This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/mball.c
Hans Lambermont 12315f4d0e Initial revision
2002-10-12 11:37:38 +00:00

1541 lines
36 KiB
C

/* mball.c MIXED MODEL
*
* mei 95
*
*
*
* METABALLS ontstaan vanuit een Object (naam zonder nr), hier zit de DispList en boundbox,
* alle objecten met zelfde naam (en een nr) worden hieraan toegevoegd.
*
* De texture coordinaten zitten als loos element in de displist.
*
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include "MEM_guardedalloc.h"
#include "DNA_material_types.h"
#include "DNA_object_types.h"
#include "DNA_meta_types.h"
#include "DNA_scene_types.h"
#include "DNA_mesh_types.h"
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
#include "BKE_utildefines.h"
#include "BKE_bad_level_calls.h"
#include "BKE_global.h"
#include "BKE_main.h"
/* #include "BKE_object.h" */
#include "BKE_scene.h"
#include "BKE_blender.h"
#include "BKE_library.h"
#include "BKE_displist.h"
#include "BKE_mball.h"
/* Functions */
void unlink_mball(MetaBall *mb)
{
int a;
for(a=0; a<mb->totcol; a++) {
if(mb->mat[a]) mb->mat[a]->id.us--;
mb->mat[a]= 0;
}
}
/* niet mball zelf vrijgeven */
void free_mball(MetaBall *mb)
{
unlink_mball(mb);
if(mb->mat) MEM_freeN(mb->mat);
if(mb->bb) MEM_freeN(mb->bb);
BLI_freelistN(&mb->elems);
if(mb->disp.first) freedisplist(&mb->disp);
}
MetaBall *add_mball()
{
MetaBall *mb;
mb= alloc_libblock(&G.main->mball, ID_MB, "Meta");
mb->size[0]= mb->size[1]= mb->size[2]= 1.0;
mb->texflag= AUTOSPACE;
mb->wiresize= 0.4f;
mb->rendersize= 0.2f;
mb->thresh= 0.6f;
return mb;
}
MetaBall *copy_mball(MetaBall *mb)
{
MetaBall *mbn;
int a;
mbn= copy_libblock(mb);
duplicatelist(&mbn->elems, &mb->elems);
mbn->mat= MEM_dupallocN(mb->mat);
for(a=0; a<mbn->totcol; a++) {
id_us_plus((ID *)mbn->mat[a]);
}
mbn->bb= MEM_dupallocN(mb->bb);
return mbn;
}
void make_local_mball(MetaBall *mb)
{
Object *ob;
MetaBall *mbn;
int local=0, lib=0;
/* - zijn er alleen lib users: niet doen
* - zijn er alleen locale users: flag zetten
* - mixed: copy
*/
if(mb->id.lib==0) return;
if(mb->id.us==1) {
mb->id.lib= 0;
mb->id.flag= LIB_LOCAL;
return;
}
ob= G.main->object.first;
while(ob) {
if(ob->data==mb) {
if(ob->id.lib) lib= 1;
else local= 1;
}
ob= ob->id.next;
}
if(local && lib==0) {
mb->id.lib= 0;
mb->id.flag= LIB_LOCAL;
}
else if(local && lib) {
mbn= copy_mball(mb);
mbn->id.us= 0;
ob= G.main->object.first;
while(ob) {
if(ob->data==mb) {
if(ob->id.lib==0) {
ob->data= mbn;
mbn->id.us++;
mb->id.us--;
}
}
ob= ob->id.next;
}
}
}
void tex_space_mball(Object *ob)
{
DispList *dl;
BoundBox *bb;
float *data, min[3], max[3], loc[3], size[3];
int tot, doit=0;
if(ob->bb==0) ob->bb= MEM_callocN(sizeof(BoundBox), "mb boundbox");
bb= ob->bb;
/* Weird one, this. */
/* INIT_MINMAX(min, max); */
(min)[0]= (min)[1]= (min)[2]= 1.0e30f;
(max)[0]= (max)[1]= (max)[2]= -1.0e30f;
dl= ob->disp.first;
while(dl) {
tot= dl->nr;
if(tot) doit= 1;
data= dl->verts;
while(tot--) {
/* Also weird... but longer. From utildefines. */
DO_MINMAX(data, min, max);
data+= 3;
}
dl= dl->next;
}
if(doit) {
loc[0]= (min[0]+max[0])/2.0f;
loc[1]= (min[1]+max[1])/2.0f;
loc[2]= (min[2]+max[2])/2.0f;
size[0]= (max[0]-min[0])/2.0f;
size[1]= (max[1]-min[1])/2.0f;
size[2]= (max[2]-min[2])/2.0f;
}
else {
loc[0]= loc[1]= loc[2]= 0.0f;
size[0]= size[1]= size[2]= 1.0f;
}
bb->vec[0][0]=bb->vec[1][0]=bb->vec[2][0]=bb->vec[3][0]= loc[0]-size[0];
bb->vec[4][0]=bb->vec[5][0]=bb->vec[6][0]=bb->vec[7][0]= loc[0]+size[0];
bb->vec[0][1]=bb->vec[1][1]=bb->vec[4][1]=bb->vec[5][1]= loc[1]-size[1];
bb->vec[2][1]=bb->vec[3][1]=bb->vec[6][1]=bb->vec[7][1]= loc[1]+size[1];
bb->vec[0][2]=bb->vec[3][2]=bb->vec[4][2]=bb->vec[7][2]= loc[2]-size[2];
bb->vec[1][2]=bb->vec[2][2]=bb->vec[5][2]=bb->vec[6][2]= loc[2]+size[2];
}
void make_orco_mball(Object *ob)
{
BoundBox *bb;
DispList *dl;
float *data;
float loc[3], size[3];
int a;
/* size en loc restoren */
bb= ob->bb;
loc[0]= (bb->vec[0][0]+bb->vec[4][0])/2.0f;
size[0]= bb->vec[4][0]-loc[0];
