This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/ikplugin/intern/iksolver_plugin.c
Campbell Barton 3bf2715039 apply visual transform to pose
So constrainted bones can have their transform applied to their loc/scale/rot, then remove the constraints
2010-02-19 15:34:26 +00:00

537 lines
16 KiB
C

/**
* $Id$
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Original author: Benoit Bolsee
* Contributor(s):
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "MEM_guardedalloc.h"
#include "BIK_api.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BKE_armature.h"
#include "BKE_constraint.h"
#include "BKE_utildefines.h"
#include "DNA_object_types.h"
#include "DNA_action_types.h"
#include "DNA_constraint_types.h"
#include "DNA_armature_types.h"
#include "IK_solver.h"
#include "iksolver_plugin.h"
#include <string.h> /* memcpy */
/* ********************** THE IK SOLVER ******************* */
/* allocates PoseTree, and links that to root bone/channel */
/* Note: detecting the IK chain is duplicate code... in drawarmature.c and in transform_conversions.c */
static void initialize_posetree(struct Object *ob, bPoseChannel *pchan_tip)
{
bPoseChannel *curchan, *pchan_root=NULL, *chanlist[256], **oldchan;
PoseTree *tree;
PoseTarget *target;
bConstraint *con;
bKinematicConstraint *data;
int a, segcount= 0, size, newsize, *oldparent, parent;
/* find IK constraint, and validate it */
for(con= pchan_tip->constraints.first; con; con= con->next) {
if(con->type==CONSTRAINT_TYPE_KINEMATIC) {
data=(bKinematicConstraint*)con->data;
if (data->flag & CONSTRAINT_IK_AUTO) break;
if (data->tar==NULL) continue;
if (data->tar->type==OB_ARMATURE && data->subtarget[0]==0) continue;
if ((con->flag & (CONSTRAINT_DISABLE|CONSTRAINT_OFF))==0 && (con->enforce!=0.0)) break;
}
}
if(con==NULL) return;
/* exclude tip from chain? */
if(!(data->flag & CONSTRAINT_IK_TIP))
pchan_tip= pchan_tip->parent;
/* Find the chain's root & count the segments needed */
for (curchan = pchan_tip; curchan; curchan=curchan->parent){
pchan_root = curchan;
curchan->flag |= POSE_CHAIN; // don't forget to clear this
chanlist[segcount]=curchan;
segcount++;
if(segcount==data->rootbone || segcount>255) break; // 255 is weak
}
if (!segcount) return;
/* setup the chain data */
/* we make tree-IK, unless all existing targets are in this chain */
for(tree= pchan_root->iktree.first; tree; tree= tree->next) {
for(target= tree->targets.first; target; target= target->next) {
curchan= tree->pchan[target->tip];
if(curchan->flag & POSE_CHAIN)
curchan->flag &= ~POSE_CHAIN;
else
break;
}
if(target) break;
}
/* create a target */
target= MEM_callocN(sizeof(PoseTarget), "posetarget");
target->con= con;
pchan_tip->flag &= ~POSE_CHAIN;
if(tree==NULL) {
/* make new tree */
tree= MEM_callocN(sizeof(PoseTree), "posetree");
tree->type= CONSTRAINT_TYPE_KINEMATIC;
tree->iterations= data->iterations;
tree->totchannel= segcount;
tree->stretch = (data->flag & CONSTRAINT_IK_STRETCH);
tree->pchan= MEM_callocN(segcount*sizeof(void*), "ik tree pchan");
tree->parent= MEM_callocN(segcount*sizeof(int), "ik tree parent");
for(a=0; a<segcount; a++) {
tree->pchan[a]= chanlist[segcount-a-1];
tree->parent[a]= a-1;
}
target->tip= segcount-1;
/* AND! link the tree to the root */
BLI_addtail(&pchan_root->iktree, tree);
}
else {
tree->iterations= MAX2(data->iterations, tree->iterations);
tree->stretch= tree->stretch && !(data->flag & CONSTRAINT_IK_STRETCH);
/* skip common pose channels and add remaining*/
size= MIN2(segcount, tree->totchannel);
for(a=0; a<size && tree->pchan[a]==chanlist[segcount-a-1]; a++);
parent= a-1;
segcount= segcount-a;
target->tip= tree->totchannel + segcount - 1;
if (segcount > 0) {
/* resize array */
