This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/functions/intern/field.cc
Hans Goudey 40c3b8836b Geometry Nodes: Make Random ID a builtin attribute, remove sockets
In order to address feedback that the "Stable ID" was not easy enough
to use, remove the "Stable ID" output from the distribution node and
the input from the instance on points node. Instead, the nodes write
or read a builtin named attribute called `id`. In the future we may
add more attributes like `edge_id` and `face_id`.

The downside is that more behavior is invisible, which is les
expected now that most attributes are passed around with node links.
This behavior will have to be explained in the manual.

The random value node's "ID" input that had an implicit index input
is converted to a special implicit input that uses the `id` attribute
if possible, but otherwise defaults to the index. There is no way to
tell in the UI which it uses, except by knowing that rule and checking
in the spreadsheet for the id attribute.

Because it isn't always possible to create stable randomness, this
attribute does not always exist, and it will be possible to remove it
when we have the attribute remove node back, to improve performance.

Differential Revision: https://developer.blender.org/D12903
2021-10-20 10:54:54 -05:00

694 lines
26 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "BLI_map.hh"
#include "BLI_multi_value_map.hh"
#include "BLI_set.hh"
#include "BLI_stack.hh"
#include "BLI_vector_set.hh"
#include "FN_field.hh"
#include "FN_multi_function_parallel.hh"
namespace blender::fn {
/* --------------------------------------------------------------------
* Field Evaluation.
*/
struct FieldTreeInfo {
/**
* When fields are built, they only have references to the fields that they depend on. This map
* allows traversal of fields in the opposite direction. So for every field it stores the other
* fields that depend on it directly.
*/
MultiValueMap<GFieldRef, GFieldRef> field_users;
/**
* The same field input may exist in the field tree as as separate nodes due to the way
* the tree is constructed. This set contains every different input only once.
*/
VectorSet<std::reference_wrapper<const FieldInput>> deduplicated_field_inputs;
};
/**
* Collects some information from the field tree that is required by later steps.
*/
static FieldTreeInfo preprocess_field_tree(Span<GFieldRef> entry_fields)
{
FieldTreeInfo field_tree_info;
Stack<GFieldRef> fields_to_check;
Set<GFieldRef> handled_fields;
for (GFieldRef field : entry_fields) {
if (handled_fields.add(field)) {
fields_to_check.push(field);
}
}
while (!fields_to_check.is_empty()) {
GFieldRef field = fields_to_check.pop();
if (field.node().is_input()) {
const FieldInput &field_input = static_cast<const FieldInput &>(field.node());
field_tree_info.deduplicated_field_inputs.add(field_input);
continue;
}
BLI_assert(field.node().is_operation());
const FieldOperation &operation = static_cast<const FieldOperation &>(field.node());
for (const GFieldRef operation_input : operation.inputs()) {
field_tree_info.field_users.add(operation_input, field);
if (handled_fields.add(operation_input)) {
fields_to_check.push(operation_input);
}
}
}
return field_tree_info;
}
/**
* Retrieves the data from the context that is passed as input into the field.
*/
static Vector<const GVArray *> get_field_context_inputs(
ResourceScope &scope,
const IndexMask mask,
const FieldContext &context,
const Span<std::reference_wrapper<const FieldInput>> field_inputs)
{
Vector<const GVArray *> field_context_inputs;
for (const FieldInput &field_input : field_inputs) {
const GVArray *varray = context.get_varray_for_input(field_input, mask, scope);
if (varray == nullptr) {
const CPPType &type = field_input.cpp_type();
varray = &scope.construct<GVArray_For_SingleValueRef>(
type, mask.min_array_size(), type.default_value());
}
field_context_inputs.append(varray);
}
return field_context_inputs;
}
/**
* \return A set that contains all fields from the field tree that depend on an input that varies
* for different indices.
