This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/BLI_math_base.h
Campbell Barton 3d3bc74884 Cleanup: remove redundant const qualifiers for POD types
MSVC used to warn about const mismatch for arguments passed by value.
Remove these as newer versions of MSVC no longer show this warning.
2022-01-07 14:16:26 +11:00

383 lines
12 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: some of this file.
*/
#pragma once
/** \file
* \ingroup bli
*/
#if defined(_MSC_VER) && !defined(_USE_MATH_DEFINES)
# define _USE_MATH_DEFINES
#endif
#include "BLI_assert.h"
#include "BLI_math_inline.h"
#include "BLI_sys_types.h"
#include <math.h>
#ifndef M_PI
# define M_PI 3.14159265358979323846 /* pi */
#endif
#ifndef M_PI_2
# define M_PI_2 1.57079632679489661923 /* pi/2 */
#endif
#ifndef M_PI_4
# define M_PI_4 0.78539816339744830962 /* pi/4 */
#endif
#ifndef M_SQRT2
# define M_SQRT2 1.41421356237309504880 /* sqrt(2) */
#endif
#ifndef M_SQRT1_2
# define M_SQRT1_2 0.70710678118654752440 /* 1/sqrt(2) */
#endif
#ifndef M_SQRT3
# define M_SQRT3 1.73205080756887729352 /* sqrt(3) */
#endif
#ifndef M_SQRT1_3
# define M_SQRT1_3 0.57735026918962576450 /* 1/sqrt(3) */
#endif
#ifndef M_1_PI
# define M_1_PI 0.318309886183790671538 /* 1/pi */
#endif
#ifndef M_E
# define M_E 2.7182818284590452354 /* e */
#endif
#ifndef M_LOG2E
# define M_LOG2E 1.4426950408889634074 /* log_2 e */
#endif
#ifndef M_LOG10E
# define M_LOG10E 0.43429448190325182765 /* log_10 e */
#endif
#ifndef M_LN2
# define M_LN2 0.69314718055994530942 /* log_e 2 */
#endif
#ifndef M_LN10
# define M_LN10 2.30258509299404568402 /* log_e 10 */
#endif
#if defined(__GNUC__)
# define NAN_FLT __builtin_nanf("")
#else /* evil quiet NaN definition */
static const int NAN_INT = 0x7FC00000;
# define NAN_FLT (*((float *)(&NAN_INT)))
#endif
#if BLI_MATH_DO_INLINE
# include "intern/math_base_inline.c"
#endif
#ifdef BLI_MATH_GCC_WARN_PRAGMA
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wredundant-decls"
#endif
#ifdef __cplusplus
extern "C" {
#endif
/******************************* Float ******************************/
/* `powf` is really slow for raising to integer powers. */
MINLINE float pow2f(float x);
MINLINE float pow3f(float x);
MINLINE float pow4f(float x);
MINLINE float pow7f(float x);
MINLINE float sqrt3f(float f);
MINLINE double sqrt3d(double d);
MINLINE float sqrtf_signed(float f);
MINLINE float saacosf(float f);
MINLINE float saasinf(float f);
MINLINE float sasqrtf(float f);
MINLINE float saacos(float fac);
MINLINE float saasin(float fac);
MINLINE float sasqrt(float fac);
MINLINE float interpf(float a, float b, float t);
MINLINE double interpd(double a, double b, double t);
MINLINE float ratiof(float min, float max, float pos);
MINLINE double ratiod(double min, double max, double pos);
/**
* Map a normalized value, i.e. from interval [0, 1] to interval [a, b].
*/
MINLINE float scalenorm(float a, float b, float x);
/**
* Map a normalized value, i.e. from interval [0, 1] to interval [a, b].
