Gives a bit better precision than creating a line in some cases, use for ED_view3d_win_to_3d.
		
			
				
	
	
		
			4991 lines
		
	
	
		
			129 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4991 lines
		
	
	
		
			129 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * ***** BEGIN GPL LICENSE BLOCK *****
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * as published by the Free Software Foundation; either version 2
 | 
						|
 * of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software Foundation,
 | 
						|
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | 
						|
 *
 | 
						|
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * The Original Code is: some of this file.
 | 
						|
 *
 | 
						|
 * ***** END GPL LICENSE BLOCK *****
 | 
						|
 * */
 | 
						|
 | 
						|
/** \file blender/blenlib/intern/math_geom.c
 | 
						|
 *  \ingroup bli
 | 
						|
 */
 | 
						|
 | 
						|
#include "MEM_guardedalloc.h"
 | 
						|
 | 
						|
#include "BLI_math.h"
 | 
						|
#include "BLI_math_bits.h"
 | 
						|
#include "BLI_utildefines.h"
 | 
						|
 | 
						|
#include "BLI_strict_flags.h"
 | 
						|
 | 
						|
/********************************** Polygons *********************************/
 | 
						|
 | 
						|
void cent_tri_v3(float cent[3], const float v1[3], const float v2[3], const float v3[3])
 | 
						|
{
 | 
						|
	cent[0] = (v1[0] + v2[0] + v3[0]) / 3.0f;
 | 
						|
	cent[1] = (v1[1] + v2[1] + v3[1]) / 3.0f;
 | 
						|
	cent[2] = (v1[2] + v2[2] + v3[2]) / 3.0f;
 | 
						|
}
 | 
						|
 | 
						|
void cent_quad_v3(float cent[3], const float v1[3], const float v2[3], const float v3[3], const float v4[3])
 | 
						|
{
 | 
						|
	cent[0] = 0.25f * (v1[0] + v2[0] + v3[0] + v4[0]);
 | 
						|
	cent[1] = 0.25f * (v1[1] + v2[1] + v3[1] + v4[1]);
 | 
						|
	cent[2] = 0.25f * (v1[2] + v2[2] + v3[2] + v4[2]);
 | 
						|
}
 | 
						|
 | 
						|
void cross_tri_v3(float n[3], const float v1[3], const float v2[3], const float v3[3])
 | 
						|
{
 | 
						|
	float n1[3], n2[3];
 | 
						|
 | 
						|
	n1[0] = v1[0] - v2[0];
 | 
						|
	n2[0] = v2[0] - v3[0];
 | 
						|
	n1[1] = v1[1] - v2[1];
 | 
						|
	n2[1] = v2[1] - v3[1];
 | 
						|
	n1[2] = v1[2] - v2[2];
 | 
						|
	n2[2] = v2[2] - v3[2];
 | 
						|
	n[0] = n1[1] * n2[2] - n1[2] * n2[1];
 | 
						|
	n[1] = n1[2] * n2[0] - n1[0] * n2[2];
 | 
						|
	n[2] = n1[0] * n2[1] - n1[1] * n2[0];
 | 
						|
}
 | 
						|
 | 
						|
float normal_tri_v3(float n[3], const float v1[3], const float v2[3], const float v3[3])
 | 
						|
{
 | 
						|
	float n1[3], n2[3];
 | 
						|
 | 
						|
	n1[0] = v1[0] - v2[0];
 | 
						|
	n2[0] = v2[0] - v3[0];
 | 
						|
	n1[1] = v1[1] - v2[1];
 | 
						|
	n2[1] = v2[1] - v3[1];
 | 
						|
	n1[2] = v1[2] - v2[2];
 | 
						|
	n2[2] = v2[2] - v3[2];
 | 
						|
	n[0] = n1[1] * n2[2] - n1[2] * n2[1];
 | 
						|
	n[1] = n1[2] * n2[0] - n1[0] * n2[2];
 | 
						|
	n[2] = n1[0] * n2[1] - n1[1] * n2[0];
 | 
						|
 | 
						|
	return normalize_v3(n);
 | 
						|
}
 | 
						|
 | 
						|
float normal_quad_v3(float n[3], const float v1[3], const float v2[3], const float v3[3], const float v4[3])
 | 
						|
{
 | 
						|
	/* real cross! */
 | 
						|
	float n1[3], n2[3];
 | 
						|
 | 
						|
	n1[0] = v1[0] - v3[0];
 | 
						|
	n1[1] = v1[1] - v3[1];
 | 
						|
	n1[2] = v1[2] - v3[2];
 | 
						|
 | 
						|
	n2[0] = v2[0] - v4[0];
 | 
						|
	n2[1] = v2[1] - v4[1];
 | 
						|
	n2[2] = v2[2] - v4[2];
 | 
						|
 | 
						|
	n[0] = n1[1] * n2[2] - n1[2] * n2[1];
 | 
						|
	n[1] = n1[2] * n2[0] - n1[0] * n2[2];
 | 
						|
	n[2] = n1[0] * n2[1] - n1[1] * n2[0];
 | 
						|
 | 
						|
	return normalize_v3(n);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Computes the normal of a planar
 | 
						|
 * polygon See Graphics Gems for
 | 
						|
 * computing newell normal.