*/
static Set<GFieldRef> find_varying_fields(const FieldTreeInfo &field_tree_info,
Span<const GVArray *> field_context_inputs)
{
Set<GFieldRef> found_fields;
Stack<GFieldRef> fields_to_check;
/* The varying fields are the ones that depend on inputs that are not constant. Therefore we
* start the tree search at the non-constant input fields and traverse through all fields that
* depend on them. */
for (const int i : field_context_inputs.index_range()) {
const GVArray *varray = field_context_inputs[i];
if (varray->is_single()) {
continue;
}
const FieldInput &field_input = field_tree_info.deduplicated_field_inputs[i];
const GFieldRef field_input_field{field_input, 0};
const Span<GFieldRef> users = field_tree_info.field_users.lookup(field_input_field);
for (const GFieldRef &field : users) {
if (found_fields.add(field)) {
fields_to_check.push(field);
}
}
}
while (!fields_to_check.is_empty()) {
GFieldRef field = fields_to_check.pop();
const Span<GFieldRef> users = field_tree_info.field_users.lookup(field);
for (GFieldRef field : users) {
if (found_fields.add(field)) {
fields_to_check.push(field);
}
}
}
return found_fields;
}
/**
* Builds the #procedure so that it computes the the fields.
*/
static void build_multi_function_procedure_for_fields(MFProcedure &procedure,
ResourceScope &scope,
const FieldTreeInfo &field_tree_info,
Span<GFieldRef> output_fields)
{
MFProcedureBuilder builder{procedure};
/* Every input, intermediate and output field corresponds to a variable in the procedure. */
Map<GFieldRef, MFVariable *> variable_by_field;
/* Start by adding the field inputs as parameters to the procedure. */
for (const FieldInput &field_input : field_tree_info.deduplicated_field_inputs) {
MFVariable &variable = builder.add_input_parameter(
MFDataType::ForSingle(field_input.cpp_type()), field_input.debug_name());
variable_by_field.add_new({field_input, 0}, &variable);
}
/* Utility struct that is used to do proper depth first search traversal of the tree below. */
struct FieldWithIndex {
GFieldRef field;
int current_input_index = 0;
};
for (GFieldRef field : output_fields) {
/* We start a new stack for each output field to make sure that a field pushed later to the
* stack does never depend on a field that was pushed before. */
Stack<FieldWithIndex> fields_to_check;
fields_to_check.push({field, 0});
while (!fields_to_check.is_empty()) {
FieldWithIndex &field_with_index = fields_to_check.peek();
const GFieldRef &field = field_with_index.field;
if (variable_by_field.contains(field)) {
/* The field has been handled already. */
fields_to_check.pop();
continue;
}
/* Field inputs should already be handled above. */
BLI_assert(field.node().is_operation());
const FieldOperation &operation = static_cast<const FieldOperation &>(field.node());
const Span<GField> operation_inputs = operation.inputs();
if (field_with_index.current_input_index < operation_inputs.size()) {
/* Not all inputs are handled yet. Push the next input field to the stack and increment the
* input index. */
fields_to_check.push({operation_inputs[field_with_index.current_input_index]});
field_with_index.current_input_index++;
}
else {
/* All inputs variables are ready, now gather all variables that are used by the function
* and call it. */
const MultiFunction &multi_function = operation.multi_function();
Vector<MFVariable *> variables(multi_function.param_amount());
int param_input_index = 0;
int param_output_index = 0;
for (const int param_index : multi_function.param_indices()) {
const MFParamType param_type = multi_function.param_type(param_index);
const MFParamType::InterfaceType interface_type = param_type.interface_type();
if (interface_type == MFParamType::Input) {
const GField &input_field = operation_inputs[param_input_index];
variables[param_index] = variable_by_field.lookup(input_field);
