468 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			468 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | |
|  */
 | |
| 
 | |
| /** \file
 | |
|  * \ingroup mathutils
 | |
|  *
 | |
|  * This file defines the 'mathutils.kdtree' module, a general purpose module to access
 | |
|  * blenders kdtree for 3d spatial lookups.
 | |
|  */
 | |
| 
 | |
| #include <Python.h>
 | |
| 
 | |
| #include "MEM_guardedalloc.h"
 | |
| 
 | |
| #include "BLI_utildefines.h"
 | |
| #include "BLI_kdtree.h"
 | |
| 
 | |
| #include "../generic/py_capi_utils.h"
 | |
| #include "../generic/python_utildefines.h"
 | |
| 
 | |
| #include "mathutils.h"
 | |
| #include "mathutils_kdtree.h" /* own include */
 | |
| 
 | |
| #include "BLI_strict_flags.h"
 | |
| 
 | |
| typedef struct {
 | |
|   PyObject_HEAD KDTree_3d *obj;
 | |
|   unsigned int maxsize;
 | |
|   unsigned int count;
 | |
|   unsigned int count_balance; /* size when we last balanced */
 | |
| } PyKDTree;
 | |
| 
 | |
| /* -------------------------------------------------------------------- */
 | |
| /* Utility helper functions */
 | |
| 
 | |
| static void kdtree_nearest_to_py_tuple(const KDTreeNearest_3d *nearest, PyObject *py_retval)
 | |
| {
 | |
|   BLI_assert(nearest->index >= 0);
 | |
|   BLI_assert(PyTuple_GET_SIZE(py_retval) == 3);
 | |
| 
 | |
|   PyTuple_SET_ITEMS(py_retval,
 | |
|                     Vector_CreatePyObject((float *)nearest->co, 3, NULL),
 | |
|                     PyLong_FromLong(nearest->index),
 | |
|                     PyFloat_FromDouble(nearest->dist));
 | |
| }
 | |
| 
 | |
| static PyObject *kdtree_nearest_to_py(const KDTreeNearest_3d *nearest)
 | |
| {
 | |
|   PyObject *py_retval;
 | |
| 
 | |
|   py_retval = PyTuple_New(3);
 | |
| 
 | |
|   kdtree_nearest_to_py_tuple(nearest, py_retval);
 | |
| 
 | |
|   return py_retval;
 | |
| }
 | |
| 
 | |
| static PyObject *kdtree_nearest_to_py_and_check(const KDTreeNearest_3d *nearest)
 | |
| {
 | |
|   PyObject *py_retval;
 | |
| 
 | |
|   py_retval = PyTuple_New(3);
 | |
| 
 | |
|   if (nearest->index != -1) {
 | |
|     kdtree_nearest_to_py_tuple(nearest, py_retval);
 | |
|   }
 | |
|   else {
 | |
|     PyC_Tuple_Fill(py_retval, Py_None);
 | |
|   }
 | |
| 
 | |
|   return py_retval;
 | |
| }
 | |
| 
 | |
| /* -------------------------------------------------------------------- */
 | |
| /* KDTree */
 | |
| 
 | |
| /* annoying since arg parsing won't check overflow */
 | |
| #define UINT_IS_NEG(n) ((n) > INT_MAX)
 | |
| 
 | |
| static int PyKDTree__tp_init(PyKDTree *self, PyObject *args, PyObject *kwargs)
 | |
| {
 | |
|   unsigned int maxsize;
 | |
|   const char *keywords[] = {"size", NULL};
 | |
| 
 | |
|   if (!PyArg_ParseTupleAndKeywords(args, kwargs, "I:KDTree", (char **)keywords, &maxsize)) {
 | |
|     return -1;
 | |
|   }
 | |
| 
 | |
|   if (UINT_IS_NEG(maxsize)) {
 | |
|     PyErr_SetString(PyExc_ValueError, "negative 'size' given");
 | |
|     return -1;
 | |
|   }
 | |
| 
 | |
|   self->obj = BLI_kdtree_3d_new(maxsize);
 | |
|   self->maxsize = maxsize;
 | |
|   self->count = 0;
 | |
|   self->count_balance = 0;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static void PyKDTree__tp_dealloc(PyKDTree *self)
 | |
| {
 | |
|   BLI_kdtree_3d_free(self->obj);
 | |
|   Py_TYPE(self)->tp_free((PyObject *)self);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(py_kdtree_insert_doc,
 | |
|              ".. method:: insert(co, index)\n"
