This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/render/intern/source/sunsky.c

500 lines
14 KiB
C

/**
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "sunsky.h"
#include "math.h"
#include "BLI_math.h"
#include "BKE_global.h"
/**
* These macros are defined for vector operations
* */
/**
* compute v1 = v2 op v3
* v1, v2 and v3 are vectors contains 3 float
* */
#define vec3opv(v1, v2, op, v3) \
v1[0] = (v2[0] op v3[0]); \
v1[1] = (v2[1] op v3[1]);\
v1[2] = (v2[2] op v3[2]);
/**
* compute v1 = v2 op f1
* v1, v2 are vectors contains 3 float
* and f1 is a float
* */
#define vec3opf(v1, v2, op, f1)\
v1[0] = (v2[0] op (f1));\
v1[1] = (v2[1] op (f1));\
v1[2] = (v2[2] op (f1));
/**
* compute v1 = f1 op v2
* v1, v2 are vectors contains 3 float
* and f1 is a float
* */
#define fopvec3(v1, f1, op, v2)\
v1[0] = ((f1) op v2[0]);\
v1[1] = ((f1) op v2[1]);\
v1[2] = ((f1) op v2[2]);
/**
* ClipColor:
* clip a color to range [0,1];
* */
void ClipColor(float c[3])
{
if (c[0] > 1.0) c[0] = 1.0;
if (c[0] < 0.0) c[0] = 0.0;
if (c[1] > 1.0) c[1] = 1.0;
if (c[1] < 0.0) c[1] = 0.0;
if (c[2] > 1.0) c[2] = 1.0;
if (c[2] < 0.0) c[2] = 0.0;
}
/**
* AngleBetween:
* compute angle between to direction
* all angles are in radians
* */
static float AngleBetween(float thetav, float phiv, float theta, float phi)
{
float cospsi = sin(thetav) * sin(theta) * cos(phi - phiv) + cos(thetav) * cos(theta);
if (cospsi > 1.0)
return 0;
if (cospsi < -1.0)
return M_PI;
return acos(cospsi);
}
/**
* DirectionToThetaPhi:
* this function convert a direction to it's theta and phi value
* parameters:
* toSun: contains direction information
* theta, phi, are return values from this conversion
* */
static void DirectionToThetaPhi(float *toSun, float *theta, float *phi)
{
*theta = acos(toSun[2]);
if (fabs(*theta) < 1e-5)
*phi = 0;
else
*phi = atan2(toSun[1], toSun[0]);
}
/**
* PerezFunction:
* compute perez function value based on input paramters
* */
float PerezFunction(struct SunSky *sunsky, const float *lam, float theta, float gamma, float lvz)
{
float den, num;
den = ((1 + lam[0] * exp(lam[1])) *
(1 + lam[2] * exp(lam[3] * sunsky->theta) + lam[4] * cos(sunsky->theta) * cos(sunsky->theta)));
num = ((1 + lam[0] * exp(lam[1] / cos(theta))) *
(1 + lam[2] * exp(lam[3] * gamma) + lam[4] * cos(gamma) * cos(gamma)));
return(lvz * num / den);}
/**
* InitSunSky:
* this function compute some sun,sky parameters according to input parameters and also initiate some other sun, sky parameters
* parameters:
* sunSky, is a structure that contains informtion about sun, sky and atmosphere, in this function, most of its values initiated
* turb, is atmosphere turbidity
* toSun, contains sun direction
* horizon_brighness, controls the brightness of the horizon colors
* spread, controls colors spreed at horizon
* sun_brightness, controls sun's brightness
* sun_size, controls sun's size
* back_scatter, controls back scatter light
* */
void InitSunSky(struct SunSky *sunsky, float turb, float *toSun, float horizon_brightness,
float spread,float sun_brightness, float sun_size, float back_scatter,
float skyblendfac, short skyblendtype, float sky_exposure, float sky_colorspace)
{
float theta2;
float theta3;
float T;
float T2;
float chi;
sunsky->turbidity = turb;
sunsky->horizon_brightness = horizon_brightness;
sunsky->spread = spread;
sunsky->sun_brightness = sun_brightness;
sunsky->sun_size = sun_size;
sunsky->backscattered_light = back_scatter;
sunsky->skyblendfac= skyblendfac;
sunsky->skyblendtype= skyblendtype;
sunsky->sky_exposure= -sky_exposure;
sunsky->sky_colorspace= sky_colorspace;