param_input_index++;
}
else if (interface_type == MFParamType::Output) {
const GFieldRef output_field{operation, param_output_index};
const bool output_is_ignored =
field_tree_info.field_users.lookup(output_field).is_empty() &&
!output_fields.contains(output_field);
if (output_is_ignored) {
/* Ignored outputs don't need a variable. */
variables[param_index] = nullptr;
}
else {
/* Create a new variable for used outputs. */
MFVariable &new_variable = procedure.new_variable(param_type.data_type());
variables[param_index] = &new_variable;
variable_by_field.add_new(output_field, &new_variable);
}
param_output_index++;
}
else {
BLI_assert_unreachable();
}
}
builder.add_call_with_all_variables(multi_function, variables);
}
}
}
/* Add output parameters to the procedure. */
Set<MFVariable *> already_output_variables;
for (const GFieldRef &field : output_fields) {
MFVariable *variable = variable_by_field.lookup(field);
if (!already_output_variables.add(variable)) {
/* One variable can be output at most once. To output the same value twice, we have to make
* a copy first. */
const MultiFunction &copy_fn = scope.construct<CustomMF_GenericCopy>("copy",
variable->data_type());
variable = builder.add_call<1>(copy_fn, {variable})[0];
}
builder.add_output_parameter(*variable);
}
/* Remove the variables that should not be destructed from the map. */
for (const GFieldRef &field : output_fields) {
variable_by_field.remove(field);
}
/* Add destructor calls for the remaining variables. */
for (MFVariable *variable : variable_by_field.values()) {
builder.add_destruct(*variable);
}
builder.add_return();
// std::cout << procedure.to_dot() << "\n";
BLI_assert(procedure.validate());
}
/**
* Evaluate fields in the given context. If possible, multiple fields should be evaluated together,
* because that can be more efficient when they share common sub-fields.
*
* \param scope: The resource scope that owns data that makes up the output virtual arrays. Make
* sure the scope is not destructed when the output virtual arrays are still used.
* \param fields_to_evaluate: The fields that should be evaluated together.
* \param mask: Determines which indices are computed. The mask may be referenced by the returned
* virtual arrays. So the underlying indices (if applicable) should live longer then #scope.
* \param context: The context that the field is evaluated in. Used to retrieve data from each
* #FieldInput in the field network.
* \param dst_varrays: If provided, the computed data will be written into those virtual arrays
* instead of into newly created ones. That allows making the computed data live longer than
* #scope and is more efficient when the data will be written into those virtual arrays
* later anyway.
* \return The computed virtual arrays for each provided field. If #dst_varrays is passed, the
* provided virtual arrays are returned.
*/
Vector<const GVArray *> evaluate_fields(ResourceScope &scope,
Span<GFieldRef> fields_to_evaluate,
IndexMask mask,
const FieldContext &context,
Span<GVMutableArray *> dst_varrays)
{
Vector<const GVArray *> r_varrays(fields_to_evaluate.size(), nullptr);
const int array_size = mask.min_array_size();
/* Destination arrays are optional. Create a small utility method to access them. */
auto get_dst_varray_if_available = [&](int index) -> GVMutableArray * {
if (dst_varrays.is_empty()) {
return nullptr;
}
BLI_assert(dst_varrays[index] == nullptr || dst_varrays[index]->size() >= array_size);
return dst_varrays[index];
};
/* Traverse the field tree and prepare some data that is used in later steps. */
FieldTreeInfo field_tree_info = preprocess_field_tree(fields_to_evaluate);
/* Get inputs that will be passed into the field when evaluated. */
Vector<const GVArray *> field_context_inputs = get_field_context_inputs(
scope, mask, context, field_tree_info.deduplicated_field_inputs);
