This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/device/multi/device.cpp
Brecht Van Lommel 9cfc7967dd Cycles: use SPDX license headers
* Replace license text in headers with SPDX identifiers.
* Remove specific license info from outdated readme.txt, instead leave details
  to the source files.
* Add list of SPDX license identifiers used, and corresponding license texts.
* Update copyright dates while we're at it.

Ref D14069, T95597
2022-02-11 17:47:34 +01:00

418 lines
13 KiB
C++

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
#include "device/multi/device.h"
#include <sstream>
#include <stdlib.h>
#include "bvh/multi.h"
#include "device/device.h"
#include "device/queue.h"
#include "scene/geometry.h"
#include "util/foreach.h"
#include "util/list.h"
#include "util/log.h"
#include "util/map.h"
#include "util/time.h"
CCL_NAMESPACE_BEGIN
class MultiDevice : public Device {
public:
struct SubDevice {
Stats stats;
Device *device;
map<device_ptr, device_ptr> ptr_map;
int peer_island_index = -1;
};
list<SubDevice> devices;
device_ptr unique_key;
vector<vector<SubDevice *>> peer_islands;
MultiDevice(const DeviceInfo &info, Stats &stats, Profiler &profiler)
: Device(info, stats, profiler), unique_key(1)
{
foreach (const DeviceInfo &subinfo, info.multi_devices) {
/* Always add CPU devices at the back since GPU devices can change
* host memory pointers, which CPU uses as device pointer. */
SubDevice *sub;
if (subinfo.type == DEVICE_CPU) {
devices.emplace_back();
sub = &devices.back();
}
else {
devices.emplace_front();
sub = &devices.front();
}
/* The pointer to 'sub->stats' will stay valid even after new devices
* are added, since 'devices' is a linked list. */
sub->device = Device::create(subinfo, sub->stats, profiler);
}
/* Build a list of peer islands for the available render devices */
foreach (SubDevice &sub, devices) {
/* First ensure that every device is in at least once peer island */
if (sub.peer_island_index < 0) {
peer_islands.emplace_back();
sub.peer_island_index = (int)peer_islands.size() - 1;
peer_islands[sub.peer_island_index].push_back(&sub);
}
if (!info.has_peer_memory) {
continue;
}
/* Second check peer access between devices and fill up the islands accordingly */
foreach (SubDevice &peer_sub, devices) {
if (peer_sub.peer_island_index < 0 &&
peer_sub.device->info.type == sub.device->info.type &&
peer_sub.device->check_peer_access(sub.device)) {
peer_sub.peer_island_index = sub.peer_island_index;
peer_islands[sub.peer_island_index].push_back(&peer_sub);
}
}
}
}
~MultiDevice()
{
foreach (SubDevice &sub, devices)
delete sub.device;
}
const string &error_message() override
{
error_msg.clear();
foreach (SubDevice &sub, devices)
error_msg += sub.device->error_message();
return error_msg;
}
virtual BVHLayoutMask get_bvh_layout_mask() const override
{
BVHLayoutMask bvh_layout_mask = BVH_LAYOUT_ALL;
BVHLayoutMask bvh_layout_mask_all = BVH_LAYOUT_NONE;
foreach (const SubDevice &sub_device, devices) {
BVHLayoutMask device_bvh_layout_mask = sub_device.device->get_bvh_layout_mask();
bvh_layout_mask &= device_bvh_layout_mask;
bvh_layout_mask_all |= device_bvh_layout_mask;
}
/* With multiple OptiX devices, every device needs its own acceleration structure */
if (bvh_layout_mask == BVH_LAYOUT_OPTIX) {
return BVH_LAYOUT_MULTI_OPTIX;
}
/* With multiple Metal devices, every device needs its own acceleration structure */
if (bvh_layout_mask == BVH_LAYOUT_METAL) {
return BVH_LAYOUT_MULTI_METAL;
}
/* When devices do not share a common BVH layout, fall back to creating one for each */
const BVHLayoutMask BVH_LAYOUT_OPTIX_EMBREE = (BVH_LAYOUT_OPTIX | BVH_LAYOUT_EMBREE);
if ((bvh_layout_mask_all & BVH_LAYOUT_OPTIX_EMBREE) == BVH_LAYOUT_OPTIX_EMBREE) {
return BVH_LAYOUT_MULTI_OPTIX_EMBREE;
}
const BVHLayoutMask BVH_LAYOUT_METAL_EMBREE = (BVH_LAYOUT_METAL | BVH_LAYOUT_EMBREE);
if ((bvh_layout_mask_all & BVH_LAYOUT_METAL_EMBREE) == BVH_LAYOUT_METAL_EMBREE) {
return BVH_LAYOUT_MULTI_METAL_EMBREE;
}
return bvh_layout_mask;
}
bool load_kernels(const uint kernel_features) override
{
foreach (SubDevice &sub, devices)
