Knife BVH cleanup. */
for (int i = 0; i < kcd->objects_len; i++) {
knifetool_free_obinfo(kcd, i);
}
MEM_freeN((void *)kcd->objects_info);
knife_bvh_free(kcd);
/* Line-hits cleanup. */
if (kcd->linehits) {
MEM_freeN(kcd->linehits);
}
/* Free object bases. */
MEM_freeN(kcd->objects);
/* Destroy kcd itself. */
MEM_freeN(kcd);
}
static void knifetool_exit(wmOperator *op)
{
KnifeTool_OpData *kcd = op->customdata;
knifetool_exit_ex(kcd);
op->customdata = NULL;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mouse-Moving Event Updates
* \{ */
/** Update active knife edge/vert pointers. */
static int knife_update_active(KnifeTool_OpData *kcd)
{
/* If no hits are found this would normally default to (0, 0, 0) so instead
* get a point at the mouse ray closest to the previous point.
* Note that drawing lines in `free-space` isn't properly supported
* but there's no guarantee (0, 0, 0) has any geometry either - campbell */
if (!knife_snap_update_from_mval(kcd, kcd->mval)) {
float origin[3];
float origin_ofs[3];
knife_input_ray_segment(kcd, kcd->curr.mval, 1.0f, origin, origin_ofs);
if (!isect_line_plane_v3(
kcd->curr.cage, origin, origin_ofs, kcd->prev.cage, kcd->vc.rv3d->viewinv[2])) {
copy_v3_v3(kcd->curr.cage, kcd->prev.cage);
/* Should never fail! */
BLI_assert(0);
}
}
if (kcd->mode == MODE_DRAGGING) {
knife_find_line_hits(kcd);
}
return 1;
}
static void knifetool_update_mval(KnifeTool_OpData *kcd, const float mval[2])
{
knife_recalc_ortho(kcd);
copy_v2_v2(kcd->mval, mval);
if (knife_update_active(kcd)) {
ED_region_tag_redraw(kcd->region);
}
}
static void knifetool_update_mval_i(KnifeTool_OpData *kcd, const int mval_i[2])
{
const float mval[2] = {UNPACK2(mval_i)};
knifetool_update_mval(kcd, mval);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Finalization
* \{ */
static void knifetool_finish_single_pre(KnifeTool_OpData *kcd, Object *ob)
{
knife_make_cuts(kcd, ob);
}
/**
* A post version is needed to to delay recalculating tessellation after making cuts.
* Without this, knife-project can't use the BVH tree to select geometry after a cut, see: T98349.
*/
static void knifetool_finish_single_post(KnifeTool_OpData *UNUSED(kcd), Object *ob)
{
BMEditMesh *em = BKE_editmesh_from_object(ob);
EDBM_selectmode_flush(em);
EDBM_update(ob->data,
&(const struct EDBMUpdate_Params){
.calc_looptri = true,
.calc_normals = true,
.is_destructive = true,
});
}
/* Called on tool confirmation. */
static void knifetool_finish_ex(KnifeTool_OpData *kcd)
{
for (uint b = 0; b < kcd->objects_len; b++) {
Object *ob = kcd->objects[b];
knifetool_finish_single_pre(kcd, ob);
knifetool_finish_single_post(kcd, ob);
}
}
static void knifetool_finish(wmOperator *op)
{
KnifeTool_OpData *kcd = op->customdata;
knifetool_finish_ex(kcd);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Operator (#MESH_OT_knife_tool)
* \{ */
static void knifetool_cancel(bContext *UNUSED(C), wmOperator *op)
{
/* this is just a wrapper around exit() */
knifetool_exit(op);