 | 
						|
 */
 | 
						|
float normal_poly_v3(float n[3], const float verts[][3], unsigned int nr)
 | 
						|
{
 | 
						|
	cross_poly_v3(n, verts, nr);
 | 
						|
	return normalize_v3(n);
 | 
						|
}
 | 
						|
 | 
						|
float area_quad_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3])
 | 
						|
{
 | 
						|
	const float verts[4][3] = {{UNPACK3(v1)}, {UNPACK3(v2)}, {UNPACK3(v3)}, {UNPACK3(v4)}};
 | 
						|
	return area_poly_v3(verts, 4);
 | 
						|
}
 | 
						|
 | 
						|
float area_squared_quad_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3])
 | 
						|
{
 | 
						|
	const float verts[4][3] = {{UNPACK3(v1)}, {UNPACK3(v2)}, {UNPACK3(v3)}, {UNPACK3(v4)}};
 | 
						|
	return area_squared_poly_v3(verts, 4);
 | 
						|
}
 | 
						|
 | 
						|
/* Triangles */
 | 
						|
float area_tri_v3(const float v1[3], const float v2[3], const float v3[3])
 | 
						|
{
 | 
						|
	float n[3];
 | 
						|
	cross_tri_v3(n, v1, v2, v3);
 | 
						|
	return len_v3(n) * 0.5f;
 | 
						|
}
 | 
						|
 | 
						|
float area_squared_tri_v3(const float v1[3], const float v2[3], const float v3[3])
 | 
						|
{
 | 
						|
	float n[3];
 | 
						|
	cross_tri_v3(n, v1, v2, v3);
 | 
						|
	mul_v3_fl(n, 0.5f);
 | 
						|
	return len_squared_v3(n);
 | 
						|
}
 | 
						|
 | 
						|
float area_tri_signed_v3(const float v1[3], const float v2[3], const float v3[3], const float normal[3])
 | 
						|
{
 | 
						|
	float area, n[3];
 | 
						|
 | 
						|
	cross_tri_v3(n, v1, v2, v3);
 | 
						|
	area = len_v3(n) * 0.5f;
 | 
						|
 | 
						|
	/* negate area for flipped triangles */
 | 
						|
	if (dot_v3v3(n, normal) < 0.0f)
 | 
						|
		area = -area;
 | 
						|
 | 
						|
	return area;
 | 
						|
}
 | 
						|
 | 
						|
float area_poly_v3(const float verts[][3], unsigned int nr)
 | 
						|
{
 | 
						|
	float n[3];
 | 
						|
	cross_poly_v3(n, verts, nr);
 | 
						|
	return len_v3(n) * 0.5f;
 | 
						|
}
 | 
						|
 | 
						|
float area_squared_poly_v3(const float verts[][3], unsigned int nr)
 | 
						|
{
 | 
						|
	float n[3];
 | 
						|
 | 
						|
	cross_poly_v3(n, verts, nr);
 | 
						|
	mul_v3_fl(n, 0.5f);
 | 
						|
	return len_squared_v3(n);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Scalar cross product of a 2d polygon.