 | |
|              "\n"
 | |
|              "   Insert a point into the KDTree.\n"
 | |
|              "\n"
 | |
|              "   :arg co: Point 3d position.\n"
 | |
|              "   :type co: float triplet\n"
 | |
|              "   :arg index: The index of the point.\n"
 | |
|              "   :type index: int\n");
 | |
| static PyObject *py_kdtree_insert(PyKDTree *self, PyObject *args, PyObject *kwargs)
 | |
| {
 | |
|   PyObject *py_co;
 | |
|   float co[3];
 | |
|   int index;
 | |
|   const char *keywords[] = {"co", "index", NULL};
 | |
| 
 | |
|   if (!PyArg_ParseTupleAndKeywords(
 | |
|           args, kwargs, (char *)"Oi:insert", (char **)keywords, &py_co, &index)) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (mathutils_array_parse(co, 3, 3, py_co, "insert: invalid 'co' arg") == -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (index < 0) {
 | |
|     PyErr_SetString(PyExc_ValueError, "negative index given");
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (self->count >= self->maxsize) {
 | |
|     PyErr_SetString(PyExc_RuntimeError, "Trying to insert more items than KDTree has room for");
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   BLI_kdtree_3d_insert(self->obj, index, co);
 | |
|   self->count++;
 | |
| 
 | |
|   Py_RETURN_NONE;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(py_kdtree_balance_doc,
 | |
|              ".. method:: balance()\n"
 | |
|              "\n"
 | |
|              "   Balance the tree.\n"
 | |
|              "\n"
 | |
|              ".. note::\n"
 | |
|              "\n"
 | |
|              "   This builds the entire tree, avoid calling after each insertion.\n");
 | |
| static PyObject *py_kdtree_balance(PyKDTree *self)
 | |
| {
 | |
|   BLI_kdtree_3d_balance(self->obj);
 | |
|   self->count_balance = self->count;
 | |
|   Py_RETURN_NONE;
 | |
| }
 | |
| 
 | |
| struct PyKDTree_NearestData {
 | |
|   PyObject *py_filter;
 | |
|   bool is_error;
 | |
| };
 | |
| 
 | |
| static int py_find_nearest_cb(void *user_data, int index, const float co[3], float dist_sq)
 | |
| {
 | |
|   UNUSED_VARS(co, dist_sq);
 | |
| 
 | |
|   struct PyKDTree_NearestData *data = user_data;
 | |
| 
 | |
|   PyObject *py_args = PyTuple_New(1);
 | |
|   PyTuple_SET_ITEM(py_args, 0, PyLong_FromLong(index));
 | |
|   PyObject *result = PyObject_CallObject(data->py_filter, py_args);
 | |
|   Py_DECREF(py_args);
 | |
| 
 | |
|   if (result) {
 | |
|     bool use_node;
 | |
|     int ok = PyC_ParseBool(result, &use_node);
 | |
|     Py_DECREF(result);
 | |
|     if (ok) {
 | |
|       return (int)use_node;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   data->is_error = true;
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(py_kdtree_find_doc,
 | |
|              ".. method:: find(co, filter=None)\n"
 | |
|              "\n"
 | |
|              "   Find nearest point to ``co``.\n"
 | |
|              "\n"
 | |
|              "   :arg co: 3d coordinates.\n"
 | |
|              "   :type co: float triplet\n"
 | |
|              "   :arg filter: function which takes an index and returns True for indices to "
 | |
|              "include in the search.\n"
 | |
|              "   :type filter: callable\n"
 | |
|              "   :return: Returns (:class:`Vector`, index, distance).\n"
 | |
|              "   :rtype: :class:`tuple`\n");
 | |
| static PyObject *py_kdtree_find(PyKDTree *self, PyObject *args, PyObject *kwargs)
 | |