}
wmKeyMap *knifetool_modal_keymap(wmKeyConfig *keyconf)
{
static const EnumPropertyItem modal_items[] = {
{KNF_MODAL_CANCEL, "CANCEL", 0, "Cancel", ""},
{KNF_MODAL_CONFIRM, "CONFIRM", 0, "Confirm", ""},
{KNF_MODAL_UNDO, "UNDO", 0, "Undo", ""},
{KNF_MODAL_MIDPOINT_ON, "SNAP_MIDPOINTS_ON", 0, "Snap to Midpoints On", ""},
{KNF_MODAL_MIDPOINT_OFF, "SNAP_MIDPOINTS_OFF", 0, "Snap to Midpoints Off", ""},
{KNF_MODAL_IGNORE_SNAP_ON, "IGNORE_SNAP_ON", 0, "Ignore Snapping On", ""},
{KNF_MODAL_IGNORE_SNAP_OFF, "IGNORE_SNAP_OFF", 0, "Ignore Snapping Off", ""},
{KNF_MODAL_ANGLE_SNAP_TOGGLE, "ANGLE_SNAP_TOGGLE", 0, "Toggle Angle Snapping", ""},
{KNF_MODAL_CYCLE_ANGLE_SNAP_EDGE,
"CYCLE_ANGLE_SNAP_EDGE",
0,
"Cycle Angle Snapping Relative Edge",
""},
{KNF_MODAL_CUT_THROUGH_TOGGLE, "CUT_THROUGH_TOGGLE", 0, "Toggle Cut Through", ""},
{KNF_MODAL_SHOW_DISTANCE_ANGLE_TOGGLE,
"SHOW_DISTANCE_ANGLE_TOGGLE",
0,
"Toggle Distance and Angle Measurements",
""},
{KNF_MODAL_DEPTH_TEST_TOGGLE, "DEPTH_TEST_TOGGLE", 0, "Toggle Depth Testing", ""},
{KNF_MODAL_NEW_CUT, "NEW_CUT", 0, "End Current Cut", ""},
{KNF_MODAL_ADD_CUT, "ADD_CUT", 0, "Add Cut", ""},
{KNF_MODAL_ADD_CUT_CLOSED, "ADD_CUT_CLOSED", 0, "Add Cut Closed", ""},
{KNF_MODAL_PANNING, "PANNING", 0, "Panning", ""},
{KNF_MODAL_X_AXIS, "X_AXIS", 0, "X Axis Locking", ""},
{KNF_MODAL_Y_AXIS, "Y_AXIS", 0, "Y Axis Locking", ""},
{KNF_MODAL_Z_AXIS, "Z_AXIS", 0, "Z Axis Locking", ""},
{0, NULL, 0, NULL, NULL},
};
wmKeyMap *keymap = WM_modalkeymap_find(keyconf, "Knife Tool Modal Map");
/* This function is called for each spacetype, only needs to add map once. */
if (keymap && keymap->modal_items) {
return NULL;
}
keymap = WM_modalkeymap_ensure(keyconf, "Knife Tool Modal Map", modal_items);
WM_modalkeymap_assign(keymap, "MESH_OT_knife_tool");
return keymap;
}
/* Turn off angle snapping. */
static void knifetool_disable_angle_snapping(KnifeTool_OpData *kcd)
{
kcd->angle_snapping_mode = KNF_CONSTRAIN_ANGLE_MODE_NONE;
kcd->angle_snapping = false;
kcd->is_angle_snapping = false;
}
/* Turn off orientation locking. */
static void knifetool_disable_orientation_locking(KnifeTool_OpData *kcd)
{
kcd->constrain_axis = KNF_CONSTRAIN_AXIS_MODE_NONE;
kcd->constrain_axis_mode = KNF_CONSTRAIN_AXIS_MODE_NONE;
kcd->axis_constrained = false;
}
static int knifetool_modal(bContext *C, wmOperator *op, const wmEvent *event)
{
KnifeTool_OpData *kcd = op->customdata;
bool do_refresh = false;
if (!kcd->curr.ob || kcd->curr.ob->type != OB_MESH) {
knifetool_exit(op);
ED_workspace_status_text(C, NULL);
return OPERATOR_FINISHED;
}
kcd->region = kcd->vc.region;
ED_view3d_init_mats_rv3d(kcd->curr.ob, kcd->vc.rv3d); /* Needed to initialize clipping. */
if (kcd->mode == MODE_PANNING) {
kcd->mode = kcd->prevmode;
}
bool handled = false;
float snapping_increment_temp;
if (kcd->angle_snapping) {
if (kcd->num.str_cur >= 3 ||
kcd->angle_snapping_increment > KNIFE_MAX_ANGLE_SNAPPING_INCREMENT / 10) {
knife_reset_snap_angle_input(kcd);