loc[1]= (bb->vec[0][1]+bb->vec[2][1])/2.0f;
size[1]= bb->vec[2][1]-loc[1];
loc[2]= (bb->vec[0][2]+bb->vec[1][2])/2.0f;
size[2]= bb->vec[1][2]-loc[2];
dl= ob->disp.first;
data= dl->verts;
a= dl->nr;
while(a--) {
data[0]= (data[0]-loc[0])/size[0];
data[1]= (data[1]-loc[1])/size[1];
data[2]= (data[2]-loc[2])/size[2];
data+= 3;
}
}
Object *find_basis_mball(Object *basis)
{
Base *base;
int basisnr;
char basisname[32];
splitIDname(basis->id.name+2, basisname, &basisnr);
for (base= G.scene->base.first; base && basisnr; base= base->next) {
Object *ob= base->object;
if (ob!=basis && ob->type==OB_MBALL) {
char obname[32];
int obnr;
splitIDname(ob->id.name+2, obname, &obnr);
if ((strcmp(obname, basisname)==0) && obnr<basisnr) {
basis= ob;
basisnr= obnr;
}
}
}
return basis;
}
/* ******************** ARITH ************************* */
/* DANKBAAR GEBRUIK GEMAAKT VAN (EN COMPLEET VERANDERD) :
* C code from the article
* "An Implicit Surface Polygonizer"
* by Jules Bloomenthal, jbloom@beauty.gmu.edu
* in "Graphics Gems IV", Academic Press, 1994
* Authored by Jules Bloomenthal, Xerox PARC.
* Copyright (c) Xerox Corporation, 1991. All rights reserved.
* Permission is granted to reproduce, use and distribute this code for
* any and all purposes, provided that this notice appears in all copies. */
#define RES 12 /* # converge iterations */
#define L 0 /* left direction: -x, -i */
#define R 1 /* right direction: +x, +i */
#define B 2 /* bottom direction: -y, -j */
#define T 3 /* top direction: +y, +j */
#define N 4 /* near direction: -z, -k */
#define F 5 /* far direction: +z, +k */
#define LBN 0 /* left bottom near corner */
#define LBF 1 /* left bottom far corner */
#define LTN 2 /* left top near corner */
#define LTF 3 /* left top far corner */
#define RBN 4 /* right bottom near corner */
#define RBF 5 /* right bottom far corner */
#define RTN 6 /* right top near corner */
#define RTF 7 /* right top far corner */
/* the LBN corner of cube (i, j, k), corresponds with location
* (start.x+(i-0.5)*size, start.y+(j-0.5)*size, start.z+(k-0.5)*size) */
#define HASHBIT (5)
#define HASHSIZE (size_t)(1<<(3*HASHBIT)) /* hash table size (32768) */
#define HASH(i,j,k) ((((( (i) & 31)<<5) | ( (j) & 31))<<5 ) | ( (k) & 31) )
#define MB_BIT(i, bit) (((i)>>(bit))&1)
#define FLIP(i,bit) ((i)^1<<(bit)) /* flip the given bit of i */
typedef struct point { /* a three-dimensional point */
float x, y, z; /* its coordinates */
} MB_POINT;
typedef struct vertex { /* surface vertex */
MB_POINT position, normal; /* position and surface normal */
} VERTEX;
typedef struct vertices { /* list of vertices in polygonization */
int count, max; /* # vertices, max # allowed */
VERTEX *ptr; /* dynamically allocated */
} VERTICES;
typedef struct corner { /* corner of a cube */
int i, j, k; /* (i, j, k) is index within lattice */
float x, y, z, value; /* location and function value */
struct corner *next;
} CORNER;
typedef struct cube { /* partitioning cell (cube) */
int i, j, k; /* lattice location of cube */
CORNER *corners[8]; /* eight corners */
} CUBE;
typedef struct cubes { /* linked list of cubes acting as stack */
CUBE cube; /* a single cube */
struct cubes *next; /* remaining elements */
} CUBES;
typedef struct centerlist { /* list of cube locations */
int i, j, k; /* cube location */
struct centerlist *next; /* remaining elements */
} CENTERLIST;
typedef struct edgelist { /* list of edges */
int i1, j1, k1, i2, j2, k2; /* edge corner ids */
int vid; /* vertex id */
struct edgelist *next; /* remaining elements */
} EDGELIST;
typedef struct intlist { /* list of integers */
int i; /* an integer */
struct intlist *next; /* remaining elements */
} INTLIST;
typedef struct intlists { /* list of list of integers */
INTLIST *list; /* a list of integers */
struct intlists *next; /* remaining elements */
} INTLISTS;
typedef struct process { /* parameters, function, storage */
/* what happens here? floats, I think. */
/* float (*function)(void); */ /* implicit surface function */