 | 
						|
 *
 | 
						|
 * - equivalent to ``area * 2``
 | 
						|
 * - useful for checking polygon winding (a positive value is clockwise).
 | 
						|
 */
 | 
						|
float cross_poly_v2(const float verts[][2], unsigned int nr)
 | 
						|
{
 | 
						|
	unsigned int a;
 | 
						|
	float cross;
 | 
						|
	const float *co_curr, *co_prev;
 | 
						|
 | 
						|
	/* The Trapezium Area Rule */
 | 
						|
	co_prev = verts[nr - 1];
 | 
						|
	co_curr = verts[0];
 | 
						|
	cross = 0.0f;
 | 
						|
	for (a = 0; a < nr; a++) {
 | 
						|
		cross += (co_curr[0] - co_prev[0]) * (co_curr[1] + co_prev[1]);
 | 
						|
		co_prev = co_curr;
 | 
						|
		co_curr += 2;
 | 
						|
	}
 | 
						|
 | 
						|
	return cross;
 | 
						|
}
 | 
						|
 | 
						|
void cross_poly_v3(float n[3], const float verts[][3], unsigned int nr)
 | 
						|
{
 | 
						|
	const float *v_prev = verts[nr - 1];
 | 
						|
	const float *v_curr = verts[0];
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	zero_v3(n);
 | 
						|
 | 
						|
	/* Newell's Method */
 | 
						|
	for (i = 0; i < nr; v_prev = v_curr, v_curr = verts[++i]) {
 | 
						|
		add_newell_cross_v3_v3v3(n, v_prev, v_curr);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
float area_poly_v2(const float verts[][2], unsigned int nr)
 | 
						|
{
 | 
						|
	return fabsf(0.5f * cross_poly_v2(verts, nr));
 | 
						|
}
 | 
						|
 | 
						|
float area_poly_signed_v2(const float verts[][2], unsigned int nr)
 | 
						|
{
 | 
						|
	return (0.5f * cross_poly_v2(verts, nr));
 | 
						|
}
 | 
						|
 | 
						|
float area_squared_poly_v2(const float verts[][2], unsigned int nr)
 | 
						|
{
 | 
						|
	float area = area_poly_signed_v2(verts, nr);
 | 
						|
	return area * area;
 | 
						|
}
 | 
						|
 | 
						|
float cotangent_tri_weight_v3(const float v1[3], const float v2[3], const float v3[3])
 | 
						|
{
 | 
						|
	float a[3], b[3], c[3], c_len;
 | 
						|
 | 
						|
	sub_v3_v3v3(a, v2, v1);
 | 
						|
	sub_v3_v3v3(b, v3, v1);
 | 
						|
	cross_v3_v3v3(c, a, b);
 | 
						|
 | 
						|
	c_len = len_v3(c);
 | 
						|
 | 
						|
	if (c_len > FLT_EPSILON) {
 | 
						|
		return dot_v3v3(a, b) / c_len;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		return 0.0f;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/********************************* Planes **********************************/
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate a plane from a point and a direction,
 | 
						|
 * \note \a point_no isn't required to be normalized.
 | 
						|
 */
 | 
						|
void plane_from_point_normal_v3(float r_plane[4], const float plane_co[3], const float plane_no[3])
 | 
						|
{
 | 
						|
	copy_v3_v3(r_plane, plane_no);
 | 
						|
	r_plane[3] = -dot_v3v3(r_plane, plane_co);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Get a point and a direction from a plane.
 | 
						|
 */
 | 
						|
void plane_to_point_vector_v3(const float plane[4], float r_plane_co[3], float r_plane_no[3])
 | 
						|
{
 | 
						|
	mul_v3_v3fl(r_plane_co, plane, (-plane[3] / len_squared_v3(plane)));
 | 
						|
	copy_v3_v3(r_plane_no, plane);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * version of #plane_to_point_vector_v3 that gets a unit length vector.