}
knife_update_header(C, op, kcd); /* Update the angle multiple. */
/* Modal numinput active, try to handle numeric inputs first... */
if (event->val == KM_PRESS && hasNumInput(&kcd->num) && handleNumInput(C, &kcd->num, event)) {
handled = true;
applyNumInput(&kcd->num, &snapping_increment_temp);
/* Restrict number key input to 0 - 180 degree range. */
if (snapping_increment_temp > KNIFE_MIN_ANGLE_SNAPPING_INCREMENT &&
snapping_increment_temp <= KNIFE_MAX_ANGLE_SNAPPING_INCREMENT) {
kcd->angle_snapping_increment = snapping_increment_temp;
}
knife_update_active(kcd);
knife_update_header(C, op, kcd);
ED_region_tag_redraw(kcd->region);
return OPERATOR_RUNNING_MODAL;
}
}
/* Handle modal keymap. */
if (event->type == EVT_MODAL_MAP) {
switch (event->val) {
case KNF_MODAL_CANCEL:
/* finish */
ED_region_tag_redraw(kcd->region);
knifetool_exit(op);
ED_workspace_status_text(C, NULL);
return OPERATOR_CANCELLED;
case KNF_MODAL_CONFIRM: {
const bool changed = (kcd->totkvert != 0);
/* finish */
ED_region_tag_redraw(kcd->region);
knifetool_finish(op);
knifetool_exit(op);
ED_workspace_status_text(C, NULL);
/* Cancel to prevent undo push for empty cuts. */
if (!changed) {
return OPERATOR_CANCELLED;
}
return OPERATOR_FINISHED;
}
case KNF_MODAL_UNDO:
if (BLI_stack_is_empty(kcd->undostack)) {
ED_region_tag_redraw(kcd->region);
knifetool_exit(op);
ED_workspace_status_text(C, NULL);
return OPERATOR_CANCELLED;
}
knifetool_undo(kcd);
knife_update_active(kcd);
ED_region_tag_redraw(kcd->region);
handled = true;
break;
case KNF_MODAL_MIDPOINT_ON:
kcd->snap_midpoints = true;
knife_recalc_ortho(kcd);
knife_update_active(kcd);
knife_update_header(C, op, kcd);
ED_region_tag_redraw(kcd->region);
do_refresh = true;
handled = true;
break;
case KNF_MODAL_MIDPOINT_OFF:
kcd->snap_midpoints = false;
knife_recalc_ortho(kcd);
knife_update_active(kcd);
knife_update_header(C, op, kcd);
ED_region_tag_redraw(kcd->region);
do_refresh = true;
handled = true;
break;
case KNF_MODAL_IGNORE_SNAP_ON:
ED_region_tag_redraw(kcd->region);
kcd->ignore_vert_snapping = kcd->ignore_edge_snapping = true;
knife_update_header(C, op, kcd);
do_refresh = true;
handled = true;
break;
case KNF_MODAL_IGNORE_SNAP_OFF:
ED_region_tag_redraw(kcd->region);
kcd->ignore_vert_snapping = kcd->ignore_edge_snapping = false;
knife_update_header(C, op, kcd);
do_refresh = true;
handled = true;
break;
case KNF_MODAL_ANGLE_SNAP_TOGGLE:
if (kcd->angle_snapping_mode != KNF_CONSTRAIN_ANGLE_MODE_RELATIVE) {
kcd->angle_snapping_mode++;
kcd->snap_ref_edges_count = 0;
kcd->snap_edge = 0;
}
else {
kcd->angle_snapping_mode = KNF_CONSTRAIN_ANGLE_MODE_NONE;
}
kcd->angle_snapping = (kcd->angle_snapping_mode != KNF_CONSTRAIN_ANGLE_MODE_NONE);
kcd->angle_snapping_increment = RAD2DEGF(
RNA_float_get(op->ptr, "angle_snapping_increment"));
knifetool_disable_orientation_locking(kcd);
knife_reset_snap_angle_input(kcd);
knife_update_active(kcd);
knife_update_header(C, op, kcd);