float (*function)(float, float, float);
float size, delta; /* cube size, normal delta */
int bounds; /* cube range within lattice */
MB_POINT start; /* start point on surface */
CUBES *cubes; /* active cubes */
VERTICES vertices; /* surface vertices */
CENTERLIST **centers; /* cube center hash table */
CORNER **corners; /* corner value hash table */
EDGELIST **edges; /* edge and vertex id hash table */
} PROCESS;
/* Some declarations are in order !!! */
/* these should go into a header ! But the compiler doesn't like that,
* for some reason */
void freepolygonize(PROCESS *p);
void docube(CUBE *cube, PROCESS *p);
void testface(int i, int j, int k, CUBE* old,
int bit, int c1, int c2, int c3, int c4, PROCESS *p);
CORNER *setcorner (PROCESS* p, int i, int j, int k);
int vertid (CORNER *c1, CORNER *c2, PROCESS *p);
int setcenter(CENTERLIST *table[], int i, int j, int k);
int otherface (int edge, int face);
void makecubetable (void);
void setedge (EDGELIST *table[],
int i1, int j1,
int k1, int i2,
int j2, int k2,
int vid);
int getedge (EDGELIST *table[],
int i1, int j1, int k1,
int i2, int j2, int k2);
void addtovertices (VERTICES *vertices, VERTEX v);
void vnormal (MB_POINT *point, PROCESS *p, MB_POINT *v);
void converge (MB_POINT *p1, MB_POINT *p2, float v,
float (*function)(float, float, float), MB_POINT *p);
void polygonize(PROCESS *mbproc);
float init_meta(Object *ob);
/* **************** METABALL ************************ */
/* void converge (MB_POINT *p1, MB_POINT *p2, float v, float (*function)(void), MB_POINT *p); */
void calc_mballco(MetaElem *ml, float *vec)
{
if(ml->mat) {
Mat4MulVecfl(ml->mat, vec);
}
}
float thresh= 0.6f;
int totelem=0;
MetaElem **mainb;
float densfunc(MetaElem *ball, float x, float y, float z)
{
float dist2 = 0.0, dx, dy, dz;
float vec[3];
if(ball->imat) {
vec[0]= x;
vec[1]= y;
vec[2]= z;
Mat4MulVecfl(ball->imat, vec);
dx= ball->x - vec[0];
dy= ball->y - vec[1];
dz= ball->z - vec[2];
}
else {
dx= ball->x - x;
dy= ball->y - y;
dz= ball->z - z;
}
if(ball->type==MB_BALL) {
dist2= (dx*dx + dy*dy + dz*dz);
}
else if(ball->type & MB_TUBEZ) {
if(ball->type==MB_TUBEZ) {
if( dz > ball->len) dz-= ball->len;
else if(dz< -ball->len) dz+= ball->len;
else dz= 0.0;
}
else if(ball->type==MB_TUBEY) {
if( dy > ball->len) dy-= ball->len;
else if(dy< -ball->len) dy+= ball->len;
else dy= 0.0;
}
else {
if( dx > ball->len) dx-= ball->len;
else if(dx< -ball->len) dx+= ball->len;
else dx= 0.0;
}
dist2= (dx*dx + dy*dy + dz*dz);
}
/* else if(ball->type==MB_CIRCLE) { */
/* dist2= 0.5-dz; */
/* } */
if(ball->flag & MB_NEGATIVE) {
dist2= 1.0f-(dist2/ball->rad2);
if(dist2 < 0.0) return 0.5f;
return 0.5f-ball->s*dist2*dist2*dist2;
}
else {
dist2= 1.0f-(dist2/ball->rad2);
if(dist2 < 0.0) return -0.5f;
return ball->s*dist2*dist2*dist2 -0.5f;
/* return ball->s*sin( dist2); */
}
}
float metaball(float x, float y, float z)
/* float x, y, z; */
{
float dens=0;
int a;
for(a=0; a<totelem; a++) {
dens+= densfunc( mainb[a], x, y, z);
}
return thresh - dens;
}
/* ******************************************** */
int *indices=0;
int totindex, curindex;
void accum_mballfaces(int i1, int i2, int i3, int i4)
{
int *newi, *cur;
/* static int i=0; I would like to delete altogether, but I don't dare to, yet */
if(totindex==curindex) {
totindex+= 256;
newi= MEM_mallocN(4*sizeof(int)*totindex, "vertindex");
if(indices) {
memcpy(newi, indices, 4*sizeof(int)*(totindex-256));
MEM_freeN(indices);
}
indices= newi;
}
cur= indices+4*curindex;
/* voorkomen dat nulcodes voorkomen */
if(i3==0) {
if(i4) {
i3= i4;
i4= i1;
i1= i2;
i2= 0;
}
else {
i3= i2;
i2= i1;
i1= 0;
}
}
cur[0]= i1;
cur[1]= i2;
cur[2]= i3;
cur[3]= i4;
curindex++;
}
/* ******************* MEMORY MANAGEMENT *********************** */
struct pgn_elements {
struct pgn_elements *next, *prev;
char *data;
};
void *new_pgn_element(int size)
{
/* gedurende het polygonizeren worden duizenden elementen aangemaakt en
* nooit (tussendoor) vrijgegeven. Alleen op eind is vrijgeven nodig.