 | 
						|
 */
 | 
						|
void plane_to_point_vector_v3_normalized(const float plane[4], float r_plane_co[3], float r_plane_no[3])
 | 
						|
{
 | 
						|
	const float length = normalize_v3_v3(r_plane_no, plane);
 | 
						|
	mul_v3_v3fl(r_plane_co, r_plane_no, (-plane[3] / length));
 | 
						|
}
 | 
						|
 | 
						|
/********************************* Volume **********************************/
 | 
						|
 | 
						|
/**
 | 
						|
 * The volume from a tetrahedron, points can be in any order
 | 
						|
 */
 | 
						|
float volume_tetrahedron_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3])
 | 
						|
{
 | 
						|
	float m[3][3];
 | 
						|
	sub_v3_v3v3(m[0], v1, v2);
 | 
						|
	sub_v3_v3v3(m[1], v2, v3);
 | 
						|
	sub_v3_v3v3(m[2], v3, v4);
 | 
						|
	return fabsf(determinant_m3_array(m)) / 6.0f;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * The volume from a tetrahedron, normal pointing inside gives negative volume
 | 
						|
 */
 | 
						|
float volume_tetrahedron_signed_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3])
 | 
						|
{
 | 
						|
	float m[3][3];
 | 
						|
	sub_v3_v3v3(m[0], v1, v2);
 | 
						|
	sub_v3_v3v3(m[1], v2, v3);
 | 
						|
	sub_v3_v3v3(m[2], v3, v4);
 | 
						|
	return determinant_m3_array(m) / 6.0f;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/********************************* Distance **********************************/
 | 
						|
 | 
						|
/* distance p to line v1-v2
 | 
						|
 * using Hesse formula, NO LINE PIECE! */
 | 
						|
float dist_squared_to_line_v2(const float p[2], const float l1[2], const float l2[2])
 | 
						|
{
 | 
						|
	float closest[2];
 | 
						|
 | 
						|
	closest_to_line_v2(closest, p, l1, l2);
 | 
						|
 | 
						|
	return len_squared_v2v2(closest, p);
 | 
						|
}
 | 
						|
float dist_to_line_v2(const float p[2], const float l1[2], const float l2[2])
 | 
						|
{
 | 
						|
	return sqrtf(dist_squared_to_line_v2(p, l1, l2));
 | 
						|
}
 | 
						|
 | 
						|
/* distance p to line-piece v1-v2 */
 | 
						|
float dist_squared_to_line_segment_v2(const float p[2], const float l1[2], const float l2[2])
 | 
						|
{
 | 
						|
	float closest[2];
 | 
						|
 | 
						|
	closest_to_line_segment_v2(closest, p, l1, l2);
 | 
						|
 | 
						|
	return len_squared_v2v2(closest, p);
 | 
						|
}
 | 
						|
 | 
						|
float dist_to_line_segment_v2(const float p[2], const float l1[2], const float l2[2])
 | 
						|
{
 | 
						|
	return sqrtf(dist_squared_to_line_segment_v2(p, l1, l2));
 | 
						|
}
 | 
						|
 | 
						|
/* point closest to v1 on line v2-v3 in 2D */
 | 
						|
void closest_to_line_segment_v2(float r_close[2], const float p[2], const float l1[2], const float l2[2])
 | 
						|
{
 | 
						|
	float lambda, cp[2];
 | 
						|
 | 
						|
	lambda = closest_to_line_v2(cp, p, l1, l2);
 | 
						|
 | 
						|
	/* flip checks for !finite case (when segment is a point) */
 | 
						|
	if (!(lambda > 0.0f)) {
 | 
						|
		copy_v2_v2(r_close, l1);
 | 
						|
	}
 | 
						|
	else if (!(lambda < 1.0f)) {
 | 
						|
		copy_v2_v2(r_close, l2);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		copy_v2_v2(r_close, cp);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* point closest to v1 on line v2-v3 in 3D */
 | 
						|
void closest_to_line_segment_v3(float r_close[3], const float p[3], const float l1[3], const float l2[3])
 | 
						|
{
 | 
						|
	float lambda, cp[3];
 | 
						|
 | 
						|
	lambda = closest_to_line_v3(cp, p, l1, l2);
 | 
						|
 | 
						|
	/* flip checks for !finite case (when segment is a point) */
 | 
						|
	if (!(lambda > 0.0f)) {
 | 
						|
		copy_v3_v3(r_close, l1);
 | 
						|
	}
 | 
						|
	else if (!(lambda < 1.0f)) {
 | 
						|
		copy_v3_v3(r_close, l2);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		copy_v3_v3(r_close, cp);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Find the closest point on a plane.
