This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/BLI_math_vector.hh
Hans Goudey 378022c797 BLI: Adjust interpolation to support integers, other tweaks
In order to allow interpolation of integers with a float, add a separate
template parameter for the factor and multiplication types.
Also move some helper constexpr variables to the "base" header
(reversing the dependency to "base" -> "vector").

This also adds a distance function for scalar types, which is
helpful to allow sharing code between vectors and basic types.

Differential Revision: https://developer.blender.org/D14446
2022-03-25 09:57:10 -05:00

389 lines
11 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2022 Blender Foundation. */
#pragma once
/** \file
* \ingroup bli
*/
#include <cmath>
#include <type_traits>
#include "BLI_math_base.hh"
#include "BLI_math_vec_types.hh"
#include "BLI_span.hh"
#include "BLI_utildefines.h"
namespace blender::math {
#ifndef NDEBUG
# define BLI_ASSERT_UNIT(v) \
{ \
const float _test_unit = length_squared(v); \
BLI_assert(!(std::abs(_test_unit - 1.0f) >= BLI_ASSERT_UNIT_EPSILON) || \
!(std::abs(_test_unit) >= BLI_ASSERT_UNIT_EPSILON)); \
} \
(void)0
#else
# define BLI_ASSERT_UNIT(v) (void)(v)
#endif
template<typename T, int Size> inline bool is_zero(const vec_base<T, Size> &a)
{
for (int i = 0; i < Size; i++) {
if (a[i] != T(0)) {
return false;
}
}
return true;
}
template<typename T, int Size> inline bool is_any_zero(const vec_base<T, Size> &a)
{
for (int i = 0; i < Size; i++) {
if (a[i] == T(0)) {
return true;
}
}
return false;
}
template<typename T, int Size> inline vec_base<T, Size> abs(const vec_base<T, Size> &a)
{
vec_base<T, Size> result;
for (int i = 0; i < Size; i++) {
result[i] = a[i] >= 0 ? a[i] : -a[i];
}
return result;
}
template<typename T, int Size>
inline vec_base<T, Size> min(const vec_base<T, Size> &a, const vec_base<T, Size> &b)
{
vec_base<T, Size> result;
for (int i = 0; i < Size; i++) {
result[i] = a[i] < b[i] ? a[i] : b[i];
}
return result;
}
template<typename T, int Size>
inline vec_base<T, Size> max(const vec_base<T, Size> &a, const vec_base<T, Size> &b)
{
vec_base<T, Size> result;
for (int i = 0; i < Size; i++) {
result[i] = a[i] > b[i] ? a[i] : b[i];
}
return result;
}
template<typename T, int Size>
inline vec_base<T, Size> clamp(const vec_base<T, Size> &a,
const vec_base<T, Size> &min,
const vec_base<T, Size> &max)
{
vec_base<T, Size> result = a;
for (int i = 0; i < Size; i++) {
result[i] = std::clamp(result[i], min[i], max[i]);
}
return result;
}
template<typename T, int Size>
inline vec_base<T, Size> clamp(const vec_base<T, Size> &a, const T &min, const T &max)
{
vec_base<T, Size> result = a;
for (int i = 0; i < Size; i++) {
result[i] = std::clamp(result[i], min, max);
}
return result;
}
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> mod(const vec_base<T, Size> &a, const vec_base<T, Size> &b)
{
vec_base<T, Size> result;
for (int i = 0; i < Size; i++) {
BLI_assert(b[i] != 0);
result[i] = std::fmod(a[i], b[i]);
}
return result;
}
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> mod(const vec_base<T, Size> &a, const T &b)
{
BLI_assert(b != 0);
vec_base<T, Size> result;
for (int i = 0; i < Size; i++) {
result[i] = std::fmod(a[i], b);
}
return result;
}
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline T safe_mod(const vec_base<T, Size> &a, const vec_base<T, Size> &b)
{
vec_base<T, Size> result;
for (int i = 0; i < Size; i++) {
result[i] = (b[i] != 0) ? std::fmod(a[i], b[i]) : 0;
}
return result;
}
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline T safe_mod(const vec_base<T, Size> &a, const T &b)
{
if (b == 0) {
return vec_base<T, Size>(0);
}
vec_base<T, Size> result;
for (int i = 0; i < Size; i++) {
result[i] = std::fmod(a[i], b);
}
return result;
}
template<typename T, int Size>
inline void min_max(const vec_base<T, Size> &vector,
vec_base<T, Size> &min,
vec_base<T, Size> &max)
{
min = math::min(vector, min);
max = math::max(vector, max);
}
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> safe_divide(const vec_base<T, Size> &a, const vec_base<T, Size> &b)
{
vec_base<T, Size> result;
for (int i = 0; i < Size; i++) {
result[i] = (b[i] == 0) ? 0 : a[i] / b[i];
}
return result;
}
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> safe_divide(const vec_base<T, Size> &a, const T &b)
{
return (b != 0) ? a / b : vec_base<T, Size>(0.0f);
}
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> floor(const vec_base<T, Size> &a)
{
vec_base<T, Size> result;
for (int i = 0; i < Size; i++) {
result[i] = std::floor(a[i]);
}
return result;
}
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> ceil(const vec_base<T, Size> &a)
{
vec_base<T, Size> result;
for (int i = 0; i < Size; i++) {
result[i] = std::ceil(a[i]);
}
return result;
}
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> fract(const vec_base<T, Size> &a)
{
vec_base<T, Size> result;
for (int i = 0; i < Size; i++) {
result[i] = a[i] - std::floor(a[i]);
}
return result;
}