*/
int blocksize= 16384;
static int offs= 0; /* het huidige vrije adres */
static struct pgn_elements *cur= 0;
static ListBase lb= {0, 0};
void *adr;
if(size>10000 || size==0) {
printf("incorrect use of new_pgn_element\n");
/* exit(0); */
}
else if(size== -1) {
cur= lb.first;
while(cur) {
MEM_freeN(cur->data);
cur= cur->next;
}
BLI_freelistN(&lb);
return NULL;
}
size= 4*( (size+3)/4 );
if(cur) {
if(size+offs < blocksize) {
adr= (void *) (cur->data+offs);
offs+= size;
return adr;
}
}
cur= MEM_callocN( sizeof(struct pgn_elements), "newpgn");
cur->data= MEM_callocN(blocksize, "newpgn");
BLI_addtail(&lb, cur);
offs= size;
return cur->data;
}
void freepolygonize(PROCESS *p)
{
MEM_freeN(p->corners);
MEM_freeN(p->edges);
MEM_freeN(p->centers);
new_pgn_element(-1);
if(p->vertices.ptr) MEM_freeN(p->vertices.ptr);
}
/**** Cubical Polygonization (optional) ****/
#define LB 0 /* left bottom edge */
#define LT 1 /* left top edge */
#define LN 2 /* left near edge */
#define LF 3 /* left far edge */
#define RB 4 /* right bottom edge */
#define RT 5 /* right top edge */
#define RN 6 /* right near edge */
#define RF 7 /* right far edge */
#define BN 8 /* bottom near edge */
#define BF 9 /* bottom far edge */
#define TN 10 /* top near edge */
#define TF 11 /* top far edge */
static INTLISTS *cubetable[256];
/* edge: LB, LT, LN, LF, RB, RT, RN, RF, BN, BF, TN, TF */
static int corner1[12] = {
LBN,LTN,LBN,LBF,RBN,RTN,RBN,RBF,LBN,LBF,LTN,LTF};
static int corner2[12] = {
LBF,LTF,LTN,LTF,RBF,RTF,RTN,RTF,RBN,RBF,RTN,RTF};
static int leftface[12] = {
B, L, L, F, R, T, N, R, N, B, T, F};
/* face on left when going corner1 to corner2 */
static int rightface[12] = {
L, T, N, L, B, R, R, F, B, F, N, T};
/* face on right when going corner1 to corner2 */
/* docube: triangulate the cube directly, without decomposition */
void docube(CUBE *cube, PROCESS *p)
{
INTLISTS *polys;
CORNER *c1, *c2;
int i, index = 0, count, indexar[8];
for (i = 0; i < 8; i++) if (cube->corners[i]->value > 0.0) index += (1<<i);
for (polys = cubetable[index]; polys; polys = polys->next) {
INTLIST *edges;
count = 0;
for (edges = polys->list; edges; edges = edges->next) {
c1 = cube->corners[corner1[edges->i]];
c2 = cube->corners[corner2[edges->i]];
indexar[count] = vertid(c1, c2, p);
count++;
}
if(count>2) {
switch(count) {
case 3:
accum_mballfaces(indexar[2], indexar[1], indexar[0], 0);
break;
case 4:
if(indexar[0]==0) accum_mballfaces(indexar[0], indexar[3], indexar[2], indexar[1]);
else accum_mballfaces(indexar[3], indexar[2], indexar[1], indexar[0]);
break;
case 5:
if(indexar[0]==0) accum_mballfaces(indexar[0], indexar[3], indexar[2], indexar[1]);
else accum_mballfaces(indexar[3], indexar[2], indexar[1], indexar[0]);
accum_mballfaces(indexar[4], indexar[3], indexar[0], 0);
break;
case 6:
if(indexar[0]==0) {
accum_mballfaces(indexar[0], indexar[3], indexar[2], indexar[1]);
accum_mballfaces(indexar[0], indexar[5], indexar[4], indexar[3]);
}
else {
accum_mballfaces(indexar[3], indexar[2], indexar[1], indexar[0]);
accum_mballfaces(indexar[5], indexar[4], indexar[3], indexar[0]);
}
break;
case 7:
if(indexar[0]==0) {
accum_mballfaces(indexar[0], indexar[3], indexar[2], indexar[1]);
accum_mballfaces(indexar[0], indexar[5], indexar[4], indexar[3]);
}
else {
accum_mballfaces(indexar[3], indexar[2], indexar[1], indexar[0]);
accum_mballfaces(indexar[5], indexar[4], indexar[3], indexar[0]);
}
accum_mballfaces(indexar[6], indexar[5], indexar[0], 0);
break;
}
}
}
}
/* testface: given cube at lattice (i, j, k), and four corners of face,
* if surface crosses face, compute other four corners of adjacent cube
* and add new cube to cube stack */
void testface(int i, int j, int k, CUBE* old, int bit, int c1, int c2, int c3, int c4, PROCESS *p)
/* CUBE *old; */
/* PROCESS *p; */
/* int i, j, k, bit, c1, c2, c3, c4; */
{
CUBE newc;
CUBES *oldcubes = p->cubes;
CORNER *corn1, *corn2, *corn3, *corn4;
int n, pos;
corn1= old->corners[c1];
corn2= old->corners[c2];
corn3= old->corners[c3];
corn4= old->corners[c4];
pos = corn1->value > 0.0 ? 1 : 0;
/* test if no surface crossing */
if( (corn2->value > 0) == pos && (corn3->value > 0) == pos && (corn4->value > 0) == pos) return;
/* test if cube out of bounds */