/* Finish fields that output an input varray directly. For those we don't have to do any further
* processing. */
for (const int out_index : fields_to_evaluate.index_range()) {
const GFieldRef &field = fields_to_evaluate[out_index];
if (!field.node().is_input()) {
continue;
}
const FieldInput &field_input = static_cast<const FieldInput &>(field.node());
const int field_input_index = field_tree_info.deduplicated_field_inputs.index_of(field_input);
const GVArray *varray = field_context_inputs[field_input_index];
r_varrays[out_index] = varray;
}
Set<GFieldRef> varying_fields = find_varying_fields(field_tree_info, field_context_inputs);
/* Separate fields into two categories. Those that are constant and need to be evaluated only
* once, and those that need to be evaluated for every index. */
Vector<GFieldRef> varying_fields_to_evaluate;
Vector<int> varying_field_indices;
Vector<GFieldRef> constant_fields_to_evaluate;
Vector<int> constant_field_indices;
for (const int i : fields_to_evaluate.index_range()) {
if (r_varrays[i] != nullptr) {
/* Already done. */
continue;
}
GFieldRef field = fields_to_evaluate[i];
if (varying_fields.contains(field)) {
varying_fields_to_evaluate.append(field);
varying_field_indices.append(i);
}
else {
constant_fields_to_evaluate.append(field);
constant_field_indices.append(i);
}
}
/* Evaluate varying fields if necessary. */
if (!varying_fields_to_evaluate.is_empty()) {
/* Build the procedure for those fields. */
MFProcedure procedure;
build_multi_function_procedure_for_fields(
procedure, scope, field_tree_info, varying_fields_to_evaluate);
MFProcedureExecutor procedure_executor{"Procedure", procedure};
/* Add multi threading capabilities to the field evaluation. */
const int grain_size = 10000;
fn::ParallelMultiFunction parallel_procedure_executor{procedure_executor, grain_size};
/* Utility variable to make easy to switch the executor. */
const MultiFunction &executor_fn = parallel_procedure_executor;
MFParamsBuilder mf_params{executor_fn, &mask};
MFContextBuilder mf_context;
/* Provide inputs to the procedure executor. */
for (const GVArray *varray : field_context_inputs) {
mf_params.add_readonly_single_input(*varray);
}
for (const int i : varying_fields_to_evaluate.index_range()) {
const GFieldRef &field = varying_fields_to_evaluate[i];
const CPPType &type = field.cpp_type();
const int out_index = varying_field_indices[i];
/* Try to get an existing virtual array that the result should be written into. */
GVMutableArray *output_varray = get_dst_varray_if_available(out_index);
void *buffer;
if (output_varray == nullptr || !output_varray->is_span()) {
/* Allocate a new buffer for the computed result. */
buffer = scope.linear_allocator().allocate(type.size() * array_size, type.alignment());
if (!type.is_trivially_destructible()) {
/* Destruct values in the end. */
scope.add_destruct_call(
[buffer, mask, &type]() { type.destruct_indices(buffer, mask); });
}
r_varrays[out_index] = &scope.construct<GVArray_For_GSpan>(
GSpan{type, buffer, array_size});
}
else {
/* Write the result into the existing span. */
buffer = output_varray->get_internal_span().data();
r_varrays[out_index] = output_varray;
}
/* Pass output buffer to the procedure executor. */
const GMutableSpan span{type, buffer, array_size};
mf_params.add_uninitialized_single_output(span);
}
executor_fn.call(mask, mf_params, mf_context);
}
/* Evaluate constant fields if necessary. */
if (!constant_fields_to_evaluate.is_empty()) {
/* Build the procedure for those fields. */
MFProcedure procedure;
build_multi_function_procedure_for_fields(
procedure, scope, field_tree_info, constant_fields_to_evaluate);
MFProcedureExecutor procedure_executor{"Procedure", procedure};
/* Run the code below even when the mask is empty, so that outputs are properly prepared.