newsize= tree->totchannel + segcount;
oldchan= tree->pchan;
oldparent= tree->parent;
tree->pchan= MEM_callocN(newsize*sizeof(void*), "ik tree pchan");
tree->parent= MEM_callocN(newsize*sizeof(int), "ik tree parent");
memcpy(tree->pchan, oldchan, sizeof(void*)*tree->totchannel);
memcpy(tree->parent, oldparent, sizeof(int)*tree->totchannel);
MEM_freeN(oldchan);
MEM_freeN(oldparent);
/* add new pose channels at the end, in reverse order */
for(a=0; a<segcount; a++) {
tree->pchan[tree->totchannel+a]= chanlist[segcount-a-1];
tree->parent[tree->totchannel+a]= tree->totchannel+a-1;
}
tree->parent[tree->totchannel]= parent;
tree->totchannel= newsize;
}
/* move tree to end of list, for correct evaluation order */
BLI_remlink(&pchan_root->iktree, tree);
BLI_addtail(&pchan_root->iktree, tree);
}
/* add target to the tree */
BLI_addtail(&tree->targets, target);
/* mark root channel having an IK tree */
pchan_root->flag |= POSE_IKTREE;
}
/* transform from bone(b) to bone(b+1), store in chan_mat */
static void make_dmats(bPoseChannel *pchan)
{
if (pchan->parent) {
float iR_parmat[4][4];
invert_m4_m4(iR_parmat, pchan->parent->pose_mat);
mul_m4_m4m4(pchan->chan_mat, pchan->pose_mat, iR_parmat); // delta mat
}
else copy_m4_m4(pchan->chan_mat, pchan->pose_mat);
}
/* applies IK matrix to pchan, IK is done separated */
/* formula: pose_mat(b) = pose_mat(b-1) * diffmat(b-1, b) * ik_mat(b) */
/* to make this work, the diffmats have to be precalculated! Stored in chan_mat */
static void where_is_ik_bone(bPoseChannel *pchan, float ik_mat[][3]) // nr = to detect if this is first bone
{
float vec[3], ikmat[4][4];
copy_m4_m3(ikmat, ik_mat);
if (pchan->parent)
mul_serie_m4(pchan->pose_mat, pchan->parent->pose_mat, pchan->chan_mat, ikmat, NULL, NULL, NULL, NULL, NULL);
else
mul_m4_m4m4(pchan->pose_mat, ikmat, pchan->chan_mat);
/* calculate head */
VECCOPY(pchan->pose_head, pchan->pose_mat[3]);
/* calculate tail */
VECCOPY(vec, pchan->pose_mat[1]);
mul_v3_fl(vec, pchan->bone->length);
add_v3_v3v3(pchan->pose_tail, pchan->pose_head, vec);
pchan->flag |= POSE_DONE;
}
/* called from within the core where_is_pose loop, all animsystems and constraints
were executed & assigned. Now as last we do an IK pass */
static void execute_posetree(struct Scene *scene, Object *ob, PoseTree *tree)
{
float R_parmat[3][3], identity[3][3];
float iR_parmat[3][3];
float R_bonemat[3][3];
float goalrot[3][3], goalpos[3];
float rootmat[4][4], imat[4][4];
float goal[4][4], goalinv[4][4];
float irest_basis[3][3], full_basis[3][3];
float end_pose[4][4], world_pose[4][4];
float length, basis[3][3], rest_basis[3][3], start[3], *ikstretch=NULL;
float resultinf=0.0f;
int a, flag, hasstretch=0, resultblend=0;
bPoseChannel *pchan;
IK_Segment *seg, *parent, **iktree, *iktarget;
IK_Solver *solver;
PoseTarget *target;
bKinematicConstraint *data, *poleangledata=NULL;
Bone *bone;
if (tree->totchannel == 0)
return;
iktree= MEM_mallocN(sizeof(void*)*tree->totchannel, "ik tree");
for(a=0; a<tree->totchannel; a++) {
pchan= tree->pchan[a];
bone= pchan->bone;
/* set DoF flag */
flag= 0;
if(!(pchan->ikflag & BONE_IK_NO_XDOF) && !(pchan->ikflag & BONE_IK_NO_XDOF_TEMP))
flag |= IK_XDOF;
if(!(pchan->ikflag & BONE_IK_NO_YDOF) && !(pchan->ikflag & BONE_IK_NO_YDOF_TEMP))
flag |= IK_YDOF;
if(!(pchan->ikflag & BONE_IK_NO_ZDOF) && !(pchan->ikflag & BONE_IK_NO_ZDOF_TEMP))
flag |= IK_ZDOF;
if(tree->stretch && (pchan->ikstretch > 0.0)) {
flag |= IK_TRANS_YDOF;
hasstretch = 1;
}
seg= iktree[a]= IK_CreateSegment(flag);
/* find parent */
if(a == 0)
parent= NULL;
else
parent= iktree[tree->parent[a]];
IK_SetParent(seg, parent);
/* get the matrix that transforms from prevbone into this bone */
copy_m3_m4(R_bonemat, pchan->pose_mat);