ED_region_tag_redraw(kcd->region);
do_refresh = true;
handled = true;
break;
case KNF_MODAL_CYCLE_ANGLE_SNAP_EDGE:
if (kcd->angle_snapping && kcd->angle_snapping_mode == KNF_CONSTRAIN_ANGLE_MODE_RELATIVE) {
if (kcd->snap_ref_edges_count) {
kcd->snap_edge++;
kcd->snap_edge %= kcd->snap_ref_edges_count;
}
}
do_refresh = true;
handled = true;
break;
case KNF_MODAL_CUT_THROUGH_TOGGLE:
kcd->cut_through = !kcd->cut_through;
knife_update_header(C, op, kcd);
do_refresh = true;
handled = true;
break;
case KNF_MODAL_SHOW_DISTANCE_ANGLE_TOGGLE:
if (kcd->dist_angle_mode != KNF_MEASUREMENT_ANGLE) {
kcd->dist_angle_mode++;
}
else {
kcd->dist_angle_mode = KNF_MEASUREMENT_NONE;
}
kcd->show_dist_angle = (kcd->dist_angle_mode != KNF_MEASUREMENT_NONE);
knife_update_header(C, op, kcd);
do_refresh = true;
handled = true;
break;
case KNF_MODAL_DEPTH_TEST_TOGGLE:
kcd->depth_test = !kcd->depth_test;
ED_region_tag_redraw(kcd->region);
knife_update_header(C, op, kcd);
do_refresh = true;
handled = true;
break;
case KNF_MODAL_NEW_CUT:
/* If no cuts have been made, exit.
* Preserves right click cancel workflow which most tools use,
* but stops accidentally deleting entire cuts with right click.
*/
if (kcd->no_cuts) {
ED_region_tag_redraw(kcd->region);
knifetool_exit(op);
ED_workspace_status_text(C, NULL);
return OPERATOR_CANCELLED;
}
ED_region_tag_redraw(kcd->region);
knife_finish_cut(kcd);
kcd->mode = MODE_IDLE;
handled = true;
break;
case KNF_MODAL_ADD_CUT:
kcd->no_cuts = false;
knife_recalc_ortho(kcd);
/* Get the value of the event which triggered this one. */
if (event->prev_val != KM_RELEASE) {
if (kcd->mode == MODE_DRAGGING) {
knife_add_cut(kcd);
}
else if (kcd->mode != MODE_PANNING) {
knife_start_cut(kcd);
kcd->mode = MODE_DRAGGING;
kcd->init = kcd->curr;
}
/* Freehand drawing is incompatible with cut-through. */
if (kcd->cut_through == false) {
kcd->is_drag_hold = true;
/* No edge snapping while dragging (edges are too sticky when cuts are immediate). */
kcd->ignore_edge_snapping = true;
}
}
else {
kcd->is_drag_hold = false;
kcd->ignore_edge_snapping = false;
kcd->is_drag_undo = false;
/* Needed because the last face 'hit' is ignored when dragging. */
knifetool_update_mval(kcd, kcd->curr.mval);
}
ED_region_tag_redraw(kcd->region);
handled = true;
break;
case KNF_MODAL_ADD_CUT_CLOSED:
if (kcd->mode == MODE_DRAGGING) {
/* Shouldn't be possible with default key-layout, just in case. */
if (kcd->is_drag_hold) {
kcd->is_drag_hold = false;
kcd->is_drag_undo = false;
knifetool_update_mval(kcd, kcd->curr.mval);
}
kcd->prev = kcd->curr;
kcd->curr = kcd->init;
knife_project_v2(kcd, kcd->curr.cage, kcd->curr.mval);
knifetool_update_mval(kcd, kcd->curr.mval);
knife_add_cut(kcd);
/* KNF_MODAL_NEW_CUT */
knife_finish_cut(kcd);
kcd->mode = MODE_IDLE;
}
handled = true;
break;
case KNF_MODAL_PANNING:
if (event->val != KM_RELEASE) {
if (kcd->mode != MODE_PANNING) {
kcd->prevmode = kcd->mode;
kcd->mode = MODE_PANNING;
}
}
else {
kcd->mode = kcd->prevmode;
}