*/
MINLINE double scalenormd(double a, double b, double x);
/* NOTE: Compilers will upcast all types smaller than int to int when performing arithmetic
* operation. */
MINLINE int square_s(short a);
MINLINE int square_uchar(unsigned char a);
MINLINE int cube_s(short a);
MINLINE int cube_uchar(unsigned char a);
MINLINE int square_i(int a);
MINLINE unsigned int square_uint(unsigned int a);
MINLINE float square_f(float a);
MINLINE double square_d(double a);
MINLINE int cube_i(int a);
MINLINE unsigned int cube_uint(unsigned int a);
MINLINE float cube_f(float a);
MINLINE double cube_d(double a);
MINLINE float min_ff(float a, float b);
MINLINE float max_ff(float a, float b);
MINLINE float min_fff(float a, float b, float c);
MINLINE float max_fff(float a, float b, float c);
MINLINE float min_ffff(float a, float b, float c, float d);
MINLINE float max_ffff(float a, float b, float c, float d);
MINLINE double min_dd(double a, double b);
MINLINE double max_dd(double a, double b);
MINLINE int min_ii(int a, int b);
MINLINE int max_ii(int a, int b);
MINLINE int min_iii(int a, int b, int c);
MINLINE int max_iii(int a, int b, int c);
MINLINE int min_iiii(int a, int b, int c, int d);
MINLINE int max_iiii(int a, int b, int c, int d);
MINLINE uint min_uu(uint a, uint b);
MINLINE uint max_uu(uint a, uint b);
MINLINE size_t min_zz(size_t a, size_t b);
MINLINE size_t max_zz(size_t a, size_t b);
MINLINE char min_cc(char a, char b);
MINLINE char max_cc(char a, char b);
MINLINE int clamp_i(int value, int min, int max);
MINLINE float clamp_f(float value, float min, float max);
MINLINE size_t clamp_z(size_t value, size_t min, size_t max);
/**
* Almost-equal for IEEE floats, using absolute difference method.
*
* \param max_diff: the maximum absolute difference.
*/
MINLINE int compare_ff(float a, float b, float max_diff);
/**
* Almost-equal for IEEE floats, using their integer representation
* (mixing ULP and absolute difference methods).
*
* \param max_diff: is the maximum absolute difference (allows to take care of the near-zero area,
* where relative difference methods cannot really work).
* \param max_ulps: is the 'maximum number of floats + 1'
* allowed between \a a and \a b to consider them equal.
*
* \see https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
*/
MINLINE int compare_ff_relative(float a, float b, float max_diff, int max_ulps);
MINLINE bool compare_threshold_relative(float value1, float value2, float thresh);
MINLINE float signf(float f);
MINLINE int signum_i_ex(float a, float eps);
MINLINE int signum_i(float a);
/**
* Used for zoom values.
*/
MINLINE float power_of_2(float f);
/**
* Returns number of (base ten) *significant* digits of integer part of given float
* (negative in case of decimal-only floats, 0.01 returns -1 e.g.).
*/
MINLINE int integer_digits_f(float f);
/**
* Returns number of (base ten) *significant* digits of integer part of given double
* (negative in case of decimal-only floats, 0.01 returns -1 e.g.).
*/
MINLINE int integer_digits_d(double d);
MINLINE int integer_digits_i(int i);
/* These don't really fit anywhere but were being copied about a lot. */
MINLINE int is_power_of_2_i(int n);
MINLINE int power_of_2_max_i(int n);
MINLINE int power_of_2_min_i(int n);
MINLINE unsigned int power_of_2_max_u(unsigned int x);
MINLINE unsigned int power_of_2_min_u(unsigned int x);
MINLINE unsigned int log2_floor_u(unsigned int x);
MINLINE unsigned int log2_ceil_u(unsigned int x);
/**
* Integer division that rounds 0.5 up, particularly useful for color blending
* with integers, to avoid gradual darkening when rounding down.
*/
MINLINE int divide_round_i(int a, int b);
/**
* modulo that handles negative numbers, works the same as Python's.
*/
MINLINE int mod_i(int i, int n);
/**
* Round to closest even number, halfway cases are rounded away from zero.
*/
MINLINE float round_to_even(float f);
MINLINE signed char round_fl_to_char(float a);
MINLINE unsigned char round_fl_to_uchar(float a);
MINLINE short round_fl_to_short(float a);
MINLINE unsigned short round_fl_to_ushort(float a);
MINLINE int round_fl_to_int(float a);
MINLINE unsigned int round_fl_to_uint(float a);
MINLINE signed char round_db_to_char(double a);
MINLINE unsigned char round_db_to_uchar(double a);
MINLINE short round_db_to_short(double a);
MINLINE unsigned short round_db_to_ushort(double a);
MINLINE int round_db_to_int(double a);
MINLINE unsigned int round_db_to_uint(double a);
MINLINE signed char round_fl_to_char_clamp(float a);
MINLINE unsigned char round_fl_to_uchar_clamp(float a);
MINLINE short round_fl_to_short_clamp(float a);
MINLINE unsigned short round_fl_to_ushort_clamp(float a);
MINLINE int round_fl_to_int_clamp(float a);
MINLINE unsigned int round_fl_to_uint_clamp(float a);
MINLINE signed char round_db_to_char_clamp(double a);
MINLINE unsigned char round_db_to_uchar_clamp(double a);
MINLINE short round_db_to_short_clamp(double a);
MINLINE unsigned short round_db_to_ushort_clamp(double a);
MINLINE int round_db_to_int_clamp(double a);
MINLINE unsigned int round_db_to_uint_clamp(double a);
int pow_i(int base, int exp);
/**
* \param ndigits: must be between 0 and 21.