/* gather transformations for this IK segment */
if (pchan->parent)
copy_m3_m4(R_parmat, pchan->parent->pose_mat);
else
unit_m3(R_parmat);
/* bone offset */
if (pchan->parent && (a > 0))
sub_v3_v3v3(start, pchan->pose_head, pchan->parent->pose_tail);
else
/* only root bone (a = 0) has no parent */
start[0]= start[1]= start[2]= 0.0f;
/* change length based on bone size */
length= bone->length*len_v3(R_bonemat[1]);
/* compute rest basis and its inverse */
copy_m3_m3(rest_basis, bone->bone_mat);
copy_m3_m3(irest_basis, bone->bone_mat);
transpose_m3(irest_basis);
/* compute basis with rest_basis removed */
invert_m3_m3(iR_parmat, R_parmat);
mul_m3_m3m3(full_basis, iR_parmat, R_bonemat);
mul_m3_m3m3(basis, irest_basis, full_basis);
/* basis must be pure rotation */
normalize_m3(basis);
/* transform offset into local bone space */
normalize_m3(iR_parmat);
mul_m3_v3(iR_parmat, start);
IK_SetTransform(seg, start, rest_basis, basis, length);
if (pchan->ikflag & BONE_IK_XLIMIT)
IK_SetLimit(seg, IK_X, pchan->limitmin[0], pchan->limitmax[0]);
if (pchan->ikflag & BONE_IK_YLIMIT)
IK_SetLimit(seg, IK_Y, pchan->limitmin[1], pchan->limitmax[1]);
if (pchan->ikflag & BONE_IK_ZLIMIT)
IK_SetLimit(seg, IK_Z, pchan->limitmin[2], pchan->limitmax[2]);
IK_SetStiffness(seg, IK_X, pchan->stiffness[0]);
IK_SetStiffness(seg, IK_Y, pchan->stiffness[1]);
IK_SetStiffness(seg, IK_Z, pchan->stiffness[2]);
if(tree->stretch && (pchan->ikstretch > 0.0)) {
float ikstretch = pchan->ikstretch*pchan->ikstretch;
IK_SetStiffness(seg, IK_TRANS_Y, MIN2(1.0-ikstretch, 0.99));
IK_SetLimit(seg, IK_TRANS_Y, 0.001, 1e10);
}
}
solver= IK_CreateSolver(iktree[0]);
/* set solver goals */
/* first set the goal inverse transform, assuming the root of tree was done ok! */
pchan= tree->pchan[0];
if (pchan->parent)
/* transform goal by parent mat, so this rotation is not part of the
segment's basis. otherwise rotation limits do not work on the
local transform of the segment itself. */
copy_m4_m4(rootmat, pchan->parent->pose_mat);
else
unit_m4(rootmat);
VECCOPY(rootmat[3], pchan->pose_head);
mul_m4_m4m4(imat, rootmat, ob->obmat);
invert_m4_m4(goalinv, imat);
for (target=tree->targets.first; target; target=target->next) {
float polepos[3];
int poleconstrain= 0;
data= (bKinematicConstraint*)target->con->data;
/* 1.0=ctime, we pass on object for auto-ik (owner-type here is object, even though
* strictly speaking, it is a posechannel)
*/
get_constraint_target_matrix(scene, target->con, 0, CONSTRAINT_OBTYPE_OBJECT, ob, rootmat, 1.0);
/* and set and transform goal */
mul_m4_m4m4(goal, rootmat, goalinv);
VECCOPY(goalpos, goal[3]);
copy_m3_m4(goalrot, goal);
/* same for pole vector target */
if(data->poletar) {
get_constraint_target_matrix(scene, target->con, 1, CONSTRAINT_OBTYPE_OBJECT, ob, rootmat, 1.0);
if(data->flag & CONSTRAINT_IK_SETANGLE) {
/* don't solve IK when we are setting the pole angle */
break;
}
else {
mul_m4_m4m4(goal, rootmat, goalinv);
VECCOPY(polepos, goal[3]);
poleconstrain= 1;
/* for pole targets, we blend the result of the ik solver
* instead of the target position, otherwise we can't get
* a smooth transition */
resultblend= 1;
resultinf= target->con->enforce;
if(data->flag & CONSTRAINT_IK_GETANGLE) {
poleangledata= data;
data->flag &= ~CONSTRAINT_IK_GETANGLE;
}
}
}
/* do we need blending? */
if (!resultblend && target->con->enforce!=1.0) {
float q1[4], q2[4], q[4];
float fac= target->con->enforce;
float mfac= 1.0-fac;
pchan= tree->pchan[target->tip];
/* end effector in world space */
copy_m4_m4(end_pose, pchan->pose_mat);
VECCOPY(end_pose[3], pchan->pose_tail);
mul_serie_m4(world_pose, goalinv, ob->obmat, end_pose, 0, 0, 0, 0, 0);
/* blend position */
goalpos[0]= fac*goalpos[0] + mfac*world_pose[3][0];