if ( abs(i) > p->bounds || abs(j) > p->bounds || abs(k) > p->bounds) return;
/* test if already visited (always as last) */
if (setcenter(p->centers, i, j, k)) return;
/* create new cube and add cube to top of stack: */
p->cubes = (CUBES *) new_pgn_element(sizeof(CUBES));
p->cubes->next = oldcubes;
newc.i = i;
newc.j = j;
newc.k = k;
for (n = 0; n < 8; n++) newc.corners[n] = NULL;
newc.corners[FLIP(c1, bit)] = corn1;
newc.corners[FLIP(c2, bit)] = corn2;
newc.corners[FLIP(c3, bit)] = corn3;
newc.corners[FLIP(c4, bit)] = corn4;
if(newc.corners[0]==0) newc.corners[0] = setcorner(p, i, j, k);
if(newc.corners[1]==0) newc.corners[1] = setcorner(p, i, j, k+1);
if(newc.corners[2]==0) newc.corners[2] = setcorner(p, i, j+1, k);
if(newc.corners[3]==0) newc.corners[3] = setcorner(p, i, j+1, k+1);
if(newc.corners[4]==0) newc.corners[4] = setcorner(p, i+1, j, k);
if(newc.corners[5]==0) newc.corners[5] = setcorner(p, i+1, j, k+1);
if(newc.corners[6]==0) newc.corners[6] = setcorner(p, i+1, j+1, k);
if(newc.corners[7]==0) newc.corners[7] = setcorner(p, i+1, j+1, k+1);
p->cubes->cube= newc;
}
/* setcorner: return corner with the given lattice location
set (and cache) its function value */
CORNER *setcorner (PROCESS* p, int i, int j, int k)
/* int i, j, k; */
/* PROCESS *p; */
{
/* for speed, do corner value caching here */
CORNER *c;
int index;
/* bestaat corner al? */
index = HASH(i, j, k);
c = p->corners[index];
for (; c != NULL; c = c->next) {
if (c->i == i && c->j == j && c->k == k) {
return c;
}
}
c = (CORNER *) new_pgn_element(sizeof(CORNER));
c->i = i;
c->x = p->start.x+((float)i-0.5f)*p->size;
c->j = j;
c->y = p->start.y+((float)j-0.5f)*p->size;
c->k = k;
c->z = p->start.z+((float)k-0.5f)*p->size;
c->value = p->function(c->x, c->y, c->z);
c->next = p->corners[index];
p->corners[index] = c;
return c;
}
/* nextcwedge: return next clockwise edge from given edge around given face */
int nextcwedge (int edge, int face)
{
switch (edge) {
case LB:
return (face == L)? LF : BN;
case LT:
return (face == L)? LN : TF;
case LN:
return (face == L)? LB : TN;
case LF:
return (face == L)? LT : BF;
case RB:
return (face == R)? RN : BF;
case RT:
return (face == R)? RF : TN;
case RN:
return (face == R)? RT : BN;
case RF:
return (face == R)? RB : TF;
case BN:
return (face == B)? RB : LN;
case BF:
return (face == B)? LB : RF;
case TN:
return (face == T)? LT : RN;
case TF:
return (face == T)? RT : LF;
}
return 0;
}
/* otherface: return face adjoining edge that is not the given face */
int otherface (int edge, int face)
/* int edge, face; */
{
int other = leftface[edge];
return face == other? rightface[edge] : other;
}
/* makecubetable: create the 256 entry table for cubical polygonization */
void makecubetable (void)
{
static int isdone= 0;
int i, e, c, done[12], pos[8];
if(isdone) return;
isdone= 1;
for (i = 0; i < 256; i++) {
for (e = 0; e < 12; e++) done[e] = 0;
for (c = 0; c < 8; c++) pos[c] = MB_BIT(i, c);
for (e = 0; e < 12; e++)
if (!done[e] && (pos[corner1[e]] != pos[corner2[e]])) {
INTLIST *ints = 0;
INTLISTS *lists = (INTLISTS *) MEM_callocN(sizeof(INTLISTS), "mball_intlist");
int start = e, edge = e;
/* get face that is to right of edge from pos to neg corner: */
int face = pos[corner1[e]]? rightface[e] : leftface[e];
while (1) {
edge = nextcwedge(edge, face);
done[edge] = 1;
if (pos[corner1[edge]] != pos[corner2[edge]]) {
INTLIST *tmp = ints;
ints = (INTLIST *) MEM_callocN(sizeof(INTLIST), "mball_intlist");
ints->i = edge;
ints->next = tmp; /* add edge to head of list */
if (edge == start) break;
face = otherface(edge, face);
}
}
lists->list = ints; /* add ints to head of table entry */
lists->next = cubetable[i];
cubetable[i] = lists;
}
}
}
void BKE_freecubetable(void)
{
int i;
INTLISTS *lists, *nlists;
INTLIST *ints, *nints;
for (i = 0; i < 256; i++) {
lists= cubetable[i];
while(lists) {
nlists= lists->next;
ints= lists->list;
while(ints) {
nints= ints->next;
MEM_freeN(ints);
ints= nints;
}
MEM_freeN(lists);
lists= nlists;
}
cubetable[i]= 0;
}
}
/**** Storage ****/
/* setcenter: set (i,j,k) entry of table[]
* return 1 if already set; otherwise, set and return 0 */
int setcenter(CENTERLIST *table[], int i, int j, int k)
/* CENTERLIST *table[]; */