*/
double double_round(double x, int ndigits);
/**
* Floor to the nearest power of 10, e.g.:
* - 15.0 -> 10.0
* - 0.015 -> 0.01
* - 1.0 -> 1.0
*
* \param f: Value to floor, must be over 0.0.
* \note If we wanted to support signed values we could if this becomes necessary.
*/
float floor_power_of_10(float f);
/**
* Ceiling to the nearest power of 10, e.g.:
* - 15.0 -> 100.0
* - 0.015 -> 0.1
* - 1.0 -> 1.0
*
* \param f: Value to ceiling, must be over 0.0.
* \note If we wanted to support signed values we could if this becomes necessary.
*/
float ceil_power_of_10(float f);
#ifdef BLI_MATH_GCC_WARN_PRAGMA
# pragma GCC diagnostic pop
#endif
/* Asserts, some math functions expect normalized inputs
* check the vector is unit length, or zero length (which can't be helped in some cases). */
#ifndef NDEBUG
/** \note 0.0001 is too small because normals may be converted from short's: see T34322. */
# define BLI_ASSERT_UNIT_EPSILON 0.0002f
# define BLI_ASSERT_UNIT_EPSILON_DB 0.0002
/**
* \note Checks are flipped so NAN doesn't assert.
* This is done because we're making sure the value was normalized and in the case we
* don't want NAN to be raising asserts since there is nothing to be done in that case.
*/
# define BLI_ASSERT_UNIT_V3(v) \
{ \
const float _test_unit = len_squared_v3(v); \
BLI_assert(!(fabsf(_test_unit - 1.0f) >= BLI_ASSERT_UNIT_EPSILON) || \
!(fabsf(_test_unit) >= BLI_ASSERT_UNIT_EPSILON)); \
} \
(void)0
# define BLI_ASSERT_UNIT_V3_DB(v) \
{ \
const double _test_unit = len_squared_v3_db(v); \
BLI_assert(!(fabs(_test_unit - 1.0) >= BLI_ASSERT_UNIT_EPSILON_DB) || \
!(fabs(_test_unit) >= BLI_ASSERT_UNIT_EPSILON_DB)); \
} \
(void)0
# define BLI_ASSERT_UNIT_V2(v) \
{ \
const float _test_unit = len_squared_v2(v); \
BLI_assert(!(fabsf(_test_unit - 1.0f) >= BLI_ASSERT_UNIT_EPSILON) || \
!(fabsf(_test_unit) >= BLI_ASSERT_UNIT_EPSILON)); \
} \
(void)0
# define BLI_ASSERT_UNIT_QUAT(q) \
{ \
const float _test_unit = dot_qtqt(q, q); \
BLI_assert(!(fabsf(_test_unit - 1.0f) >= BLI_ASSERT_UNIT_EPSILON * 10) || \
!(fabsf(_test_unit) >= BLI_ASSERT_UNIT_EPSILON * 10)); \
} \
(void)0
# define BLI_ASSERT_ZERO_M3(m) \
{ \
BLI_assert(dot_vn_vn((const float *)m, (const float *)m, 9) != 0.0); \
} \
(void)0
# define BLI_ASSERT_ZERO_M4(m) \
{ \
BLI_assert(dot_vn_vn((const float *)m, (const float *)m, 16) != 0.0); \
} \
(void)0
# define BLI_ASSERT_UNIT_M3(m) \
{ \
BLI_ASSERT_UNIT_V3((m)[0]); \
BLI_ASSERT_UNIT_V3((m)[1]); \
BLI_ASSERT_UNIT_V3((m)[2]); \
} \
(void)0
#else
# define BLI_ASSERT_UNIT_V2(v) (void)(v)
# define BLI_ASSERT_UNIT_V3(v) (void)(v)
# define BLI_ASSERT_UNIT_V3_DB(v) (void)(v)
# define BLI_ASSERT_UNIT_QUAT(v) (void)(v)
# define BLI_ASSERT_ZERO_M3(m) (void)(m)
# define BLI_ASSERT_ZERO_M4(m) (void)(m)
# define BLI_ASSERT_UNIT_M3(m) (void)(m)
#endif
#ifdef __cplusplus
}
#endif