* Higher level code can detect this as well and just skip evaluating the field. */
const int mask_size = mask.is_empty() ? 0 : 1;
MFParamsBuilder mf_params{procedure_executor, mask_size};
MFContextBuilder mf_context;
/* Provide inputs to the procedure executor. */
for (const GVArray *varray : field_context_inputs) {
mf_params.add_readonly_single_input(*varray);
}
for (const int i : constant_fields_to_evaluate.index_range()) {
const GFieldRef &field = constant_fields_to_evaluate[i];
const CPPType &type = field.cpp_type();
/* Allocate memory where the computed value will be stored in. */
void *buffer = scope.linear_allocator().allocate(type.size(), type.alignment());
if (!type.is_trivially_destructible() && mask_size > 0) {
BLI_assert(mask_size == 1);
/* Destruct value in the end. */
scope.add_destruct_call([buffer, &type]() { type.destruct(buffer); });
}
/* Pass output buffer to the procedure executor. */
mf_params.add_uninitialized_single_output({type, buffer, mask_size});
/* Create virtual array that can be used after the procedure has been executed below. */
const int out_index = constant_field_indices[i];
r_varrays[out_index] = &scope.construct<GVArray_For_SingleValueRef>(
type, array_size, buffer);
}
procedure_executor.call(IndexRange(mask_size), mf_params, mf_context);
}
/* Copy data to supplied destination arrays if necessary. In some cases the evaluation above has
* written the computed data in the right place already. */
if (!dst_varrays.is_empty()) {
for (const int out_index : fields_to_evaluate.index_range()) {
GVMutableArray *output_varray = get_dst_varray_if_available(out_index);
if (output_varray == nullptr) {
/* Caller did not provide a destination for this output. */
continue;
}
const GVArray *computed_varray = r_varrays[out_index];
BLI_assert(computed_varray->type() == output_varray->type());
if (output_varray == computed_varray) {
/* The result has been written into the destination provided by the caller already. */
continue;
}
/* Still have to copy over the data in the destination provided by the caller. */
if (output_varray->is_span()) {
/* Materialize into a span. */
computed_varray->materialize_to_uninitialized(mask,
output_varray->get_internal_span().data());
}
else {
/* Slower materialize into a different structure. */
const CPPType &type = computed_varray->type();
BUFFER_FOR_CPP_TYPE_VALUE(type, buffer);
for (const int i : mask) {
computed_varray->get_to_uninitialized(i, buffer);
output_varray->set_by_relocate(i, buffer);
}
}
r_varrays[out_index] = output_varray;
}
}
return r_varrays;
}
void evaluate_constant_field(const GField &field, void *r_value)
{
ResourceScope scope;
FieldContext context;
Vector<const GVArray *> varrays = evaluate_fields(scope, {field}, IndexRange(1), context);
varrays[0]->get_to_uninitialized(0, r_value);
}
/**
* If the field depends on some input, the same field is returned.
* Otherwise the field is evaluated and a new field is created that just computes this constant.
*
* Making the field constant has two benefits:
* - The field-tree becomes a single node, which is more efficient when the field is evaluated many
* times.
* - Memory of the input fields may be freed.
*/
GField make_field_constant_if_possible(GField field)
{
if (field.node().depends_on_input()) {
return field;
}
const CPPType &type = field.cpp_type();
BUFFER_FOR_CPP_TYPE_VALUE(type, buffer);
evaluate_constant_field(field, buffer);
auto constant_fn = std::make_unique<CustomMF_GenericConstant>(type, buffer, true);
type.destruct(buffer);
auto operation = std::make_shared<FieldOperation>(std::move(constant_fn));
return GField{operation, 0};
}
const GVArray *FieldContext::get_varray_for_input(const FieldInput &field_input,
IndexMask mask,
ResourceScope &scope) const
{
/* By default ask the field input to create the varray. Another field context might overwrite
* the context here. */
return field_input.get_varray_for_context(*this, mask, scope);
}
IndexFieldInput::IndexFieldInput() : FieldInput(CPPType::get<int>(), "Index")
{
}
GVArray *IndexFieldInput::get_index_varray(IndexMask mask, ResourceScope &scope)
{
auto index_func = [](int i) { return i; };
return &scope.construct<
fn::GVArray_For_EmbeddedVArray<int, VArray_For_Func<int, decltype(index_func)>>>(
mask.min_array_size(), mask.min_array_size(), index_func);
}
const GVArray *IndexFieldInput::get_varray_for_context(const fn::FieldContext &UNUSED(context),
IndexMask mask,
ResourceScope &scope) const
{
/* TODO: Investigate a similar method to IndexRange::as_span() */
return get_index_varray(mask, scope);
}
uint64_t IndexFieldInput::hash() const
{
/* Some random constant hash. */
return 128736487678;
}
bool IndexFieldInput::is_equal_to(const fn::FieldNode &other) const
{
return dynamic_cast<const IndexFieldInput *>(&other) != nullptr;
}
/* --------------------------------------------------------------------
* FieldOperation.