ED_region_tag_redraw(kcd->region);
return OPERATOR_PASS_THROUGH;
}
}
else { /* non-modal-mapped events */
switch (event->type) {
case MOUSEPAN:
case MOUSEZOOM:
case MOUSEROTATE:
case WHEELUPMOUSE:
case WHEELDOWNMOUSE:
case NDOF_MOTION:
return OPERATOR_PASS_THROUGH;
case MOUSEMOVE: /* Mouse moved somewhere to select another loop. */
if (kcd->mode != MODE_PANNING) {
knifetool_update_mval_i(kcd, event->mval);
knife_update_header(C, op, kcd);
if (kcd->is_drag_hold) {
if (kcd->totlinehit >= 2) {
knife_add_cut(kcd);
}
}
}
break;
}
}
if (kcd->angle_snapping) {
if (kcd->num.str_cur >= 3 ||
kcd->angle_snapping_increment > KNIFE_MAX_ANGLE_SNAPPING_INCREMENT / 10) {
knife_reset_snap_angle_input(kcd);
}
if (event->type != EVT_MODAL_MAP) {
/* Modal number-input inactive, try to handle numeric inputs last. */
if (!handled && event->val == KM_PRESS && handleNumInput(C, &kcd->num, event)) {
applyNumInput(&kcd->num, &snapping_increment_temp);
/* Restrict number key input to 0 - 180 degree range. */
if (snapping_increment_temp > KNIFE_MIN_ANGLE_SNAPPING_INCREMENT &&
snapping_increment_temp <= KNIFE_MAX_ANGLE_SNAPPING_INCREMENT) {
kcd->angle_snapping_increment = snapping_increment_temp;
}
knife_update_active(kcd);
knife_update_header(C, op, kcd);
ED_region_tag_redraw(kcd->region);
return OPERATOR_RUNNING_MODAL;
}
}
}
/* Constrain axes with X,Y,Z keys. */
if (event->type == EVT_MODAL_MAP) {
if (ELEM(event->val, KNF_MODAL_X_AXIS, KNF_MODAL_Y_AXIS, KNF_MODAL_Z_AXIS)) {
if (event->val == KNF_MODAL_X_AXIS && kcd->constrain_axis != KNF_CONSTRAIN_AXIS_X) {
kcd->constrain_axis = KNF_CONSTRAIN_AXIS_X;
kcd->constrain_axis_mode = KNF_CONSTRAIN_AXIS_MODE_GLOBAL;
kcd->axis_string[0] = 'X';
}
else if (event->val == KNF_MODAL_Y_AXIS && kcd->constrain_axis != KNF_CONSTRAIN_AXIS_Y) {
kcd->constrain_axis = KNF_CONSTRAIN_AXIS_Y;
kcd->constrain_axis_mode = KNF_CONSTRAIN_AXIS_MODE_GLOBAL;
kcd->axis_string[0] = 'Y';
}
else if (event->val == KNF_MODAL_Z_AXIS && kcd->constrain_axis != KNF_CONSTRAIN_AXIS_Z) {
kcd->constrain_axis = KNF_CONSTRAIN_AXIS_Z;
kcd->constrain_axis_mode = KNF_CONSTRAIN_AXIS_MODE_GLOBAL;
kcd->axis_string[0] = 'Z';
}
else {
/* Cycle through modes with repeated key presses. */
if (kcd->constrain_axis_mode != KNF_CONSTRAIN_AXIS_MODE_LOCAL) {
kcd->constrain_axis_mode++;
kcd->axis_string[0] += 32; /* Lower case. */
}
else {
kcd->constrain_axis = KNF_CONSTRAIN_AXIS_NONE;
kcd->constrain_axis_mode = KNF_CONSTRAIN_AXIS_MODE_NONE;
}
}
kcd->axis_constrained = (kcd->constrain_axis != KNF_CONSTRAIN_AXIS_NONE);
knifetool_disable_angle_snapping(kcd);
knife_update_header(C, op, kcd);
ED_region_tag_redraw(kcd->region);
do_refresh = true;
}
}
if (kcd->mode == MODE_DRAGGING) {
op->flag &= ~OP_IS_MODAL_CURSOR_REGION;
}
else {
op->flag |= OP_IS_MODAL_CURSOR_REGION;
}
if (do_refresh) {
/* We don't really need to update mval,
* but this happens to be the best way to refresh at the moment. */
knifetool_update_mval_i(kcd, event->mval);