sunsky->toSun[0] = toSun[0];
sunsky->toSun[1] = toSun[1];
sunsky->toSun[2] = toSun[2];
DirectionToThetaPhi(sunsky->toSun, &sunsky->theta, &sunsky->phi);
sunsky->sunSolidAngle = 0.25 * M_PI * 1.39 * 1.39 / (150 * 150); // = 6.7443e-05
theta2 = sunsky->theta*sunsky->theta;
theta3 = theta2 * sunsky->theta;
T = turb;
T2 = turb*turb;
chi = (4.0 / 9.0 - T / 120.0) * (M_PI - 2 * sunsky->theta);
sunsky->zenith_Y = (4.0453 * T - 4.9710) * tan(chi) - .2155 * T + 2.4192;
sunsky->zenith_Y *= 1000; // conversion from kcd/m^2 to cd/m^2
if (sunsky->zenith_Y<=0)
sunsky->zenith_Y = 1e-6;
sunsky->zenith_x =
( + 0.00165 * theta3 - 0.00374 * theta2 + 0.00208 * sunsky->theta + 0) * T2 +
( -0.02902 * theta3 + 0.06377 * theta2 - 0.03202 * sunsky->theta + 0.00394) * T +
( + 0.11693 * theta3 - 0.21196 * theta2 + 0.06052 * sunsky->theta + 0.25885);
sunsky->zenith_y =
( + 0.00275 * theta3 - 0.00610 * theta2 + 0.00316 * sunsky->theta + 0) * T2 +
( -0.04214 * theta3 + 0.08970 * theta2 - 0.04153 * sunsky->theta + 0.00515) * T +
( + 0.15346 * theta3 - 0.26756 * theta2 + 0.06669 * sunsky->theta + 0.26688);
sunsky->perez_Y[0] = 0.17872 * T - 1.46303;
sunsky->perez_Y[1] = -0.35540 * T + 0.42749;
sunsky->perez_Y[2] = -0.02266 * T + 5.32505;
sunsky->perez_Y[3] = 0.12064 * T - 2.57705;
sunsky->perez_Y[4] = -0.06696 * T + 0.37027;
sunsky->perez_x[0] = -0.01925 * T - 0.25922;
sunsky->perez_x[1] = -0.06651 * T + 0.00081;
sunsky->perez_x[2] = -0.00041 * T + 0.21247;
sunsky->perez_x[3] = -0.06409 * T - 0.89887;
sunsky->perez_x[4] = -0.00325 * T + 0.04517;
sunsky->perez_y[0] = -0.01669 * T - 0.26078;
sunsky->perez_y[1] = -0.09495 * T + 0.00921;
sunsky->perez_y[2] = -0.00792 * T + 0.21023;
sunsky->perez_y[3] = -0.04405 * T - 1.65369;
sunsky->perez_y[4] = -0.01092 * T + 0.05291;
/* suggested by glome in
* http://projects.blender.org/tracker/?func=detail&atid=127&aid=8063&group_id=9*/
sunsky->perez_Y[0] *= sunsky->horizon_brightness;
sunsky->perez_x[0] *= sunsky->horizon_brightness;
sunsky->perez_y[0] *= sunsky->horizon_brightness;
sunsky->perez_Y[1] *= sunsky->spread;
sunsky->perez_x[1] *= sunsky->spread;
sunsky->perez_y[1] *= sunsky->spread;
sunsky->perez_Y[2] *= sunsky->sun_brightness;
sunsky->perez_x[2] *= sunsky->sun_brightness;
sunsky->perez_y[2] *= sunsky->sun_brightness;
sunsky->perez_Y[3] *= sunsky->sun_size;
sunsky->perez_x[3] *= sunsky->sun_size;
sunsky->perez_y[3] *= sunsky->sun_size;
sunsky->perez_Y[4] *= sunsky->backscattered_light;
sunsky->perez_x[4] *= sunsky->backscattered_light;
sunsky->perez_y[4] *= sunsky->backscattered_light;
}
/**
* GetSkyXYZRadiance:
* this function compute sky radiance according to a view parameters `theta' and `phi'and sunSky values
* parameters:
* sunSky, sontains sun and sky parameters
* theta, is sun's theta
* phi, is sun's phi
* color_out, is computed color that shows sky radiance in XYZ color format
* */
void GetSkyXYZRadiance(struct SunSky* sunsky, float theta, float phi, float color_out[3])
{
float gamma;
float x,y,Y,X,Z;
float hfade=1, nfade=1;
if (theta>(0.5*M_PI)) {
hfade = 1.0-(theta*M_1_PI-0.5)*2.0;
hfade = hfade*hfade*(3.0-2.0*hfade);
theta = 0.5*M_PI;
}
if (sunsky->theta>(0.5*M_PI)) {
if (theta<=0.5*M_PI) {
nfade = 1.0-(0.5-theta*M_1_PI)*2.0;
nfade *= 1.0-(sunsky->theta*M_1_PI-0.5)*2.0;
nfade = nfade*nfade*(3.0-2.0*nfade);
}
}
gamma = AngleBetween(theta, phi, sunsky->theta, sunsky->phi);
// Compute xyY values
x = PerezFunction(sunsky, sunsky->perez_x, theta, gamma, sunsky->zenith_x);
y = PerezFunction(sunsky, sunsky->perez_y, theta, gamma, sunsky->zenith_y);
