
Fulfilling a very old feature request: a new Mesh Primitives module is introduced, which gives script writers access to the Blender mesh datablocks created from the "Add->Mesh" menu. You can now do this: from Blender import * me = Mesh.Primitives.UVsphere(10,20,3) # 10 segments, 20 rings, diameter 3 ob = Object.New('Mesh','mySphere') ob.link(me) sc = Scene.GetCurrent() sc.link(ob)
281 lines
8.3 KiB
C
281 lines
8.3 KiB
C
/*
|
|
* $Id$
|
|
*
|
|
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version. The Blender
|
|
* Foundation also sells licenses for use in proprietary software under
|
|
* the Blender License. See http://www.blender.org/BL/ for information
|
|
* about this.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* This is a new part of Blender, partially based on NMesh.c API.
|
|
*
|
|
* Contributor(s): Ken Hughes
|
|
*
|
|
* ***** END GPL/BL DUAL LICENSE BLOCK *****
|
|
*/
|
|
|
|
#include "Mesh.h" /*This must come first*/
|
|
|
|
#include "DNA_scene_types.h"
|
|
#include "BDR_editobject.h"
|
|
#include "BIF_editmesh.h"
|
|
#include "BKE_global.h"
|
|
#include "BKE_object.h"
|
|
#include "BKE_scene.h"
|
|
#include "BKE_library.h"
|
|
#include "blendef.h"
|
|
|
|
#include "gen_utils.h"
|
|
|
|
/*
|
|
* local helper procedure which does the dirty work of messing with the
|
|
* edit mesh, active objects, etc.
|
|
*/
|
|
|
|
static PyObject *make_mesh( int type, char *name, short tot, short seg,
|
|
short subdiv, float dia, float height, short ext, short fill )
|
|
{
|
|
float cent[3] = {0,0,0};
|
|
float imat[3][3]={{1,0,0},{0,1,0},{0,0,1}};
|
|
Mesh *me;
|
|
BPy_Mesh *obj;
|
|
Object *ob;
|
|
Base *base;
|
|
|
|
/* remember active object (if any) for later, so we can re-activate */
|
|
base = BASACT;
|
|
|
|
/* make a new object, "copy" to the editMesh structure */
|
|
ob = add_object(OB_MESH);
|
|
me = (Mesh *)ob->data;
|
|
G.obedit = BASACT->object;
|
|
make_editMesh( );
|
|
|
|
/* create the primitive in the edit mesh */
|
|
|
|
make_prim( type, imat, /* mesh type, transform matrix */
|
|
tot, seg, /* total vertices, segments */
|
|
subdiv, /* subdivisions (for Icosphere only) */
|
|
dia, -height, /* diameter-ish, height */
|
|
ext, fill, /* extrude, fill end faces */
|
|
cent ); /* location of center */
|
|
|
|
/* copy primitive back to the real mesh */
|
|
load_editMesh( );
|
|
free_editMesh( G.editMesh );
|
|
G.obedit = NULL;
|
|
|
|
/* remove object link to the data, then delete the object */
|
|
ob->data = NULL;
|
|
me->id.us = 0;
|
|
free_and_unlink_base(BASACT);
|
|
|
|
/* if there was an active object, reactivate it */
|
|
if( base )
|
|
scene_select_base(G.scene, base);
|
|
|
|
/* create the BPy_Mesh that wraps this mesh */
|
|
obj = (BPy_Mesh *)PyObject_NEW( BPy_Mesh, &Mesh_Type );
|
|
|
|
rename_id( &me->id, name );
|
|
obj->mesh = me;
|
|
obj->object = NULL;
|
|
obj->new = 1;
|
|
return (PyObject *) obj;
|
|
}
|
|
|
|
static PyObject *M_MeshPrim_Plane( PyObject *self_unused, PyObject *args )