knife_update_header(C, op, kcd);
}
/* Keep going until the user confirms. */
return OPERATOR_RUNNING_MODAL;
}
static int knifetool_invoke(bContext *C, wmOperator *op, const wmEvent *event)
{
const bool only_select = RNA_boolean_get(op->ptr, "only_selected");
const bool cut_through = !RNA_boolean_get(op->ptr, "use_occlude_geometry");
const bool xray = !RNA_boolean_get(op->ptr, "xray");
const int visible_measurements = RNA_enum_get(op->ptr, "visible_measurements");
const int angle_snapping = RNA_enum_get(op->ptr, "angle_snapping");
const bool wait_for_input = RNA_boolean_get(op->ptr, "wait_for_input");
const float angle_snapping_increment = RAD2DEGF(
RNA_float_get(op->ptr, "angle_snapping_increment"));
ViewContext vc;
KnifeTool_OpData *kcd;
em_setup_viewcontext(C, &vc);
/* alloc new customdata */
kcd = op->customdata = MEM_callocN(sizeof(KnifeTool_OpData), __func__);
knifetool_init(&vc,
kcd,
only_select,
cut_through,
xray,
visible_measurements,
angle_snapping,
angle_snapping_increment,
true);
if (only_select) {
Object *obedit;
BMEditMesh *em;
bool faces_selected = false;
for (uint b = 0; b < kcd->objects_len; b++) {
obedit = kcd->objects[b];
em = BKE_editmesh_from_object(obedit);
if (em->bm->totfacesel != 0) {
faces_selected = true;
}
}
if (!faces_selected) {
BKE_report(op->reports, RPT_ERROR, "Selected faces required");
knifetool_cancel(C, op);
return OPERATOR_CANCELLED;
}
}
op->flag |= OP_IS_MODAL_CURSOR_REGION;
/* Add a modal handler for this operator - handles loop selection. */
WM_cursor_modal_set(CTX_wm_window(C), WM_CURSOR_KNIFE);
WM_event_add_modal_handler(C, op);
knifetool_update_mval_i(kcd, event->mval);
if (wait_for_input == false) {
/* Avoid copy-paste logic. */
wmEvent event_modal = {
.prev_val = KM_NOTHING,
.type = EVT_MODAL_MAP,
.val = KNF_MODAL_ADD_CUT,
};
int ret = knifetool_modal(C, op, &event_modal);
BLI_assert(ret == OPERATOR_RUNNING_MODAL);
UNUSED_VARS_NDEBUG(ret);
}
knife_update_header(C, op, kcd);
return OPERATOR_RUNNING_MODAL;
}
void MESH_OT_knife_tool(wmOperatorType *ot)
{
/* Description. */
ot->name = "Knife Topology Tool";
ot->idname = "MESH_OT_knife_tool";
ot->description = "Cut new topology";
/* Callbacks. */
ot->invoke = knifetool_invoke;
ot->modal = knifetool_modal;
ot->cancel = knifetool_cancel;
ot->poll = ED_operator_editmesh_view3d;
/* Flags. */
ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO | OPTYPE_BLOCKING;
/* Properties. */
PropertyRNA *prop;
static const EnumPropertyItem visible_measurements_items[] = {
{KNF_MEASUREMENT_NONE, "NONE", 0, "None", "Show no measurements"},
{KNF_MEASUREMENT_BOTH, "BOTH", 0, "Both", "Show both distances and angles"},
{KNF_MEASUREMENT_DISTANCE, "DISTANCE", 0, "Distance", "Show just distance measurements"},
{KNF_MEASUREMENT_ANGLE, "ANGLE", 0, "Angle", "Show just angle measurements"},
{0, NULL, 0, NULL, NULL},
};
static const EnumPropertyItem angle_snapping_items[] = {
{KNF_CONSTRAIN_ANGLE_MODE_NONE, "NONE", 0, "None", "No angle snapping"},
