Currently there are no functional changes. Preparing for an upcoming oneAPI integration where such separation in types is needed.
268 lines
8.8 KiB
C++
268 lines
8.8 KiB
C++
/* SPDX-License-Identifier: Apache-2.0
|
|
* Copyright 2017-2022 Blender Foundation */
|
|
|
|
#pragma once
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
#ifdef WITH_NANOVDB
|
|
# define NDEBUG /* Disable "assert" in device code */
|
|
# define NANOVDB_USE_INTRINSICS
|
|
# include "nanovdb/NanoVDB.h"
|
|
# include "nanovdb/util/SampleFromVoxels.h"
|
|
#endif
|
|
|
|
/* w0, w1, w2, and w3 are the four cubic B-spline basis functions. */
|
|
ccl_device float cubic_w0(float a)
|
|
{
|
|
return (1.0f / 6.0f) * (a * (a * (-a + 3.0f) - 3.0f) + 1.0f);
|
|
}
|
|
ccl_device float cubic_w1(float a)
|
|
{
|
|
return (1.0f / 6.0f) * (a * a * (3.0f * a - 6.0f) + 4.0f);
|
|
}
|
|
ccl_device float cubic_w2(float a)
|
|
{
|
|
return (1.0f / 6.0f) * (a * (a * (-3.0f * a + 3.0f) + 3.0f) + 1.0f);
|
|
}
|
|
ccl_device float cubic_w3(float a)
|
|
{
|
|
return (1.0f / 6.0f) * (a * a * a);
|
|
}
|
|
|
|
/* g0 and g1 are the two amplitude functions. */
|
|
ccl_device float cubic_g0(float a)
|
|
{
|
|
return cubic_w0(a) + cubic_w1(a);
|
|
}
|
|
ccl_device float cubic_g1(float a)
|
|
{
|
|
return cubic_w2(a) + cubic_w3(a);
|
|
}
|
|
|
|
/* h0 and h1 are the two offset functions */
|
|
ccl_device float cubic_h0(float a)
|
|
{
|
|
return (cubic_w1(a) / cubic_g0(a)) - 1.0f;
|
|
}
|
|
ccl_device float cubic_h1(float a)
|
|
{
|
|
return (cubic_w3(a) / cubic_g1(a)) + 1.0f;
|
|
}
|
|
|
|
/* Fast bicubic texture lookup using 4 bilinear lookups, adapted from CUDA samples. */
|
|
template<typename T>
|
|
ccl_device_noinline T kernel_tex_image_interp_bicubic(ccl_global const TextureInfo &info,
|
|
float x,
|
|
float y)
|
|
{
|
|
ccl_gpu_tex_object_2D tex = (ccl_gpu_tex_object_2D)info.data;
|
|
|
|
x = (x * info.width) - 0.5f;
|
|
y = (y * info.height) - 0.5f;
|
|
|
|
float px = floorf(x);
|
|
float py = floorf(y);
|
|
float fx = x - px;
|
|
float fy = y - py;
|
|
|
|
float g0x = cubic_g0(fx);
|
|
float g1x = cubic_g1(fx);
|
|
/* Note +0.5 offset to compensate for CUDA linear filtering convention. */
|
|
float x0 = (px + cubic_h0(fx) + 0.5f) / info.width;
|
|
float x1 = (px + cubic_h1(fx) + 0.5f) / info.width;
|
|
float y0 = (py + cubic_h0(fy) + 0.5f) / info.height;
|
|
float y1 = (py + cubic_h1(fy) + 0.5f) / info.height;
|
|
|
|
return cubic_g0(fy) * (g0x * ccl_gpu_tex_object_read_2D<T>(tex, x0, y0) +
|
|
g1x * ccl_gpu_tex_object_read_2D<T>(tex, x1, y0)) +
|
|
cubic_g1(fy) * (g0x * ccl_gpu_tex_object_read_2D<T>(tex, x0, y1) +
|
|
g1x * ccl_gpu_tex_object_read_2D<T>(tex, x1, y1));
|
|
}
|
|
|
|
/* Fast tricubic texture lookup using 8 trilinear lookups. */
|
|
template<typename T>
|
|
ccl_device_noinline T
|
|
kernel_tex_image_interp_tricubic(ccl_global const TextureInfo &info, float x, float y, float z)
|
|
{
|
|
ccl_gpu_tex_object_3D tex = (ccl_gpu_tex_object_3D)info.data;
|
|
|
|
x = (x * info.width) - 0.5f;
|
|
y = (y * info.height) - 0.5f;
|
|
z = (z * info.depth) - 0.5f;
|
|
|
|
float px = floorf(x);
|
|