*/
FieldOperation::FieldOperation(std::shared_ptr<const MultiFunction> function,
Vector<GField> inputs)
: FieldOperation(*function, std::move(inputs))
{
owned_function_ = std::move(function);
}
static bool any_field_depends_on_input(Span<GField> fields)
{
for (const GField &field : fields) {
if (field.node().depends_on_input()) {
return true;
}
}
return false;
}
FieldOperation::FieldOperation(const MultiFunction &function, Vector<GField> inputs)
: FieldNode(false, any_field_depends_on_input(inputs)),
function_(&function),
inputs_(std::move(inputs))
{
}
void FieldOperation::foreach_field_input(FunctionRef<void(const FieldInput &)> foreach_fn) const
{
for (const GField &field : inputs_) {
field.node().foreach_field_input(foreach_fn);
}
}
/* --------------------------------------------------------------------
* FieldInput.
*/
FieldInput::FieldInput(const CPPType &type, std::string debug_name)
: FieldNode(true, true), type_(&type), debug_name_(std::move(debug_name))
{
}
void FieldInput::foreach_field_input(FunctionRef<void(const FieldInput &)> foreach_fn) const
{
foreach_fn(*this);
}
/* --------------------------------------------------------------------
* FieldEvaluator.
*/
static Vector<int64_t> indices_from_selection(const VArray<bool> &selection)
{
/* If the selection is just a single value, it's best to avoid calling this
* function when constructing an IndexMask and use an IndexRange instead. */
BLI_assert(!selection.is_single());
Vector<int64_t> indices;
if (selection.is_span()) {
Span<bool> span = selection.get_internal_span();
for (const int64_t i : span.index_range()) {
if (span[i]) {
indices.append(i);
}
}
}
else {
for (const int i : selection.index_range()) {
if (selection[i]) {
indices.append(i);
}
}
}
return indices;
}
int FieldEvaluator::add_with_destination(GField field, GVMutableArray &dst)
{
const int field_index = fields_to_evaluate_.append_and_get_index(std::move(field));
dst_varrays_.append(&dst);
output_pointer_infos_.append({});
return field_index;
}
int FieldEvaluator::add_with_destination(GField field, GMutableSpan dst)
{
GVMutableArray &varray = scope_.construct<GVMutableArray_For_GMutableSpan>(dst);
return this->add_with_destination(std::move(field), varray);
}
int FieldEvaluator::add(GField field, const GVArray **varray_ptr)
{
const int field_index = fields_to_evaluate_.append_and_get_index(std::move(field));
dst_varrays_.append(nullptr);
output_pointer_infos_.append(OutputPointerInfo{
varray_ptr, [](void *dst, const GVArray &varray, ResourceScope &UNUSED(scope)) {
*(const GVArray **)dst = &varray;
}});
return field_index;
}
int FieldEvaluator::add(GField field)
{
const int field_index = fields_to_evaluate_.append_and_get_index(std::move(field));
dst_varrays_.append(nullptr);
output_pointer_infos_.append({});
return field_index;
}
void FieldEvaluator::evaluate()
{
BLI_assert_msg(!is_evaluated_, "Cannot evaluate fields twice.");
Array<GFieldRef> fields(fields_to_evaluate_.size());
for (const int i : fields_to_evaluate_.index_range()) {
fields[i] = fields_to_evaluate_[i];
}
evaluated_varrays_ = evaluate_fields(scope_, fields, mask_, context_, dst_varrays_);
BLI_assert(fields_to_evaluate_.size() == evaluated_varrays_.size());
for (const int i : fields_to_evaluate_.index_range()) {
OutputPointerInfo &info = output_pointer_infos_[i];
if (info.dst != nullptr) {
info.set(info.dst, *evaluated_varrays_[i], scope_);
}
}
is_evaluated_ = true;
}
IndexMask FieldEvaluator::get_evaluated_as_mask(const int field_index)
{
const GVArray &varray = this->get_evaluated(field_index);
GVArray_Typed<bool> typed_varray{varray};
if (typed_varray->is_single()) {
if (typed_varray->get_internal_single()) {
return IndexRange(typed_varray.size());
}
return IndexRange(0);
}
return scope_.add_value(indices_from_selection(*typed_varray)).as_span();
}
} // namespace blender::fn