{KNF_CONSTRAIN_ANGLE_MODE_SCREEN, "SCREEN", 0, "Screen", "Screen space angle snapping"},
{KNF_CONSTRAIN_ANGLE_MODE_RELATIVE,
"RELATIVE",
0,
"Relative",
"Angle snapping relative to the previous cut edge"},
{0, NULL, 0, NULL, NULL},
};
RNA_def_boolean(ot->srna,
"use_occlude_geometry",
true,
"Occlude Geometry",
"Only cut the front most geometry");
RNA_def_boolean(ot->srna, "only_selected", false, "Only Selected", "Only cut selected geometry");
RNA_def_boolean(ot->srna, "xray", true, "X-Ray", "Show cuts hidden by geometry");
RNA_def_enum(ot->srna,
"visible_measurements",
visible_measurements_items,
KNF_MEASUREMENT_NONE,
"Measurements",
"Visible distance and angle measurements");
RNA_def_enum(ot->srna,
"angle_snapping",
angle_snapping_items,
KNF_CONSTRAIN_ANGLE_MODE_NONE,
"Angle Snapping",
"Angle snapping mode");
prop = RNA_def_float(ot->srna,
"angle_snapping_increment",
DEG2RADF(KNIFE_DEFAULT_ANGLE_SNAPPING_INCREMENT),
DEG2RADF(KNIFE_MIN_ANGLE_SNAPPING_INCREMENT),
DEG2RADF(KNIFE_MAX_ANGLE_SNAPPING_INCREMENT),
"Angle Snap Increment",
"The angle snap increment used when in constrained angle mode",
DEG2RADF(KNIFE_MIN_ANGLE_SNAPPING_INCREMENT),
DEG2RADF(KNIFE_MAX_ANGLE_SNAPPING_INCREMENT));
RNA_def_property_subtype(prop, PROP_ANGLE);
prop = RNA_def_boolean(ot->srna, "wait_for_input", true, "Wait for Input", "");
RNA_def_property_flag(prop, PROP_HIDDEN | PROP_SKIP_SAVE);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Knife tool as a utility function
*
* Can be used for internal slicing operations.
* \{ */
static bool edbm_mesh_knife_point_isect(LinkNode *polys, const float cent_ss[2])
{
LinkNode *p = polys;
int isect = 0;
while (p) {
const float(*mval_fl)[2] = p->link;
const int mval_tot = MEM_allocN_len(mval_fl) / sizeof(*mval_fl);
isect += (int)isect_point_poly_v2(cent_ss, mval_fl, mval_tot - 1, false);
p = p->next;
}
if (isect % 2) {
return true;
}
return false;
}
void EDBM_mesh_knife(ViewContext *vc, LinkNode *polys, bool use_tag, bool cut_through)
{
KnifeTool_OpData *kcd;
/* Init. */
{
const bool only_select = false;
const bool is_interactive = false; /* Can enable for testing. */
const bool xray = false;
const int visible_measurements = KNF_MEASUREMENT_NONE;
const int angle_snapping = KNF_CONSTRAIN_ANGLE_MODE_NONE;
const float angle_snapping_increment = KNIFE_DEFAULT_ANGLE_SNAPPING_INCREMENT;
kcd = MEM_callocN(sizeof(KnifeTool_OpData), __func__);
knifetool_init(vc,
kcd,
only_select,
cut_through,
xray,
visible_measurements,
angle_snapping,
angle_snapping_increment,
is_interactive);
kcd->ignore_edge_snapping = true;
kcd->ignore_vert_snapping = true;
}
/* Execute. */
{
LinkNode *p = polys;
knife_recalc_ortho(kcd);
while (p) {
const float(*mval_fl)[2] = p->link;
const int mval_tot = MEM_allocN_len(mval_fl) / sizeof(*mval_fl);
int i;
for (i = 0; i < mval_tot; i++) {
knifetool_update_mval(kcd, mval_fl[i]);
if (i == 0) {
knife_start_cut(kcd);
kcd->mode = MODE_DRAGGING;
}
else {
knife_add_cut(kcd);
}
}
knife_finish_cut(kcd);