Y = 6.666666667e-5 * nfade * hfade * PerezFunction(sunsky, sunsky->perez_Y, theta, gamma, sunsky->zenith_Y);
if(sunsky->sky_exposure!=0.0f)
Y = 1.0 - exp(Y*sunsky->sky_exposure);
X = (x / y) * Y;
Z = ((1 - x - y) / y) * Y;
color_out[0] = X;
color_out[1] = Y;
color_out[2] = Z;
}
/**
* GetSkyXYZRadiancef:
* this function compute sky radiance according to a view direction `varg' and sunSky values
* parameters:
* sunSky, sontains sun and sky parameters
* varg, shows direction
* color_out, is computed color that shows sky radiance in XYZ color format
* */
void GetSkyXYZRadiancef(struct SunSky* sunsky, const float varg[3], float color_out[3])
{
float theta, phi;
float v[3];
copy_v3_v3(v, (float*)varg);
normalize_v3(v);
if (v[2] < 0.001){
v[2] = 0.001;
normalize_v3(v);
}
DirectionToThetaPhi(v, &theta, &phi);
GetSkyXYZRadiance(sunsky, theta, phi, color_out);
}
/**
* ComputeAttenuatedSunlight:
* this function compute attenuated sun light based on sun's theta and atmosphere turbidity
* parameters:
* theta, is sun's theta
* turbidity: is atmosphere turbidity
* fTau: contains computed attenuated sun light
* */
void ComputeAttenuatedSunlight(float theta, int turbidity, float fTau[3])
{
float fBeta ;
float fTauR, fTauA;
float m ;
float fAlpha;
int i;
float fLambda[3];
fLambda[0] = 0.65f;
fLambda[1] = 0.57f;
fLambda[2] = 0.475f;
fAlpha = 1.3f;
fBeta = 0.04608365822050f * turbidity - 0.04586025928522f;
m = 1.0/(cos(theta) + 0.15f*pow(93.885f-theta/M_PI*180.0f,-1.253f));
for(i = 0; i < 3; i++)
{
// Rayleigh Scattering
fTauR = exp( -m * 0.008735f * pow(fLambda[i], (float)(-4.08f)));
// Aerosal (water + dust) attenuation
fTauA = exp(-m * fBeta * pow(fLambda[i], -fAlpha));
fTau[i] = fTauR * fTauA;
}
}
/**
* InitAtmosphere:
* this function intiate sunSky structure with user input parameters.
* parameters:
* sunSky, contains information about sun, and in this function some atmosphere parameters will initiated
* sun_intens, shows sun intensity value
* mief, Mie scattering factor this factor currently call with 1.0
* rayf, Rayleigh scattering factor, this factor currently call with 1.0
* inscattf, inscatter light factor that range from 0.0 to 1.0, 0.0 means no inscatter light and 1.0 means full inscatter light
* extincf, extinction light factor that range from 0.0 to 1.0, 0.0 means no extinction and 1.0 means full extinction
* disf, is distance factor, multiplyed to pixle's z value to compute each pixle's distance to camera,
* */
void InitAtmosphere(struct SunSky *sunSky, float sun_intens, float mief, float rayf,
float inscattf, float extincf, float disf)
{
const float pi = 3.14159265358f;
const float n = 1.003f; // refractive index
const float N = 2.545e25;
const float pn = 0.035f;
const float T = 2.0f;
float fTemp, fTemp2, fTemp3, fBeta, fBetaDash;
float c = (6.544*T - 6.51)*1e-17;
float K[3] = {0.685f, 0.679f, 0.670f};
float vBetaMieTemp[3];
float fLambda[3],fLambda2[3], fLambda4[3];
float vLambda2[3];
float vLambda4[3];
int i;
sunSky->atm_SunIntensity = sun_intens;
sunSky->atm_BetaMieMultiplier = mief;
sunSky->atm_BetaRayMultiplier = rayf;
sunSky->atm_InscatteringMultiplier = inscattf;
sunSky->atm_ExtinctionMultiplier = extincf;
sunSky->atm_DistanceMultiplier = disf;
sunSky->atm_HGg=0.8;
fLambda[0] = 1/650e-9f;
fLambda[1] = 1/570e-9f;
fLambda[2] = 1/475e-9f;
for (i=0; i < 3; i++)
{
fLambda2[i] = fLambda[i]*fLambda[i];
fLambda4[i] = fLambda2[i]*fLambda2[i];
}
vLambda2[0] = fLambda2[0];
vLambda2[1] = fLambda2[1];
vLambda2[2] = fLambda2[2];
vLambda4[0] = fLambda4[0];
vLambda4[1] = fLambda4[1];
vLambda4[2] = fLambda4[2];
// Rayleigh scattering constants.