 | 
						|
 *
 | 
						|
 * \param r_close  Return coordinate
 | 
						|
 * \param plane  The plane to test against.
 | 
						|
 * \param pt  The point to find the nearest of
 | 
						|
 *
 | 
						|
 * \note non-unit-length planes are supported.
 | 
						|
 */
 | 
						|
void closest_to_plane_v3(float r_close[3], const float plane[4], const float pt[3])
 | 
						|
{
 | 
						|
	const float len_sq = len_squared_v3(plane);
 | 
						|
	const float side = plane_point_side_v3(plane, pt);
 | 
						|
	madd_v3_v3v3fl(r_close, pt, plane, -side / len_sq);
 | 
						|
}
 | 
						|
 | 
						|
void closest_to_plane_normalized_v3(float r_close[3], const float plane[4], const float pt[3])
 | 
						|
{
 | 
						|
	const float side = plane_point_side_v3(plane, pt);
 | 
						|
	BLI_ASSERT_UNIT_V3(plane);
 | 
						|
	madd_v3_v3v3fl(r_close, pt, plane, -side);
 | 
						|
}
 | 
						|
 | 
						|
void closest_to_plane3_v3(float r_close[3], const float plane[3], const float pt[3])
 | 
						|
{
 | 
						|
	const float len_sq = len_squared_v3(plane);
 | 
						|
	const float side = dot_v3v3(plane, pt);
 | 
						|
	madd_v3_v3v3fl(r_close, pt, plane, -side / len_sq);
 | 
						|
}
 | 
						|
 | 
						|
void closest_to_plane3_normalized_v3(float r_close[3], const float plane[3], const float pt[3])
 | 
						|
{
 | 
						|
	const float side = dot_v3v3(plane, pt);
 | 
						|
	BLI_ASSERT_UNIT_V3(plane);
 | 
						|
	madd_v3_v3v3fl(r_close, pt, plane, -side);
 | 
						|
}
 | 
						|
 | 
						|
float dist_signed_squared_to_plane_v3(const float pt[3], const float plane[4])
 | 
						|
{
 | 
						|
	const float len_sq = len_squared_v3(plane);
 | 
						|
	const float side = plane_point_side_v3(plane, pt);
 | 
						|
	const float fac = side / len_sq;
 | 
						|
	return copysignf(len_sq * (fac * fac), side);
 | 
						|
}
 | 
						|
float dist_squared_to_plane_v3(const float pt[3], const float plane[4])
 | 
						|
{
 | 
						|
	const float len_sq = len_squared_v3(plane);
 | 
						|
	const float side = plane_point_side_v3(plane, pt);
 | 
						|
	const float fac = side / len_sq;
 | 
						|
	/* only difference to code above - no 'copysignf' */
 | 
						|
	return len_sq * (fac * fac);
 | 
						|
}
 | 
						|
 | 
						|
float dist_signed_squared_to_plane3_v3(const float pt[3], const float plane[3])
 | 
						|
{
 | 
						|
	const float len_sq = len_squared_v3(plane);
 | 
						|
	const float side = dot_v3v3(plane, pt);  /* only difference with 'plane[4]' version */
 | 
						|
	const float fac = side / len_sq;
 | 
						|
	return copysignf(len_sq * (fac * fac), side);
 | 
						|
}
 | 
						|
float dist_squared_to_plane3_v3(const float pt[3], const float plane[3])
 | 
						|
{
 | 
						|
	const float len_sq = len_squared_v3(plane);
 | 
						|
	const float side = dot_v3v3(plane, pt);  /* only difference with 'plane[4]' version */
 | 
						|
	const float fac = side / len_sq;
 | 
						|
	/* only difference to code above - no 'copysignf' */
 | 
						|
	return len_sq * (fac * fac);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Return the signed distance from the point to the plane.