/* int i, j, k; */
{
int index;
CENTERLIST *newc, *l, *q;
index= HASH(i, j, k);
q= table[index];
for (l = q; l != NULL; l = l->next) {
if (l->i == i && l->j == j && l->k == k) return 1;
}
newc = (CENTERLIST *) new_pgn_element(sizeof(CENTERLIST));
newc->i = i;
newc->j = j;
newc->k = k;
newc->next = q;
table[index] = newc;
return 0;
}
/* setedge: set vertex id for edge */
void setedge (EDGELIST *table[],
int i1, int j1,
int k1, int i2,
int j2, int k2,
int vid)
/* EDGELIST *table[]; */
/* int i1, j1, k1, i2, j2, k2, vid; */
{
unsigned int index;
EDGELIST *newe;
if (i1>i2 || (i1==i2 && (j1>j2 || (j1==j2 && k1>k2)))) {
int t=i1;
i1=i2;
i2=t;
t=j1;
j1=j2;
j2=t;
t=k1;
k1=k2;
k2=t;
}
index = HASH(i1, j1, k1) + HASH(i2, j2, k2);
newe = (EDGELIST *) new_pgn_element(sizeof(EDGELIST));
newe->i1 = i1;
newe->j1 = j1;
newe->k1 = k1;
newe->i2 = i2;
newe->j2 = j2;
newe->k2 = k2;
newe->vid = vid;
newe->next = table[index];
table[index] = newe;
}
/* getedge: return vertex id for edge; return -1 if not set */
int getedge (EDGELIST *table[],
int i1, int j1, int k1,
int i2, int j2, int k2)
/* EDGELIST *table[]; */
/* int i1, j1, k1, i2, j2, k2; */
{
EDGELIST *q;
if (i1>i2 || (i1==i2 && (j1>j2 || (j1==j2 && k1>k2)))) {
int t=i1;
i1=i2;
i2=t;
t=j1;
j1=j2;
j2=t;
t=k1;
k1=k2;
k2=t;
}
q = table[HASH(i1, j1, k1)+HASH(i2, j2, k2)];
for (; q != NULL; q = q->next)
if (q->i1 == i1 && q->j1 == j1 && q->k1 == k1 &&
q->i2 == i2 && q->j2 == j2 && q->k2 == k2)
return q->vid;
return -1;
}
/**** Vertices ****/
#undef R
/* vertid: return index for vertex on edge:
* c1->value and c2->value are presumed of different sign
* return saved index if any; else compute vertex and save */
/* addtovertices: add v to sequence of vertices */
void addtovertices (VERTICES *vertices, VERTEX v)
/* VERTICES *vertices; */
/* VERTEX v; */
{
if (vertices->count == vertices->max) {
int i;
VERTEX *newv;
vertices->max = vertices->count == 0 ? 10 : 2*vertices->count;
newv = (VERTEX *) MEM_callocN(vertices->max * sizeof(VERTEX), "addtovertices");
for (i = 0; i < vertices->count; i++) newv[i] = vertices->ptr[i];
if (vertices->ptr != NULL) MEM_freeN(vertices->ptr);
vertices->ptr = newv;
}
vertices->ptr[vertices->count++] = v;
}
/* vnormal: compute unit length surface normal at point */
void vnormal (MB_POINT *point, PROCESS *p, MB_POINT *v)
/* MB_POINT *point, *v; */
/* PROCESS *p; */
{
float delta= 0.2f*p->delta;
float f = p->function(point->x, point->y, point->z);
v->x = p->function(point->x+delta, point->y, point->z)-f;
v->y = p->function(point->x, point->y+delta, point->z)-f;
v->z = p->function(point->x, point->y, point->z+delta)-f;
f = (float)sqrt(v->x*v->x + v->y*v->y + v->z*v->z);
if (f != 0.0) {
v->x /= f;
v->y /= f;
v->z /= f;
}
if(FALSE) {
/* if(R.flag & R_RENDERING) { */
MB_POINT temp;
delta*= 2.0;
f = p->function(point->x, point->y, point->z);
temp.x = p->function(point->x+delta, point->y, point->z)-f;
temp.y = p->function(point->x, point->y+delta, point->z)-f;
temp.z = p->function(point->x, point->y, point->z+delta)-f;
f = (float)sqrt(temp.x*temp.x + temp.y*temp.y + temp.z*temp.z);
if (f != 0.0) {
temp.x /= f;
temp.y /= f;
temp.z /= f;
v->x+= temp.x;
v->y+= temp.y;
v->z+= temp.z;
f = (float)sqrt(v->x*v->x + v->y*v->y + v->z*v->z);
if (f != 0.0) {
v->x /= f;
v->y /= f;
v->z /= f;
}
}
}
}
int vertid (CORNER *c1, CORNER *c2, PROCESS *p)
/* CORNER *c1, *c2; */
/* PROCESS *p; */
{
VERTEX v;
MB_POINT a, b;
int vid = getedge(p->edges, c1->i, c1->j, c1->k, c2->i, c2->j, c2->k);
if (vid != -1) return vid; /* previously computed */
a.x = c1->x;
a.y = c1->y;
a.z = c1->z;
b.x = c2->x;
b.y = c2->y;
b.z = c2->z;
converge(&a, &b, c1->value, p->function, &v.position); /* position */
vnormal(&v.position, p, &v.normal);
addtovertices(&p->vertices, v); /* save vertex */
vid = p->vertices.count-1;
setedge(p->edges, c1->i, c1->j, c1->k, c2->i, c2->j, c2->k, vid);
return vid;
}
/* converge: from two points of differing sign, converge to zero crossing */
/* watch it: p1 and p2 are used to calculate */
void converge (MB_POINT *p1, MB_POINT *p2, float v,
float (*function)(float, float, float), MB_POINT *p)
{
int i = 0;
MB_POINT *pos, *neg;
if (v < 0) {
pos= p2;
neg= p1;
}
else {
pos= p1;