| {
 | |
|   PyObject *py_co, *py_filter = NULL;
 | |
|   float co[3];
 | |
|   KDTreeNearest_3d nearest;
 | |
|   const char *keywords[] = {"co", "filter", NULL};
 | |
| 
 | |
|   if (!PyArg_ParseTupleAndKeywords(
 | |
|           args, kwargs, (char *)"O|O:find", (char **)keywords, &py_co, &py_filter)) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (mathutils_array_parse(co, 3, 3, py_co, "find: invalid 'co' arg") == -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (self->count != self->count_balance) {
 | |
|     PyErr_SetString(PyExc_RuntimeError, "KDTree must be balanced before calling find()");
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   nearest.index = -1;
 | |
| 
 | |
|   if (py_filter == NULL) {
 | |
|     BLI_kdtree_3d_find_nearest(self->obj, co, &nearest);
 | |
|   }
 | |
|   else {
 | |
|     struct PyKDTree_NearestData data = {0};
 | |
| 
 | |
|     data.py_filter = py_filter;
 | |
|     data.is_error = false;
 | |
| 
 | |
|     BLI_kdtree_3d_find_nearest_cb(self->obj, co, py_find_nearest_cb, &data, &nearest);
 | |
| 
 | |
|     if (data.is_error) {
 | |
|       return NULL;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return kdtree_nearest_to_py_and_check(&nearest);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(py_kdtree_find_n_doc,
 | |
|              ".. method:: find_n(co, n)\n"
 | |
|              "\n"
 | |
|              "   Find nearest ``n`` points to ``co``.\n"
 | |
|              "\n"
 | |
|              "   :arg co: 3d coordinates.\n"
 | |
|              "   :type co: float triplet\n"
 | |
|              "   :arg n: Number of points to find.\n"
 | |
|              "   :type n: int\n"
 | |
|              "   :return: Returns a list of tuples (:class:`Vector`, index, distance).\n"
 | |
|              "   :rtype: :class:`list`\n");
 | |
| static PyObject *py_kdtree_find_n(PyKDTree *self, PyObject *args, PyObject *kwargs)
 | |
| {
 | |
|   PyObject *py_list;
 | |
|   PyObject *py_co;
 | |
|   float co[3];
 | |
|   KDTreeNearest_3d *nearest;
 | |
|   unsigned int n;
 | |
|   int i, found;
 | |
|   const char *keywords[] = {"co", "n", NULL};
 | |
| 
 | |
|   if (!PyArg_ParseTupleAndKeywords(
 | |
|           args, kwargs, (char *)"OI:find_n", (char **)keywords, &py_co, &n)) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (mathutils_array_parse(co, 3, 3, py_co, "find_n: invalid 'co' arg") == -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (UINT_IS_NEG(n)) {
 | |
|     PyErr_SetString(PyExc_RuntimeError, "negative 'n' given");
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (self->count != self->count_balance) {
 | |
|     PyErr_SetString(PyExc_RuntimeError, "KDTree must be balanced before calling find_n()");
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   nearest = MEM_mallocN(sizeof(KDTreeNearest_3d) * n, __func__);
 | |
| 
 | |
|   found = BLI_kdtree_3d_find_nearest_n(self->obj, co, nearest, n);
 | |
| 
 | |
|   py_list = PyList_New(found);
 | |
| 
 | |
|   for (i = 0; i < found; i++) {
 | |
|     PyList_SET_ITEM(py_list, i, kdtree_nearest_to_py(&nearest[i]));
 | |
|   }
 | |
| 
 | |
|   MEM_freeN(nearest);
 | |
| 
 | |
|   return py_list;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(py_kdtree_find_range_doc,
 | |
|              ".. method:: find_range(co, radius)\n"
 | |
|              "\n"
 | |
|              "   Find all points within ``radius`` of ``co``.\n"
 | |
|              "\n"
 | |
