This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/functions/intern/generic_virtual_vector_array.cc
Jacques Lucke 4fe8d0419c Functions: refactor virtual array data structures
When a function is executed for many elements (e.g. per point) it is often the case
that some parameters are different for every element and other parameters are
the same (there are some more less common cases). To simplify writing such
functions one can use a "virtual array". This is a data structure that has a value
for every index, but might not be stored as an actual array internally. Instead, it
might be just a single value or is computed on the fly. There are various tradeoffs
involved when using this data structure which are mentioned in `BLI_virtual_array.hh`.
It is called "virtual", because it uses inheritance and virtual methods.

Furthermore, there is a new virtual vector array data structure, which is an array
of vectors. Both these types have corresponding generic variants, which can be used
when the data type is not known at compile time. This is typically the case when
building a somewhat generic execution system. The function system used these virtual
data structures before, but now they are more versatile.

I've done this refactor in preparation for the attribute processor and other features of
geometry nodes. I moved the typed virtual arrays to blenlib, so that they can be used
independent of the function system.

One open question for me is whether all the generic data structures (and `CPPType`)
should be moved to blenlib as well. They are well isolated and don't really contain
any business logic. That can be done later if necessary.
2021-03-21 19:33:13 +01:00

68 lines
2.3 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "FN_generic_virtual_vector_array.hh"
namespace blender::fn {
void GVArrayForGVVectorArrayIndex::get_impl(const int64_t index_in_vector, void *r_value) const
{
vector_array_.get_vector_element(index_, index_in_vector, r_value);
}
void GVArrayForGVVectorArrayIndex::get_to_uninitialized_impl(const int64_t index_in_vector,
void *r_value) const
{
type_->construct_default(r_value);
vector_array_.get_vector_element(index_, index_in_vector, r_value);
}
int64_t GVVectorArrayForSingleGVArray::get_vector_size_impl(const int64_t UNUSED(index)) const
{
return array_.size();
}
void GVVectorArrayForSingleGVArray::get_vector_element_impl(const int64_t UNUSED(index),
const int64_t index_in_vector,
void *r_value) const
{
array_.get(index_in_vector, r_value);
}
bool GVVectorArrayForSingleGVArray::is_single_vector_impl() const
{
return true;
}
int64_t GVVectorArrayForSingleGSpan::get_vector_size_impl(const int64_t UNUSED(index)) const
{
return span_.size();
}
void GVVectorArrayForSingleGSpan::get_vector_element_impl(const int64_t UNUSED(index),
const int64_t index_in_vector,
void *r_value) const
{
type_->copy_to_initialized(span_[index_in_vector], r_value);
}
bool GVVectorArrayForSingleGSpan::is_single_vector_impl() const
{
return true;
}
} // namespace blender::fn