if (!sub.device->load_kernels(kernel_features))
return false;
return true;
}
void build_bvh(BVH *bvh, Progress &progress, bool refit) override
{
/* Try to build and share a single acceleration structure, if possible */
if (bvh->params.bvh_layout == BVH_LAYOUT_BVH2 || bvh->params.bvh_layout == BVH_LAYOUT_EMBREE) {
devices.back().device->build_bvh(bvh, progress, refit);
return;
}
assert(bvh->params.bvh_layout == BVH_LAYOUT_MULTI_OPTIX ||
bvh->params.bvh_layout == BVH_LAYOUT_MULTI_METAL ||
bvh->params.bvh_layout == BVH_LAYOUT_MULTI_OPTIX_EMBREE ||
bvh->params.bvh_layout == BVH_LAYOUT_MULTI_METAL_EMBREE);
BVHMulti *const bvh_multi = static_cast<BVHMulti *>(bvh);
bvh_multi->sub_bvhs.resize(devices.size());
vector<BVHMulti *> geom_bvhs;
geom_bvhs.reserve(bvh->geometry.size());
foreach (Geometry *geom, bvh->geometry) {
geom_bvhs.push_back(static_cast<BVHMulti *>(geom->bvh));
}
/* Broadcast acceleration structure build to all render devices */
size_t i = 0;
foreach (SubDevice &sub, devices) {
/* Change geometry BVH pointers to the sub BVH */
for (size_t k = 0; k < bvh->geometry.size(); ++k) {
bvh->geometry[k]->bvh = geom_bvhs[k]->sub_bvhs[i];
}
if (!bvh_multi->sub_bvhs[i]) {
BVHParams params = bvh->params;
if (bvh->params.bvh_layout == BVH_LAYOUT_MULTI_OPTIX)
params.bvh_layout = BVH_LAYOUT_OPTIX;
else if (bvh->params.bvh_layout == BVH_LAYOUT_MULTI_METAL)
params.bvh_layout = BVH_LAYOUT_METAL;
else if (bvh->params.bvh_layout == BVH_LAYOUT_MULTI_OPTIX_EMBREE)
params.bvh_layout = sub.device->info.type == DEVICE_OPTIX ? BVH_LAYOUT_OPTIX :
BVH_LAYOUT_EMBREE;
else if (bvh->params.bvh_layout == BVH_LAYOUT_MULTI_METAL_EMBREE)
params.bvh_layout = sub.device->info.type == DEVICE_METAL ? BVH_LAYOUT_METAL :
BVH_LAYOUT_EMBREE;
/* Skip building a bottom level acceleration structure for non-instanced geometry on Embree
* (since they are put into the top level directly, see bvh_embree.cpp) */
if (!params.top_level && params.bvh_layout == BVH_LAYOUT_EMBREE &&
!bvh->geometry[0]->is_instanced()) {
i++;
continue;
}
bvh_multi->sub_bvhs[i] = BVH::create(params, bvh->geometry, bvh->objects, sub.device);
}
sub.device->build_bvh(bvh_multi->sub_bvhs[i], progress, refit);
i++;
}
/* Change geometry BVH pointers back to the multi BVH. */
for (size_t k = 0; k < bvh->geometry.size(); ++k) {
bvh->geometry[k]->bvh = geom_bvhs[k];
}
}
virtual void *get_cpu_osl_memory() override
{
if (devices.size() > 1) {
return NULL;
}
return devices.front().device->get_cpu_osl_memory();
}
bool is_resident(device_ptr key, Device *sub_device) override
{
foreach (SubDevice &sub, devices) {
if (sub.device == sub_device) {
return find_matching_mem_device(key, sub)->device == sub_device;
}
}
return false;
}
SubDevice *find_matching_mem_device(device_ptr key, SubDevice &sub)
{
assert(key != 0 && (sub.peer_island_index >= 0 || sub.ptr_map.find(key) != sub.ptr_map.end()));
/* Get the memory owner of this key (first try current device, then peer devices) */
SubDevice *owner_sub = &sub;
if (owner_sub->ptr_map.find(key) == owner_sub->ptr_map.end()) {
foreach (SubDevice *island_sub, peer_islands[sub.peer_island_index]) {
if (island_sub != owner_sub &&
island_sub->ptr_map.find(key) != island_sub->ptr_map.end()) {
owner_sub = island_sub;
}
}
}
return owner_sub;
}
SubDevice *find_suitable_mem_device(device_ptr key, const vector<SubDevice *> &island)
{
assert(!island.empty());
/* Get the memory owner of this key or the device with the lowest memory usage when new */
SubDevice *owner_sub = island.front();
foreach (SubDevice *island_sub, island) {
if (key ? (island_sub->ptr_map.find(key) != island_sub->ptr_map.end()) :
(island_sub->device->stats.mem_used < owner_sub->device->stats.mem_used)) {
owner_sub = island_sub;
}
}
return owner_sub;
}
inline device_ptr find_matching_mem(device_ptr key, SubDevice &sub)
{
return find_matching_mem_device(key, sub)->ptr_map[key];
}
void mem_alloc(device_memory &mem) override
{
device_ptr key = unique_key++;
assert(mem.type == MEM_READ_ONLY || mem.type == MEM_READ_WRITE || mem.type == MEM_DEVICE_ONLY);