|              "   :arg co: 3d coordinates.\n"
 | |
|              "   :type co: float triplet\n"
 | |
|              "   :arg radius: Distance to search for points.\n"
 | |
|              "   :type radius: float\n"
 | |
|              "   :return: Returns a list of tuples (:class:`Vector`, index, distance).\n"
 | |
|              "   :rtype: :class:`list`\n");
 | |
| static PyObject *py_kdtree_find_range(PyKDTree *self, PyObject *args, PyObject *kwargs)
 | |
| {
 | |
|   PyObject *py_list;
 | |
|   PyObject *py_co;
 | |
|   float co[3];
 | |
|   KDTreeNearest_3d *nearest = NULL;
 | |
|   float radius;
 | |
|   int i, found;
 | |
| 
 | |
|   const char *keywords[] = {"co", "radius", NULL};
 | |
| 
 | |
|   if (!PyArg_ParseTupleAndKeywords(
 | |
|           args, kwargs, (char *)"Of:find_range", (char **)keywords, &py_co, &radius)) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (mathutils_array_parse(co, 3, 3, py_co, "find_range: invalid 'co' arg") == -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (radius < 0.0f) {
 | |
|     PyErr_SetString(PyExc_RuntimeError, "negative radius given");
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (self->count != self->count_balance) {
 | |
|     PyErr_SetString(PyExc_RuntimeError, "KDTree must be balanced before calling find_range()");
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   found = BLI_kdtree_3d_range_search(self->obj, co, &nearest, radius);
 | |
| 
 | |
|   py_list = PyList_New(found);
 | |
| 
 | |
|   for (i = 0; i < found; i++) {
 | |
|     PyList_SET_ITEM(py_list, i, kdtree_nearest_to_py(&nearest[i]));
 | |
|   }
 | |
| 
 | |
|   if (nearest) {
 | |
|     MEM_freeN(nearest);
 | |
|   }
 | |
| 
 | |
|   return py_list;
 | |
| }
 | |
| 
 | |
| static PyMethodDef PyKDTree_methods[] = {
 | |
|     {"insert", (PyCFunction)py_kdtree_insert, METH_VARARGS | METH_KEYWORDS, py_kdtree_insert_doc},
 | |
|     {"balance", (PyCFunction)py_kdtree_balance, METH_NOARGS, py_kdtree_balance_doc},
 | |
|     {"find", (PyCFunction)py_kdtree_find, METH_VARARGS | METH_KEYWORDS, py_kdtree_find_doc},
 | |
|     {"find_n", (PyCFunction)py_kdtree_find_n, METH_VARARGS | METH_KEYWORDS, py_kdtree_find_n_doc},
 | |
|     {"find_range",
 | |
|      (PyCFunction)py_kdtree_find_range,
 | |
|      METH_VARARGS | METH_KEYWORDS,
 | |
|      py_kdtree_find_range_doc},
 | |
|     {NULL, NULL, 0, NULL},
 | |
| };
 | |
| 
 | |
| PyDoc_STRVAR(py_KDtree_doc,
 | |
|              "KdTree(size) -> new kd-tree initialized to hold ``size`` items.\n"
 | |
|              "\n"
 | |
|              ".. note::\n"
 | |
|              "\n"
 | |
|              "   :class:`KDTree.balance` must have been called before using any of the ``find`` "
 | |
|              "methods.\n");
 | |
| PyTypeObject PyKDTree_Type = {
 | |
|     PyVarObject_HEAD_INIT(NULL, 0) "KDTree", /* tp_name */
 | |
|     sizeof(PyKDTree),                        /* tp_basicsize */
 | |
|     0,                                       /* tp_itemsize */
 | |
|     /* methods */
 | |
|     (destructor)PyKDTree__tp_dealloc,       /* tp_dealloc */
 | |
|     (printfunc)NULL,                        /* tp_print */
 | |
|     NULL,                                   /* tp_getattr */
 | |
|     NULL,                                   /* tp_setattr */
 | |
|     NULL,                                   /* tp_compare */
 | |
|     NULL,                                   /* tp_repr */
 | |