kcd->mode = MODE_IDLE;
p = p->next;
}
}
/* Finish. */
{
Object *ob;
BMEditMesh *em;
for (uint b = 0; b < kcd->objects_len; b++) {
ob = kcd->objects[b];
em = BKE_editmesh_from_object(ob);
if (use_tag) {
BM_mesh_elem_hflag_enable_all(em->bm, BM_EDGE, BM_ELEM_TAG, false);
}
knifetool_finish_single_pre(kcd, ob);
/* Tag faces inside! */
if (use_tag) {
BMesh *bm = em->bm;
BMEdge *e;
BMIter iter;
bool keep_search;
/* Use face-loop tag to store if we have intersected. */
#define F_ISECT_IS_UNKNOWN(f) BM_elem_flag_test(BM_FACE_FIRST_LOOP(f), BM_ELEM_TAG)
#define F_ISECT_SET_UNKNOWN(f) BM_elem_flag_enable(BM_FACE_FIRST_LOOP(f), BM_ELEM_TAG)
#define F_ISECT_SET_OUTSIDE(f) BM_elem_flag_disable(BM_FACE_FIRST_LOOP(f), BM_ELEM_TAG)
{
BMFace *f;
BM_ITER_MESH (f, &iter, bm, BM_FACES_OF_MESH) {
F_ISECT_SET_UNKNOWN(f);
BM_elem_flag_disable(f, BM_ELEM_TAG);
}
}
/* Tag all faces linked to cut edges. */
BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) {
/* Check are we tagged?, then we are an original face. */
if (BM_elem_flag_test(e, BM_ELEM_TAG)) {
continue;
}
BMFace *f;
BMIter fiter;
BM_ITER_ELEM (f, &fiter, e, BM_FACES_OF_EDGE) {
float cent[3], cent_ss[2];
BM_face_calc_point_in_face(f, cent);
mul_m4_v3(ob->obmat, cent);
knife_project_v2(kcd, cent, cent_ss);
if (edbm_mesh_knife_point_isect(polys, cent_ss)) {
BM_elem_flag_enable(f, BM_ELEM_TAG);
}
}
}
/* Expand tags for faces which are not cut, but are inside the polys. */
do {
BMFace *f;
keep_search = false;
BM_ITER_MESH (f, &iter, bm, BM_FACES_OF_MESH) {
if (BM_elem_flag_test(f, BM_ELEM_TAG) || !F_ISECT_IS_UNKNOWN(f)) {
continue;
}
/* Am I connected to a tagged face via an un-tagged edge
* (ie, not across a cut)? */
BMLoop *l_first = BM_FACE_FIRST_LOOP(f);
BMLoop *l_iter = l_first;
bool found = false;
do {
if (BM_elem_flag_test(l_iter->e, BM_ELEM_TAG) != false) {
/* Now check if the adjacent faces is tagged. */
BMLoop *l_radial_iter = l_iter->radial_next;
if (l_radial_iter != l_iter) {
do {
if (BM_elem_flag_test(l_radial_iter->f, BM_ELEM_TAG)) {
found = true;
}
} while ((l_radial_iter = l_radial_iter->radial_next) != l_iter &&
(found == false));
}
}
} while ((l_iter = l_iter->next) != l_first && (found == false));
if (found) {
float cent[3], cent_ss[2];
BM_face_calc_point_in_face(f, cent);
mul_m4_v3(ob->obmat, cent);
knife_project_v2(kcd, cent, cent_ss);
if ((kcd->cut_through || point_is_visible(kcd, cent, cent_ss, (BMElem *)f)) &&
edbm_mesh_knife_point_isect(polys, cent_ss)) {
BM_elem_flag_enable(f, BM_ELEM_TAG);
keep_search = true;
}
else {
/* Don't lose time on this face again, set it as outside. */
F_ISECT_SET_OUTSIDE(f);
}
}
}
} while (keep_search);
#undef F_ISECT_IS_UNKNOWN
#undef F_ISECT_SET_UNKNOWN
#undef F_ISECT_SET_OUTSIDE
}
/* Defer freeing data until the BVH tree is finished with, see: #point_is_visible and
* the doc-string for #knifetool_finish_single_post. */
knifetool_finish_single_post(kcd, ob);
}
knifetool_exit_ex(kcd);
kcd = NULL;
}
}
/** \} */