 | 
						|
 */
 | 
						|
float dist_signed_to_plane_v3(const float pt[3], const float plane[4])
 | 
						|
{
 | 
						|
	const float len_sq = len_squared_v3(plane);
 | 
						|
	const float side = plane_point_side_v3(plane, pt);
 | 
						|
	const float fac = side / len_sq;
 | 
						|
	return sqrtf(len_sq) * fac;
 | 
						|
}
 | 
						|
float dist_to_plane_v3(const float pt[3], const float plane[4])
 | 
						|
{
 | 
						|
	return fabsf(dist_signed_to_plane_v3(pt, plane));
 | 
						|
}
 | 
						|
 | 
						|
float dist_signed_to_plane3_v3(const float pt[3], const float plane[3])
 | 
						|
{
 | 
						|
	const float len_sq = len_squared_v3(plane);
 | 
						|
	const float side = dot_v3v3(plane, pt);  /* only difference with 'plane[4]' version */
 | 
						|
	const float fac = side / len_sq;
 | 
						|
	return sqrtf(len_sq) * fac;
 | 
						|
}
 | 
						|
float dist_to_plane3_v3(const float pt[3], const float plane[3])
 | 
						|
{
 | 
						|
	return fabsf(dist_signed_to_plane3_v3(pt, plane));
 | 
						|
}
 | 
						|
 | 
						|
/* distance v1 to line-piece l1-l2 in 3D */
 | 
						|
float dist_squared_to_line_segment_v3(const float p[3], const float l1[3], const float l2[3])
 | 
						|
{
 | 
						|
	float closest[3];
 | 
						|
 | 
						|
	closest_to_line_segment_v3(closest, p, l1, l2);
 | 
						|
 | 
						|
	return len_squared_v3v3(closest, p);
 | 
						|
}
 | 
						|
 | 
						|
float dist_to_line_segment_v3(const float p[3], const float l1[3], const float l2[3])
 | 
						|
{
 | 
						|
	return sqrtf(dist_squared_to_line_segment_v3(p, l1, l2));
 | 
						|
}
 | 
						|
 | 
						|
float dist_squared_to_line_v3(const float p[3], const float l1[3], const float l2[3])
 | 
						|
{
 | 
						|
	float closest[3];
 | 
						|
 | 
						|
	closest_to_line_v3(closest, p, l1, l2);
 | 
						|
 | 
						|
	return len_squared_v3v3(closest, p);
 | 
						|
}
 | 
						|
float dist_to_line_v3(const float p[3], const float l1[3], const float l2[3])
 | 
						|
{
 | 
						|
	return sqrtf(dist_squared_to_line_v3(p, l1, l2));
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Check if \a p is inside the 2x planes defined by ``(v1, v2, v3)``
 | 
						|
 * where the 3x points define 2x planes.
 | 
						|
 *
 | 
						|
 * \param axis_ref used when v1,v2,v3 form a line and to check if the corner is concave/convex.
 | 
						|
 *
 | 
						|
 * \note the distance from \a v1 & \a v3 to \a v2 doesnt matter
 | 
						|
 * (it just defines the planes).
 | 
						|
 *
 | 
						|
 * \return the lowest squared distance to either of the planes.
 | 
						|
 * where ``(return < 0.0)`` is outside.