|     NULL,                                   /* tp_as_number */
 | |
|     NULL,                                   /* tp_as_sequence */
 | |
|     NULL,                                   /* tp_as_mapping */
 | |
|     NULL,                                   /* tp_hash */
 | |
|     NULL,                                   /* tp_call */
 | |
|     NULL,                                   /* tp_str */
 | |
|     NULL,                                   /* tp_getattro */
 | |
|     NULL,                                   /* tp_setattro */
 | |
|     NULL,                                   /* tp_as_buffer */
 | |
|     Py_TPFLAGS_DEFAULT,                     /* tp_flags */
 | |
|     py_KDtree_doc,                          /* Documentation string */
 | |
|     NULL,                                   /* tp_traverse */
 | |
|     NULL,                                   /* tp_clear */
 | |
|     NULL,                                   /* tp_richcompare */
 | |
|     0,                                      /* tp_weaklistoffset */
 | |
|     NULL,                                   /* tp_iter */
 | |
|     NULL,                                   /* tp_iternext */
 | |
|     (struct PyMethodDef *)PyKDTree_methods, /* tp_methods */
 | |
|     NULL,                                   /* tp_members */
 | |
|     NULL,                                   /* tp_getset */
 | |
|     NULL,                                   /* tp_base */
 | |
|     NULL,                                   /* tp_dict */
 | |
|     NULL,                                   /* tp_descr_get */
 | |
|     NULL,                                   /* tp_descr_set */
 | |
|     0,                                      /* tp_dictoffset */
 | |
|     (initproc)PyKDTree__tp_init,            /* tp_init */
 | |
|     (allocfunc)PyType_GenericAlloc,         /* tp_alloc */
 | |
|     (newfunc)PyType_GenericNew,             /* tp_new */
 | |
|     (freefunc)0,                            /* tp_free */
 | |
|     NULL,                                   /* tp_is_gc */
 | |
|     NULL,                                   /* tp_bases */
 | |
|     NULL,                                   /* tp_mro */
 | |
|     NULL,                                   /* tp_cache */
 | |
|     NULL,                                   /* tp_subclasses */
 | |
|     NULL,                                   /* tp_weaklist */
 | |
|     (destructor)NULL,                       /* tp_del */
 | |
| };
 | |
| 
 | |
| PyDoc_STRVAR(py_kdtree_doc, "Generic 3-dimensional kd-tree to perform spatial searches.");
 | |
| static struct PyModuleDef kdtree_moduledef = {
 | |
|     PyModuleDef_HEAD_INIT,
 | |
|     "mathutils.kdtree", /* m_name */
 | |
|     py_kdtree_doc,      /* m_doc */
 | |
|     0,                  /* m_size */
 | |
|     NULL,               /* m_methods */
 | |
|     NULL,               /* m_reload */
 | |
|     NULL,               /* m_traverse */
 | |
|     NULL,               /* m_clear */
 | |
|     NULL,               /* m_free */
 | |
| };
 | |
| 
 | |
| PyMODINIT_FUNC PyInit_mathutils_kdtree(void)
 | |
| {
 | |
|   PyObject *m = PyModule_Create(&kdtree_moduledef);
 | |
| 
 | |
|   if (m == NULL) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   /* Register the 'KDTree' class */
 | |
|   if (PyType_Ready(&PyKDTree_Type)) {
 | |
|     return NULL;
 | |
|   }
 | |
|   PyModule_AddObject(m, "KDTree", (PyObject *)&PyKDTree_Type);
 | |
| 
 | |
|   return m;
 | |
| }
 |