|
|
{
|
|
float size = 2.0;
|
|
|
|
if( !PyArg_ParseTuple( args, "|f", &size ) )
|
|
return EXPP_ReturnPyObjError( PyExc_TypeError,
|
|
"expected optional float arg" );
|
|
|
|
size *= sqrt(2.0)/2.0;
|
|
return make_mesh( 0, "Plane", 4, 0, 0, size, -size, 0, 1 );
|
|
}
|
|
|
|
static PyObject *M_MeshPrim_Cube( PyObject *self_unused, PyObject *args )
|
|
{
|
|
float size = 2.0;
|
|
|
|
if( !PyArg_ParseTuple( args, "|f", &size ) )
|
|
return EXPP_ReturnPyObjError( PyExc_TypeError,
|
|
"expected optional float arg" );
|
|
|
|
size *= sqrt(2.0)/2.0;
|
|
return make_mesh( 1, "Cube", 4, 0, 0, size, -size, 1, 1 );
|
|
}
|
|
|
|
static PyObject *M_MeshPrim_Circle( PyObject *self_unused, PyObject *args )
|
|
{
|
|
int tot = 32;
|
|
float size = 2.0*sqrt(2.0);
|
|
|
|
if( !PyArg_ParseTuple( args, "|if", &tot, &size ) )
|
|
return EXPP_ReturnPyObjError( PyExc_TypeError,
|
|
"expected int and optional float arg" );
|
|
if( tot < 3 || tot > 100 )
|
|
return EXPP_ReturnPyObjError( PyExc_ValueError,
|
|
"number of vertices must be in the range [3:100]" );
|
|
|
|
size /= 2.0;
|
|
return make_mesh( 4, "Circle", tot, 0, 0, size, -size, 0, 0 );
|
|
}
|
|
|
|
static PyObject *M_MeshPrim_Cylinder( PyObject *self_unused, PyObject *args )
|
|
{
|
|
int tot = 32;
|
|
float size = 2.0*sqrt(2.0);
|
|
float len = 1.0;
|
|
|
|
if( !PyArg_ParseTuple( args, "|iff", &tot, &size, &len ) )
|
|
return EXPP_ReturnPyObjError( PyExc_TypeError,
|
|
"expected int and optional float arg" );
|
|
if( tot < 3 || tot > 100 )
|
|
return EXPP_ReturnPyObjError( PyExc_ValueError,
|
|
"number of vertices must be in the range [3:100]" );
|
|
|
|
size /= 2.0;
|
|
return make_mesh( 5, "Cylinder", tot, 0, 0, size, -len, 1, 1 );
|
|
}
|
|
|
|
static PyObject *M_MeshPrim_Tube( PyObject *self_unused, PyObject *args )
|
|
{
|
|
int tot = 32;
|
|
float size = 2.0*sqrt(2.0);
|
|
float len = 1.0;
|
|
|
|
if( !PyArg_ParseTuple( args, "|iff", &tot, &size, &len ) )
|
|
return EXPP_ReturnPyObjError( PyExc_TypeError,
|
|
"expected int and optional float arg" );
|
|
if( tot < 3 || tot > 100 )
|
|
return EXPP_ReturnPyObjError( PyExc_ValueError,
|
|
"number of vertices must be in the range [3:100]" );
|
|
|
|
size /= 2.0;
|
|
return make_mesh( 6, "Tube", tot, 0, 0, size, -len, 1, 0 );
|
|
}
|
|
|
|
static PyObject *M_MeshPrim_Cone( PyObject *self_unused, PyObject *args )
|
|
{
|
|
int tot = 32;
|
|
float size = 2.0*sqrt(2.0);
|
|
float len = 1.0;
|
|
|
|
if( !PyArg_ParseTuple( args, "|iff", &tot, &size, &len ) )
|
|
return EXPP_ReturnPyObjError( PyExc_TypeError,
|
|
"expected int and optional float arg" );
|
|
if( tot < 3 || tot > 100 )
|
|
return EXPP_ReturnPyObjError( PyExc_ValueError,
|
|
"number of vertices must be in the range [3:100]" );
|
|
|
|
size /= 2.0;
|
|
return make_mesh( 7, "Cone", tot, 0, 0, size, -len, 0, 1 );
|
|
}
|
|
|
|
static PyObject *M_MeshPrim_Grid( PyObject *self_unused, PyObject *args )
|
|
{
|
|
int xres = 32;
|
|
int yres = 32;
|
|
float size = 2.0;
|