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline T dot(const vec_base<T, Size> &a, const vec_base<T, Size> &b)
{
T result = a[0] * b[0];
for (int i = 1; i < Size; i++) {
result += a[i] * b[i];
}
return result;
}
template<typename T, int Size> inline T length_manhattan(const vec_base<T, Size> &a)
{
T result = std::abs(a[0]);
for (int i = 1; i < Size; i++) {
result += std::abs(a[i]);
}
return result;
}
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline T length_squared(const vec_base<T, Size> &a)
{
return dot(a, a);
}
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline T length(const vec_base<T, Size> &a)
{
return std::sqrt(length_squared(a));
}
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline T distance_manhattan(const vec_base<T, Size> &a, const vec_base<T, Size> &b)
{
return length_manhattan(a - b);
}
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline T distance_squared(const vec_base<T, Size> &a, const vec_base<T, Size> &b)
{
return length_squared(a - b);
}
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline T distance(const vec_base<T, Size> &a, const vec_base<T, Size> &b)
{
return length(a - b);
}
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> reflect(const vec_base<T, Size> &incident,
const vec_base<T, Size> &normal)
{
BLI_ASSERT_UNIT(normal);
return incident - 2.0 * dot(normal, incident) * normal;
}
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> refract(const vec_base<T, Size> &incident,
const vec_base<T, Size> &normal,
const T &eta)
{
float dot_ni = dot(normal, incident);
float k = 1.0f - eta * eta * (1.0f - dot_ni * dot_ni);
if (k < 0.0f) {
return vec_base<T, Size>(0.0f);
}
return eta * incident - (eta * dot_ni + sqrt(k)) * normal;
}
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> project(const vec_base<T, Size> &p, const vec_base<T, Size> &v_proj)
{
if (UNLIKELY(is_zero(v_proj))) {
return vec_base<T, Size>(0.0f);
}
return v_proj * (dot(p, v_proj) / dot(v_proj, v_proj));
}
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> normalize_and_get_length(const vec_base<T, Size> &v, T &out_length)
{
out_length = length_squared(v);
/* A larger value causes normalize errors in a scaled down models with camera extreme close. */
constexpr T threshold = std::is_same_v<T, double> ? 1.0e-70 : 1.0e-35f;
if (out_length > threshold) {
out_length = sqrt(out_length);
return v / out_length;
}
/* Either the vector is small or one of it's values contained `nan`. */
out_length = 0.0;
return vec_base<T, Size>(0.0);
}
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> normalize(const vec_base<T, Size> &v)
{
T len;
return normalize_and_get_length(v, len);
}
template<typename T, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, 3> cross(const vec_base<T, 3> &a, const vec_base<T, 3> &b)
{
return {a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x};
}
inline vec_base<float, 3> cross_high_precision(const vec_base<float, 3> &a,
const vec_base<float, 3> &b)
{
return {(float)((double)a.y * b.z - (double)a.z * b.y),
(float)((double)a.z * b.x - (double)a.x * b.z),
(float)((double)a.x * b.y - (double)a.y * b.x)};
}
template<typename T, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, 3> cross_poly(Span<vec_base<T, 3>> poly)
{
/* Newell's Method. */
int nv = static_cast<int>(poly.size());
if (nv < 3) {
return vec_base<T, 3>(0, 0, 0);
}
const vec_base<T, 3> *v_prev = &poly[nv - 1];
const vec_base<T, 3> *v_curr = &poly[0];
vec_base<T, 3> n(0, 0, 0);
for (int i = 0; i < nv;) {
n[0] = n[0] + ((*v_prev)[1] - (*v_curr)[1]) * ((*v_prev)[2] + (*v_curr)[2]);
n[1] = n[1] + ((*v_prev)[2] - (*v_curr)[2]) * ((*v_prev)[0] + (*v_curr)[0]);
n[2] = n[2] + ((*v_prev)[0] - (*v_curr)[0]) * ((*v_prev)[1] + (*v_curr)[1]);
v_prev = v_curr;
++i;
if (i < nv) {
v_curr = &poly[i];
}
}
return n;
}
template<typename T, typename FactorT, int Size, BLI_ENABLE_IF((is_math_float_type<FactorT>))>
inline vec_base<T, Size> interpolate(const vec_base<T, Size> &a,
const vec_base<T, Size> &b,
const FactorT &t)
{
return a * (1 - t) + b * t;
}
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> midpoint(const vec_base<T, Size> &a, const vec_base<T, Size> &b)
{
return (a + b) * 0.5;
}
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
inline vec_base<T, Size> faceforward(const vec_base<T, Size> &vector,
const vec_base<T, Size> &incident,
const vec_base<T, Size> &reference)
{
return (dot(reference, incident) < 0) ? vector : -vector;
}
template<typename T> inline int dominant_axis(const vec_base<T, 3> &a)
{
vec_base<T, 3> b = abs(a);
return ((b.x > b.y) ? ((b.x > b.z) ? 0 : 2) : ((b.y > b.z) ? 1 : 2));
}
/** Intersections. */
template<typename T> struct isect_result {
enum {
LINE_LINE_COLINEAR = -1,
LINE_LINE_NONE = 0,
LINE_LINE_EXACT = 1,
LINE_LINE_CROSS = 2,
} kind;
typename T::base_type lambda;
};
template<typename T, int Size, BLI_ENABLE_IF((is_math_float_type<T>))>
isect_result<vec_base<T, Size>> isect_seg_seg(const vec_base<T, Size> &v1,
const vec_base<T, Size> &v2,
const vec_base<T, Size> &v3,
const vec_base<T, Size> &v4);
} // namespace blender::math