float py = floorf(y);
|
|
float pz = floorf(z);
|
|
float fx = x - px;
|
|
float fy = y - py;
|
|
float fz = z - pz;
|
|
|
|
float g0x = cubic_g0(fx);
|
|
float g1x = cubic_g1(fx);
|
|
float g0y = cubic_g0(fy);
|
|
float g1y = cubic_g1(fy);
|
|
float g0z = cubic_g0(fz);
|
|
float g1z = cubic_g1(fz);
|
|
|
|
/* Note +0.5 offset to compensate for CUDA linear filtering convention. */
|
|
float x0 = (px + cubic_h0(fx) + 0.5f) / info.width;
|
|
float x1 = (px + cubic_h1(fx) + 0.5f) / info.width;
|
|
float y0 = (py + cubic_h0(fy) + 0.5f) / info.height;
|
|
float y1 = (py + cubic_h1(fy) + 0.5f) / info.height;
|
|
float z0 = (pz + cubic_h0(fz) + 0.5f) / info.depth;
|
|
float z1 = (pz + cubic_h1(fz) + 0.5f) / info.depth;
|
|
|
|
return g0z * (g0y * (g0x * ccl_gpu_tex_object_read_3D<T>(tex, x0, y0, z0) +
|
|
g1x * ccl_gpu_tex_object_read_3D<T>(tex, x1, y0, z0)) +
|
|
g1y * (g0x * ccl_gpu_tex_object_read_3D<T>(tex, x0, y1, z0) +
|
|
g1x * ccl_gpu_tex_object_read_3D<T>(tex, x1, y1, z0))) +
|
|
g1z * (g0y * (g0x * ccl_gpu_tex_object_read_3D<T>(tex, x0, y0, z1) +
|
|
g1x * ccl_gpu_tex_object_read_3D<T>(tex, x1, y0, z1)) +
|
|
g1y * (g0x * ccl_gpu_tex_object_read_3D<T>(tex, x0, y1, z1) +
|
|
g1x * ccl_gpu_tex_object_read_3D<T>(tex, x1, y1, z1)));
|
|
}
|
|
|
|
#ifdef WITH_NANOVDB
|
|
template<typename T, typename S>
|
|
ccl_device T kernel_tex_image_interp_tricubic_nanovdb(S &s, float x, float y, float z)
|
|
{
|
|
float px = floorf(x);
|
|
float py = floorf(y);
|
|
float pz = floorf(z);
|
|
float fx = x - px;
|
|
float fy = y - py;
|
|
float fz = z - pz;
|
|
|
|
float g0x = cubic_g0(fx);
|
|
float g1x = cubic_g1(fx);
|
|
float g0y = cubic_g0(fy);
|
|
float g1y = cubic_g1(fy);
|
|
float g0z = cubic_g0(fz);
|
|
float g1z = cubic_g1(fz);
|
|
|
|
float x0 = px + cubic_h0(fx);
|
|
float x1 = px + cubic_h1(fx);
|
|
float y0 = py + cubic_h0(fy);
|
|
float y1 = py + cubic_h1(fy);
|
|
float z0 = pz + cubic_h0(fz);
|
|
float z1 = pz + cubic_h1(fz);
|
|
|
|
using namespace nanovdb;
|
|
|
|
return g0z * (g0y * (g0x * s(Vec3f(x0, y0, z0)) + g1x * s(Vec3f(x1, y0, z0))) +
|
|
g1y * (g0x * s(Vec3f(x0, y1, z0)) + g1x * s(Vec3f(x1, y1, z0)))) +
|
|
g1z * (g0y * (g0x * s(Vec3f(x0, y0, z1)) + g1x * s(Vec3f(x1, y0, z1))) +
|
|
g1y * (g0x * s(Vec3f(x0, y1, z1)) + g1x * s(Vec3f(x1, y1, z1))));
|
|
}
|
|
|
|
template<typename T>
|
|
ccl_device_noinline T kernel_tex_image_interp_nanovdb(
|
|
ccl_global const TextureInfo &info, float x, float y, float z, uint interpolation)
|
|
{
|
|
using namespace nanovdb;
|
|
|
|
NanoGrid<T> *const grid = (NanoGrid<T> *)info.data;
|
|
typedef typename nanovdb::NanoGrid<T>::AccessorType AccessorType;
|
|
AccessorType acc = grid->getAccessor();
|
|
|
|
switch (interpolation) {
|
|
case INTERPOLATION_CLOSEST:
|
|
return SampleFromVoxels<AccessorType, 0, false>(acc)(Vec3f(x, y, z));
|
|
case INTERPOLATION_LINEAR:
|
|
return SampleFromVoxels<AccessorType, 1, false>(acc)(Vec3f(x - 0.5f, y - 0.5f, z - 0.5f));
|
|
default:
|
|
SampleFromVoxels<AccessorType, 1, false> s(acc);
|
|
return kernel_tex_image_interp_tricubic_nanovdb<T>(s, x - 0.5f, y - 0.5f, z - 0.5f);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