neg= p2;
}
while (1) {
p->x = 0.5f*(pos->x + neg->x);
p->y = 0.5f*(pos->y + neg->y);
p->z = 0.5f*(pos->z + neg->z);
if (i++ == RES) return;
if ((function(p->x, p->y, p->z)) > 0.0) {
pos->x = p->x;
pos->y = p->y;
pos->z = p->z;
}
else {
neg->x = p->x;
neg->y = p->y;
neg->z = p->z;
}
}
}
/* ************************************** */
void polygonize(PROCESS *mbproc)
{
MB_POINT in, out;
CUBE c;
CUBES *ncube;
/* CORNER *setcorner(); */
int a, n, i, j, k;
mbproc->vertices.count = mbproc->vertices.max = 0;
mbproc->vertices.ptr = NULL;
/* allocate hash tables and build cube polygon table: */
mbproc->centers = MEM_callocN(HASHSIZE * sizeof(CENTERLIST *), "mbproc->centers");
mbproc->corners = MEM_callocN(HASHSIZE * sizeof(CORNER *), "mbproc->corners");
mbproc->edges = MEM_callocN(2*HASHSIZE * sizeof(EDGELIST *), "mbproc->edges");
makecubetable();
/* find first point on balls */
for(a=0; a<totelem; a++) {
in.x= mainb[a]->x;
in.y= mainb[a]->y;
in.z= mainb[a]->z;
calc_mballco(mainb[a], (float *)&in);
/* added factor 2.0 to be sure it always finds the ball... still unsure why! */
out.x= in.x + 2.0f*mainb[a]->rad;
out.y= in.y + 2.0f*mainb[a]->rad;
out.z= in.z + 2.0f*mainb[a]->rad;
calc_mballco(mainb[a], (float *)&out);
converge(&in, &out, -1.0, mbproc->function, &mbproc->start);
/* NEW1: zorg voor correcte uitgangspositie */
i= (int)floor(mbproc->start.x/mbproc->size );
j= (int)floor(mbproc->start.y/mbproc->size );
k= (int)floor(mbproc->start.z/mbproc->size );
mbproc->start.x= mbproc->start.y= mbproc->start.z= 0.0;
/* dit gaat niet altijd goed: soms wordt een bal niet gevonden. waarom? */
/* test if cube has been found before */
if( setcenter(mbproc->centers, i, j, k)==0 ) {
/* push cube on stack: */
ncube= (CUBES *) new_pgn_element(sizeof(CUBES));
ncube->next= mbproc->cubes;
mbproc->cubes= ncube;
ncube->cube.i= i;
ncube->cube.j= j;
ncube->cube.k= k;
/* set corners of initial cube: */
for (n = 0; n < 8; n++)
ncube->cube.corners[n] = setcorner(mbproc, i+MB_BIT(n,2), j+MB_BIT(n,1), k+MB_BIT(n,0));
}
/* we do a triple test and add a cube if necessary */
i++;
/* test if cube has been found before */
if( setcenter(mbproc->centers, i, j, k)==0 ) {
/* push cube on stack: */
ncube= (CUBES *) new_pgn_element(sizeof(CUBES));
ncube->next= mbproc->cubes;
mbproc->cubes= ncube;
ncube->cube.i= i;
ncube->cube.j= j;
ncube->cube.k= k;
/* set corners of initial cube: */
for (n = 0; n < 8; n++)
ncube->cube.corners[n] = setcorner(mbproc, i+MB_BIT(n,2), j+MB_BIT(n,1), k+MB_BIT(n,0));
}
i--;
j++;
/* test if cube has been found before */
if( setcenter(mbproc->centers, i, j, k)==0 ) {
/* push cube on stack: */
ncube= (CUBES *) new_pgn_element(sizeof(CUBES));
ncube->next= mbproc->cubes;
mbproc->cubes= ncube;
ncube->cube.i= i;
ncube->cube.j= j;
ncube->cube.k= k;
/* set corners of initial cube: */
for (n = 0; n < 8; n++)
ncube->cube.corners[n] = setcorner(mbproc, i+MB_BIT(n,2), j+MB_BIT(n,1), k+MB_BIT(n,0));
}
j--;
k++;
/* test if cube has been found before */
if( setcenter(mbproc->centers, i, j, k)==0 ) {
/* push cube on stack: */
ncube= (CUBES *) new_pgn_element(sizeof(CUBES));
ncube->next= mbproc->cubes;
mbproc->cubes= ncube;
ncube->cube.i= i;
ncube->cube.j= j;
ncube->cube.k= k;
/* set corners of initial cube: */
for (n = 0; n < 8; n++)
ncube->cube.corners[n] = setcorner(mbproc, i+MB_BIT(n,2), j+MB_BIT(n,1), k+MB_BIT(n,0));
}
i++;
j++;
/* test if cube has been found before */
if( setcenter(mbproc->centers, i, j, k)==0 ) {
/* push cube on stack: */
ncube= (CUBES *) new_pgn_element(sizeof(CUBES));
ncube->next= mbproc->cubes;
mbproc->cubes= ncube;
ncube->cube.i= i;
ncube->cube.j= j;
ncube->cube.k= k;
/* set corners of initial cube: */
for (n = 0; n < 8; n++)
ncube->cube.corners[n] = setcorner(mbproc, i+MB_BIT(n,2), j+MB_BIT(n,1), k+MB_BIT(n,0));
}
}
while (mbproc->cubes != NULL) { /* process active cubes till none left */
c = mbproc->cubes->cube;
/* polygonize the cube directly: */
docube(&c, mbproc);
/* pop current cube from stack */
mbproc->cubes = mbproc->cubes->next;
/* test six face directions, maybe add to stack: */
testface(c.i-1, c.j, c.k, &c, 2, LBN, LBF, LTN, LTF, mbproc);
testface(c.i+1, c.j, c.k, &c, 2, RBN, RBF, RTN, RTF, mbproc);