|
|
|
if( !PyArg_ParseTuple( args, "|iif", &xres, &yres, &size ) )
|
|
return EXPP_ReturnPyObjError( PyExc_TypeError,
|
|
"expected two ints and an optional float arg" );
|
|
if( xres < 2 || xres > 100 || yres < 2 || yres > 100 )
|
|
return EXPP_ReturnPyObjError( PyExc_ValueError,
|
|
"resolution must be in the range [2:100]" );
|
|
|
|
size /= 2.0;
|
|
return make_mesh( 10, "Grid", xres, yres, 0, size, -size, 0, 0 );
|
|
}
|
|
|
|
static PyObject *M_MeshPrim_UVsphere( PyObject *self_unused, PyObject *args )
|
|
{
|
|
int segs = 32;
|
|
int rings = 32;
|
|
float size = 2.0*sqrt(2.0);
|
|
|
|
if( !PyArg_ParseTuple( args, "|iif", &segs, &rings, &size ) )
|
|
return EXPP_ReturnPyObjError( PyExc_TypeError,
|
|
"expected two ints and an optional float arg" );
|
|
if( segs < 3 || segs > 100 || rings < 3 || rings > 100 )
|
|
return EXPP_ReturnPyObjError( PyExc_ValueError,
|
|
"segments and rings must be in the range [3:100]" );
|
|
|
|
size /= 2.0;
|
|
return make_mesh( 11, "UVsphere", segs, rings, 0, size, -size, 0, 0 );
|
|
}
|
|
|
|
static PyObject *M_MeshPrim_Icosphere( PyObject *self_unused, PyObject *args )
|
|
{
|
|
int subdiv = 2;
|
|
float size = 2.0*sqrt(2.0);
|
|
|
|
if( !PyArg_ParseTuple( args, "|if", &subdiv, &size ) )
|
|
return EXPP_ReturnPyObjError( PyExc_TypeError,
|
|
"expected int and an optional float arg" );
|
|
if( subdiv < 1 || subdiv > 5 )
|
|
return EXPP_ReturnPyObjError( PyExc_ValueError,
|
|
"subdivisions must be in the range [1:5]" );
|
|
|
|
size /= 2.0;
|
|
return make_mesh( 12, "Icosphere", 0, 0, subdiv, size, -size, 0, 0 );
|
|
}
|
|
|
|
static PyObject *M_MeshPrim_Suzanne( PyObject *self_unused, PyObject *args )
|
|
{
|
|
return make_mesh( 13, "Monkey", 0, 0, 0, 0, 0, 0, 0 );
|
|
}
|
|
|
|
static struct PyMethodDef M_MeshPrim_methods[] = {
|
|
{"Plane", (PyCFunction)M_MeshPrim_Plane, METH_VARARGS,
|
|
"Create a plane mesh"},
|
|
{"Cube", (PyCFunction)M_MeshPrim_Cube, METH_VARARGS,
|
|
"Create a cube mesh"},
|
|
{"Circle", (PyCFunction)M_MeshPrim_Circle, METH_VARARGS,
|
|
"Create a circle mesh"},
|
|
{"Cylinder", (PyCFunction)M_MeshPrim_Cylinder, METH_VARARGS,
|
|
"Create a cylindrical mesh"},
|
|
{"Tube", (PyCFunction)M_MeshPrim_Tube, METH_VARARGS,
|
|
"Create a tube mesh"},
|
|
{"Cone", (PyCFunction)M_MeshPrim_Cone, METH_VARARGS,
|
|
"Create a conic mesh"},
|
|
{"Grid", (PyCFunction)M_MeshPrim_Grid, METH_VARARGS,
|
|
"Create a 2D grid mesh"},
|
|
{"UVsphere", (PyCFunction)M_MeshPrim_UVsphere, METH_VARARGS,
|
|
"Create a UV sphere mesh"},
|
|
{"Icosphere", (PyCFunction)M_MeshPrim_Icosphere, METH_VARARGS,
|
|
"Create a Ico sphere mesh"},
|
|
{"Monkey", (PyCFunction)M_MeshPrim_Suzanne, METH_NOARGS,
|
|
"Create a Suzanne mesh"},
|
|
{NULL, NULL, 0, NULL},
|
|
};
|
|
|
|
static char M_MeshPrim_doc[] = "The Blender.Mesh.Primitives submodule";
|
|
|
|
PyObject *MeshPrimitives_Init( void )
|
|
{
|
|
return Py_InitModule3( "Blender.Mesh.Primitives",
|
|
M_MeshPrim_methods, M_MeshPrim_doc );
|
|
}
|
|
|