goalpos[1]= fac*goalpos[1] + mfac*world_pose[3][1];
goalpos[2]= fac*goalpos[2] + mfac*world_pose[3][2];
/* blend rotation */
mat3_to_quat( q1,goalrot);
mat4_to_quat( q2,world_pose);
interp_qt_qtqt(q, q1, q2, mfac);
quat_to_mat3( goalrot,q);
}
iktarget= iktree[target->tip];
if(data->weight != 0.0) {
if(poleconstrain)
IK_SolverSetPoleVectorConstraint(solver, iktarget, goalpos,
polepos, data->poleangle, (poleangledata == data));
IK_SolverAddGoal(solver, iktarget, goalpos, data->weight);
}
if((data->flag & CONSTRAINT_IK_ROT) && (data->orientweight != 0.0))
if((data->flag & CONSTRAINT_IK_AUTO)==0)
IK_SolverAddGoalOrientation(solver, iktarget, goalrot,
data->orientweight);
}
/* solve */
IK_Solve(solver, 0.0f, tree->iterations);
if(poleangledata)
poleangledata->poleangle= IK_SolverGetPoleAngle(solver);
IK_FreeSolver(solver);
/* gather basis changes */
tree->basis_change= MEM_mallocN(sizeof(float[3][3])*tree->totchannel, "ik basis change");
if(hasstretch)
ikstretch= MEM_mallocN(sizeof(float)*tree->totchannel, "ik stretch");
for(a=0; a<tree->totchannel; a++) {
IK_GetBasisChange(iktree[a], tree->basis_change[a]);
if(hasstretch) {
/* have to compensate for scaling received from parent */
float parentstretch, stretch;
pchan= tree->pchan[a];
parentstretch= (tree->parent[a] >= 0)? ikstretch[tree->parent[a]]: 1.0;
if(tree->stretch && (pchan->ikstretch > 0.0)) {
float trans[3], length;
IK_GetTranslationChange(iktree[a], trans);
length= pchan->bone->length*len_v3(pchan->pose_mat[1]);
ikstretch[a]= (length == 0.0)? 1.0: (trans[1]+length)/length;
}
else
ikstretch[a] = 1.0;
stretch= (parentstretch == 0.0)? 1.0: ikstretch[a]/parentstretch;
mul_v3_fl(tree->basis_change[a][0], stretch);
mul_v3_fl(tree->basis_change[a][1], stretch);
mul_v3_fl(tree->basis_change[a][2], stretch);
}
if(resultblend && resultinf!=1.0f) {
unit_m3(identity);
blend_m3_m3m3(tree->basis_change[a], identity,
tree->basis_change[a], resultinf);
}
IK_FreeSegment(iktree[a]);
}
MEM_freeN(iktree);
if(ikstretch) MEM_freeN(ikstretch);
}
static void free_posetree(PoseTree *tree)
{
BLI_freelistN(&tree->targets);
if(tree->pchan) MEM_freeN(tree->pchan);
if(tree->parent) MEM_freeN(tree->parent);
if(tree->basis_change) MEM_freeN(tree->basis_change);
MEM_freeN(tree);
}
///----------------------------------------
/// Plugin API for legacy iksolver
void iksolver_initialize_tree(struct Scene *scene, struct Object *ob, float ctime)
{
bPoseChannel *pchan;
for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
if(pchan->constflag & PCHAN_HAS_IK) // flag is set on editing constraints
initialize_posetree(ob, pchan); // will attach it to root!
}
ob->pose->flag &= ~POSE_WAS_REBUILT;
}
void iksolver_execute_tree(struct Scene *scene, struct Object *ob, struct bPoseChannel *pchan, float ctime)
{
while(pchan->iktree.first) {
PoseTree *tree= pchan->iktree.first;
int a;
/* stop on the first tree that isn't a standard IK chain */
if (tree->type != CONSTRAINT_TYPE_KINEMATIC)
return;
/* 4. walk over the tree for regular solving */
for(a=0; a<tree->totchannel; a++) {
if(!(tree->pchan[a]->flag & POSE_DONE)) // successive trees can set the flag
where_is_pose_bone(scene, ob, tree->pchan[a], ctime, 1);
// tell blender that this channel was controlled by IK, it's cleared on each where_is_pose()
tree->pchan[a]->flag |= POSE_CHAIN;
}
/* 5. execute the IK solver */
execute_posetree(scene, ob, tree);
/* 6. apply the differences to the channels,
we need to calculate the original differences first */
for(a=0; a<tree->totchannel; a++)
make_dmats(tree->pchan[a]);
for(a=0; a<tree->totchannel; a++)
/* sets POSE_DONE */
where_is_ik_bone(tree->pchan[a], tree->basis_change[a]);
/* 7. and free */
BLI_remlink(&pchan->iktree, tree);
free_posetree(tree);
}
}