testface(c.i, c.j-1, c.k, &c, 1, LBN, LBF, RBN, RBF, mbproc);
testface(c.i, c.j+1, c.k, &c, 1, LTN, LTF, RTN, RTF, mbproc);
testface(c.i, c.j, c.k-1, &c, 0, LBN, LTN, RBN, RTN, mbproc);
testface(c.i, c.j, c.k+1, &c, 0, LBF, LTF, RBF, RTF, mbproc);
}
}
float init_meta(Object *ob) /* return totsize */
{
Base *base;
Object *bob;
MetaBall *mb;
MetaElem *ml;
float size, totsize, (*mat)[4] = NULL, (*imat)[4] = NULL, obinv[4][4], vec[3];
int a, obnr;
char obname[32];
Mat4Invert(obinv, ob->obmat);
totelem= 0;
splitIDname(ob->id.name+2, obname, &obnr);
/* hoofdarray maken */
next_object(0, 0, 0);
while(next_object(1, &base, &bob)) {
if(bob->type==OB_MBALL) {
ml= 0;
if(bob==ob) {
mat= imat= 0;
mb= ob->data;
if(ob==G.obedit) ml= editelems.first;
else if(G.obedit && G.obedit->type==OB_MBALL && G.obedit->data==mb) ml= editelems.first;
else ml= mb->elems.first;
}
else {
char name[32];
int nr;
splitIDname(bob->id.name+2, name, &nr);
if( strcmp(obname, name)==0 ) {
mb= bob->data;
if(G.obedit && G.obedit->type==OB_MBALL && G.obedit->data==mb)
ml= editelems.first;
else ml= mb->elems.first;
/* mat is de matrix om van deze mball in de basis-mbal te komen */
mat= new_pgn_element(4*4*sizeof(float));
Mat4MulMat4(mat, bob->obmat, obinv);
imat= new_pgn_element(4*4*sizeof(float));
Mat4Invert(imat, mat);
}
}
while(ml && totelem<MB_MAXELEM) {
a= totelem;
/* kopie maken i.v.m. duplicates */
mainb[a]= new_pgn_element(sizeof(MetaElem));
*(mainb[a])= *ml;
/* if(mainb[a]->flag & MB_NEGATIVE) mainb[a]->s= 1.0-mainb[a]->s; */
mainb[a]->rad2= mainb[a]->rad*mainb[a]->rad;
mainb[a]->mat= (float*) mat;
mainb[a]->imat= (float*) imat;
ml= ml->next;
totelem++;
}
}
}
/* totsize (= 'manhattan' straal) berekenen */
totsize= 0.0;
for(a=0; a<totelem; a++) {
vec[0]= mainb[a]->x + mainb[a]->rad;
vec[1]= mainb[a]->y + mainb[a]->rad;
vec[2]= mainb[a]->z + mainb[a]->rad;
if(mainb[a]->type==MB_TUBEX) vec[0]+= mainb[a]->len;
if(mainb[a]->type==MB_TUBEY) vec[1]+= mainb[a]->len;
if(mainb[a]->type==MB_TUBEZ) vec[2]+= mainb[a]->len;
calc_mballco(mainb[a], vec);
size= (float)fabs( vec[0] );
if( size > totsize ) totsize= size;
size= (float)fabs( vec[1] );
if( size > totsize ) totsize= size;
size= (float)fabs( vec[2] );
if( size > totsize ) totsize= size;
vec[0]= mainb[a]->x - mainb[a]->rad;
vec[1]= mainb[a]->y - mainb[a]->rad;
vec[2]= mainb[a]->z - mainb[a]->rad;
calc_mballco(mainb[a], vec);
size= (float)fabs( vec[0] );
if( size > totsize ) totsize= size;
size= (float)fabs( vec[1] );
if( size > totsize ) totsize= size;
size= (float)fabs( vec[2] );
if( size > totsize ) totsize= size;
}
for(a=0; a<totelem; a++) {
thresh+= densfunc( mainb[a], 2.0f*totsize, 2.0f*totsize, 2.0f*totsize);
}
return totsize;
}
void metaball_polygonize(Object *ob)
{
PROCESS mbproc;
MetaBall *mb;
DispList *dl;
int a, nr_cubes;
float *ve, *no, totsize, width;
mb= ob->data;
freedisplist(&ob->disp);
curindex= totindex= 0;
indices= 0;
thresh= mb->thresh;
if(G.moving && mb->flag==MB_UPDATE_FAST) return;
mainb= MEM_mallocN(sizeof(void *)*MB_MAXELEM, "mainb");
totsize= init_meta(ob);
if(totelem==0) {
MEM_freeN(mainb);
return;
}
/* width is afmeting per polygoniseerkubus */
if(R.flag & R_RENDERING) width= mb->rendersize;
else {
width= mb->wiresize;
if(G.moving && mb->flag==MB_UPDATE_HALFRES) width*= 2;
}
/* nr_cubes is voor de veiligheid, minmaal de totsize */
nr_cubes= (int)(0.5+totsize/width);
/* init process */
mbproc.function = metaball;
mbproc.size = width;
mbproc.bounds = nr_cubes;
mbproc.cubes= 0;
mbproc.delta = width/(float)(RES*RES);
polygonize(&mbproc);
MEM_freeN(mainb);
if(curindex) {
dl= MEM_callocN(sizeof(DispList), "mbaldisp");
BLI_addtail(&ob->disp, dl);
dl->type= DL_INDEX4;
dl->nr= mbproc.vertices.count;
dl->parts= curindex;
dl->index= indices;
indices= 0;
a= mbproc.vertices.count;
dl->verts= ve= MEM_mallocN(sizeof(float)*3*a, "mballverts");
dl->nors= no= MEM_mallocN(sizeof(float)*3*a, "mballnors");
for(a=0; a<mbproc.vertices.count; a++, no+=3, ve+=3) {
ve[0]= mbproc.vertices.ptr[a].position.x;
ve[1]= mbproc.vertices.ptr[a].position.y;
ve[2]= mbproc.vertices.ptr[a].position.z;
no[0]= mbproc.vertices.ptr[a].normal.x;
no[1]= mbproc.vertices.ptr[a].normal.y;
no[2]= mbproc.vertices.ptr[a].normal.z;
}
}
freepolygonize(&mbproc);
}