fTemp = pi*pi*(n*n-1)*(n*n-1)*(6+3*pn)/(6-7*pn)/N;
fBeta = 8*fTemp*pi/3;
vec3opf(sunSky->atm_BetaRay, vLambda4, *, fBeta);
fBetaDash = fTemp/2;
vec3opf(sunSky->atm_BetaDashRay, vLambda4,*, fBetaDash);
// Mie scattering constants.
fTemp2 = 0.434*c*(2*pi)*(2*pi)*0.5f;
vec3opf(sunSky->atm_BetaDashMie, vLambda2, *, fTemp2);
fTemp3 = 0.434f*c*pi*(2*pi)*(2*pi);
vec3opv(vBetaMieTemp, K, *, fLambda);
vec3opf(sunSky->atm_BetaMie, vBetaMieTemp,*, fTemp3);
}
/**
* AtmospherePixleShader:
* this function apply atmosphere effect on a pixle color `rgb' at distance `s'
* parameters:
* sunSky, contains information about sun parameters and user values
* view, is camera view vector
* s, is distance
* rgb, contains rendered color value for a pixle
* */
void AtmospherePixleShader( struct SunSky* sunSky, float view[3], float s, float rgb[3])
{
float costheta;
float Phase_1;
float Phase_2;
float sunColor[3];
float E[3];
float E1[3];
float I[3];
float fTemp;
float vTemp1[3], vTemp2[3];
float sunDirection[3];
s *= sunSky->atm_DistanceMultiplier;
sunDirection[0] = sunSky->toSun[0];
sunDirection[1] = sunSky->toSun[1];
sunDirection[2] = sunSky->toSun[2];
costheta = dot_v3v3(view, sunDirection); // cos(theta)
Phase_1 = 1 + (costheta * costheta); // Phase_1
vec3opf(sunSky->atm_BetaRay, sunSky->atm_BetaRay, *, sunSky->atm_BetaRayMultiplier);
vec3opf(sunSky->atm_BetaMie, sunSky->atm_BetaMie, *, sunSky->atm_BetaMieMultiplier);
vec3opv(sunSky->atm_BetaRM, sunSky->atm_BetaRay, +, sunSky->atm_BetaMie);
//e^(-(beta_1 + beta_2) * s) = E1
vec3opf(E1, sunSky->atm_BetaRM, *, -s/log(2));
E1[0] = exp(E1[0]);
E1[1] = exp(E1[1]);
E1[2] = exp(E1[2]);
copy_v3_v3(E, E1);
//Phase2(theta) = (1-g^2)/(1+g-2g*cos(theta))^(3/2)
fTemp = 1 + sunSky->atm_HGg - 2 * sunSky->atm_HGg * costheta;
fTemp = fTemp * sqrt(fTemp);
Phase_2 = (1 - sunSky->atm_HGg * sunSky->atm_HGg)/fTemp;
vec3opf(vTemp1, sunSky->atm_BetaDashRay, *, Phase_1);
vec3opf(vTemp2, sunSky->atm_BetaDashMie, *, Phase_2);
vec3opv(vTemp1, vTemp1, +, vTemp2);
fopvec3(vTemp2, 1.0, -, E1);
vec3opv(vTemp1, vTemp1, *, vTemp2);
fopvec3(vTemp2, 1.0, / , sunSky->atm_BetaRM);
vec3opv(I, vTemp1, *, vTemp2);
vec3opf(I, I, *, sunSky->atm_InscatteringMultiplier);
vec3opf(E, E, *, sunSky->atm_ExtinctionMultiplier);
//scale to color sun
ComputeAttenuatedSunlight(sunSky->theta, sunSky->turbidity, sunColor);
vec3opv(E, E, *, sunColor);
vec3opf(I, I, *, sunSky->atm_SunIntensity);
vec3opv(rgb, rgb, *, E);
vec3opv(rgb, rgb, +, I);
}
#undef vec3opv
#undef vec3opf
#undef fopvec3
/* EOF */