/* The remaining memory types can be distributed across devices */
foreach (const vector<SubDevice *> &island, peer_islands) {
SubDevice *owner_sub = find_suitable_mem_device(key, island);
mem.device = owner_sub->device;
mem.device_pointer = 0;
mem.device_size = 0;
owner_sub->device->mem_alloc(mem);
owner_sub->ptr_map[key] = mem.device_pointer;
}
mem.device = this;
mem.device_pointer = key;
stats.mem_alloc(mem.device_size);
}
void mem_copy_to(device_memory &mem) override
{
device_ptr existing_key = mem.device_pointer;
device_ptr key = (existing_key) ? existing_key : unique_key++;
size_t existing_size = mem.device_size;
/* The tile buffers are allocated on each device (see below), so copy to all of them */
foreach (const vector<SubDevice *> &island, peer_islands) {
SubDevice *owner_sub = find_suitable_mem_device(existing_key, island);
mem.device = owner_sub->device;
mem.device_pointer = (existing_key) ? owner_sub->ptr_map[existing_key] : 0;
mem.device_size = existing_size;
owner_sub->device->mem_copy_to(mem);
owner_sub->ptr_map[key] = mem.device_pointer;
if (mem.type == MEM_GLOBAL || mem.type == MEM_TEXTURE) {
/* Need to create texture objects and update pointer in kernel globals on all devices */
foreach (SubDevice *island_sub, island) {
if (island_sub != owner_sub) {
island_sub->device->mem_copy_to(mem);
}
}
}
}
mem.device = this;
mem.device_pointer = key;
stats.mem_alloc(mem.device_size - existing_size);
}
void mem_copy_from(device_memory &mem, size_t y, size_t w, size_t h, size_t elem) override
{
device_ptr key = mem.device_pointer;
size_t i = 0, sub_h = h / devices.size();
foreach (SubDevice &sub, devices) {
size_t sy = y + i * sub_h;
size_t sh = (i == (size_t)devices.size() - 1) ? h - sub_h * i : sub_h;
SubDevice *owner_sub = find_matching_mem_device(key, sub);
mem.device = owner_sub->device;
mem.device_pointer = owner_sub->ptr_map[key];
owner_sub->device->mem_copy_from(mem, sy, w, sh, elem);
i++;
}
mem.device = this;
mem.device_pointer = key;
}
void mem_zero(device_memory &mem) override
{
device_ptr existing_key = mem.device_pointer;
device_ptr key = (existing_key) ? existing_key : unique_key++;
size_t existing_size = mem.device_size;
foreach (const vector<SubDevice *> &island, peer_islands) {
SubDevice *owner_sub = find_suitable_mem_device(existing_key, island);
mem.device = owner_sub->device;
mem.device_pointer = (existing_key) ? owner_sub->ptr_map[existing_key] : 0;
mem.device_size = existing_size;
owner_sub->device->mem_zero(mem);
owner_sub->ptr_map[key] = mem.device_pointer;
}
mem.device = this;
mem.device_pointer = key;
stats.mem_alloc(mem.device_size - existing_size);
}
void mem_free(device_memory &mem) override
{
device_ptr key = mem.device_pointer;
size_t existing_size = mem.device_size;
/* Free memory that was allocated for all devices (see above) on each device */
foreach (const vector<SubDevice *> &island, peer_islands) {
SubDevice *owner_sub = find_matching_mem_device(key, *island.front());
mem.device = owner_sub->device;
mem.device_pointer = owner_sub->ptr_map[key];
mem.device_size = existing_size;
owner_sub->device->mem_free(mem);
owner_sub->ptr_map.erase(owner_sub->ptr_map.find(key));
if (mem.type == MEM_TEXTURE) {
/* Free texture objects on all devices */
foreach (SubDevice *island_sub, island) {
if (island_sub != owner_sub) {
island_sub->device->mem_free(mem);
}
}
}
}
mem.device = this;
mem.device_pointer = 0;
mem.device_size = 0;
stats.mem_free(existing_size);
}
void const_copy_to(const char *name, void *host, size_t size) override
{
foreach (SubDevice &sub, devices)
sub.device->const_copy_to(name, host, size);
}
int device_number(Device *sub_device) override
{
int i = 0;
foreach (SubDevice &sub, devices) {
if (sub.device == sub_device)
return i;
i++;
}
return -1;
}
virtual void foreach_device(const function<void(Device *)> &callback) override
{
foreach (SubDevice &sub, devices) {
sub.device->foreach_device(callback);
}
}
};
Device *device_multi_create(const DeviceInfo &info, Stats &stats, Profiler &profiler)
{
return new MultiDevice(info, stats, profiler);
}
CCL_NAMESPACE_END