ccl_device float4 kernel_tex_image_interp(KernelGlobals kg, int id, float x, float y)
|
|
{
|
|
ccl_global const TextureInfo &info = kernel_tex_fetch(__texture_info, id);
|
|
|
|
/* float4, byte4, ushort4 and half4 */
|
|
const int texture_type = info.data_type;
|
|
if (texture_type == IMAGE_DATA_TYPE_FLOAT4 || texture_type == IMAGE_DATA_TYPE_BYTE4 ||
|
|
texture_type == IMAGE_DATA_TYPE_HALF4 || texture_type == IMAGE_DATA_TYPE_USHORT4) {
|
|
if (info.interpolation == INTERPOLATION_CUBIC || info.interpolation == INTERPOLATION_SMART) {
|
|
return kernel_tex_image_interp_bicubic<float4>(info, x, y);
|
|
}
|
|
else {
|
|
ccl_gpu_tex_object_2D tex = (ccl_gpu_tex_object_2D)info.data;
|
|
return ccl_gpu_tex_object_read_2D<float4>(tex, x, y);
|
|
}
|
|
}
|
|
/* float, byte and half */
|
|
else {
|
|
float f;
|
|
|
|
if (info.interpolation == INTERPOLATION_CUBIC || info.interpolation == INTERPOLATION_SMART) {
|
|
f = kernel_tex_image_interp_bicubic<float>(info, x, y);
|
|
}
|
|
else {
|
|
ccl_gpu_tex_object_2D tex = (ccl_gpu_tex_object_2D)info.data;
|
|
f = ccl_gpu_tex_object_read_2D<float>(tex, x, y);
|
|
}
|
|
|
|
return make_float4(f, f, f, 1.0f);
|
|
}
|
|
}
|
|
|
|
ccl_device float4 kernel_tex_image_interp_3d(KernelGlobals kg,
|
|
int id,
|
|
float3 P,
|
|
InterpolationType interp)
|
|
{
|
|
ccl_global const TextureInfo &info = kernel_tex_fetch(__texture_info, id);
|
|
|
|
if (info.use_transform_3d) {
|
|
P = transform_point(&info.transform_3d, P);
|
|
}
|
|
|
|
const float x = P.x;
|
|
const float y = P.y;
|
|
const float z = P.z;
|
|
|
|
uint interpolation = (interp == INTERPOLATION_NONE) ? info.interpolation : interp;
|
|
const int texture_type = info.data_type;
|
|
|
|
#ifdef WITH_NANOVDB
|
|
if (texture_type == IMAGE_DATA_TYPE_NANOVDB_FLOAT) {
|
|
float f = kernel_tex_image_interp_nanovdb<float>(info, x, y, z, interpolation);
|
|
return make_float4(f, f, f, 1.0f);
|
|
}
|
|
if (texture_type == IMAGE_DATA_TYPE_NANOVDB_FLOAT3) {
|
|
nanovdb::Vec3f f = kernel_tex_image_interp_nanovdb<nanovdb::Vec3f>(
|
|
info, x, y, z, interpolation);
|
|
return make_float4(f[0], f[1], f[2], 1.0f);
|
|
}
|
|
#endif
|
|
if (texture_type == IMAGE_DATA_TYPE_FLOAT4 || texture_type == IMAGE_DATA_TYPE_BYTE4 ||
|
|
texture_type == IMAGE_DATA_TYPE_HALF4 || texture_type == IMAGE_DATA_TYPE_USHORT4) {
|
|
if (interpolation == INTERPOLATION_CUBIC || interpolation == INTERPOLATION_SMART) {
|
|
return kernel_tex_image_interp_tricubic<float4>(info, x, y, z);
|
|
}
|
|
else {
|
|
ccl_gpu_tex_object_3D tex = (ccl_gpu_tex_object_3D)info.data;
|
|
return ccl_gpu_tex_object_read_3D<float4>(tex, x, y, z);
|
|
}
|
|
}
|
|
else {
|
|
float f;
|
|
|
|
if (interpolation == INTERPOLATION_CUBIC || interpolation == INTERPOLATION_SMART) {
|
|
f = kernel_tex_image_interp_tricubic<float>(info, x, y, z);
|
|
}
|
|
else {
|
|
ccl_gpu_tex_object_3D tex = (ccl_gpu_tex_object_3D)info.data;
|
|
f = ccl_gpu_tex_object_read_3D<float>(tex, x, y, z);
|
|
}
|
|
|
|
return make_float4(f, f, f, 1.0f);
|
|
}
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|