 | 
						|
 *
 | 
						|
 * <pre>
 | 
						|
 *            v1
 | 
						|
 *            +
 | 
						|
 *           /
 | 
						|
 * x - out  /  x - inside
 | 
						|
 *         /
 | 
						|
 *        +----+
 | 
						|
 *        v2   v3
 | 
						|
 *           x - also outside
 | 
						|
 * </pre>
 | 
						|
 */
 | 
						|
float dist_signed_squared_to_corner_v3v3v3(
 | 
						|
        const float p[3],
 | 
						|
        const float v1[3], const float v2[3], const float v3[3],
 | 
						|
        const float axis_ref[3])
 | 
						|
{
 | 
						|
	float dir_a[3], dir_b[3];
 | 
						|
	float plane_a[3], plane_b[3];
 | 
						|
	float dist_a, dist_b;
 | 
						|
	float axis[3];
 | 
						|
	float s_p_v2[3];
 | 
						|
	bool flip = false;
 | 
						|
 | 
						|
	sub_v3_v3v3(dir_a, v1, v2);
 | 
						|
	sub_v3_v3v3(dir_b, v3, v2);
 | 
						|
 | 
						|
	cross_v3_v3v3(axis, dir_a, dir_b);
 | 
						|
 | 
						|
	if ((len_squared_v3(axis) < FLT_EPSILON)) {
 | 
						|
		copy_v3_v3(axis, axis_ref);
 | 
						|
	}
 | 
						|
	else if (dot_v3v3(axis, axis_ref) < 0.0f) {
 | 
						|
		/* concave */
 | 
						|
		flip = true;
 | 
						|
		negate_v3(axis);
 | 
						|
	}
 | 
						|
 | 
						|
	cross_v3_v3v3(plane_a, dir_a, axis);
 | 
						|
	cross_v3_v3v3(plane_b, axis, dir_b);
 | 
						|
 | 
						|
#if 0
 | 
						|
	plane_from_point_normal_v3(plane_a, v2, plane_a);
 | 
						|
	plane_from_point_normal_v3(plane_b, v2, plane_b);
 | 
						|
 | 
						|
	dist_a = dist_signed_squared_to_plane_v3(p, plane_a);
 | 
						|
	dist_b = dist_signed_squared_to_plane_v3(p, plane_b);
 | 
						|
#else
 | 
						|
	/* calculate without the planes 4th component to avoid float precision issues */
 | 
						|
	sub_v3_v3v3(s_p_v2, p, v2);
 | 
						|
 | 
						|
	dist_a = dist_signed_squared_to_plane3_v3(s_p_v2, plane_a);
 | 
						|
	dist_b = dist_signed_squared_to_plane3_v3(s_p_v2, plane_b);
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
 | 
						|
	if (flip) {
 | 
						|
		return min_ff(dist_a, dist_b);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		return max_ff(dist_a, dist_b);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Adapted from "Real-Time Collision Detection" by Christer Ericson,
 | 
						|
 * published by Morgan Kaufmann Publishers, copyright 2005 Elsevier Inc.
 | 
						|
 * 
 | 
						|
 * Set 'r' to the point in triangle (a, b, c) closest to point 'p' */
 | 
						|
void closest_on_tri_to_point_v3(float r[3], const float p[3],
 | 
						|
                                const float a[3], const float b[3], const float c[3])
 | 
						|
{
 | 
						|
	float ab[3], ac[3], ap[3], d1, d2;
 | 
						|
	float bp[3], d3, d4, vc, cp[3], d5, d6, vb, va;
 | 
						|
	float denom, v, w;
 | 
						|
 | 
						|
	/* Check if P in vertex region outside A */
 | 
						|
	sub_v3_v3v3(ab, b, a);
 | 
						|
	sub_v3_v3v3(ac, c, a);
 | 
						|
	sub_v3_v3v3(ap, p, a);
 | 
						|
	d1 = dot_v3v3(ab, ap);
 | 
						|
	d2 = dot_v3v3(ac, ap);
 | 
						|
	if (d1 <= 0.0f && d2 <= 0.0f) {
 | 
						|
		/* barycentric coordinates (1,0,0) */
 | 
						|
		copy_v3_v3(r, a);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Check if P in vertex region outside B */
 | 
						|
	sub_v3_v3v3(bp, p, b);
 | 
						|
	d3 = dot_v3v3(ab, bp);
 | 
						|
	d4 = dot_v3v3(ac, bp);
 | 
						|
	if (d3 >= 0.0f && d4 <= d3) {
 | 
						|
		/* barycentric coordinates (0,1,0) */
 | 
						|
		copy_v3_v3(r, b);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	/* Check if P in edge region of AB, if so return projection of P onto AB */
 | 
						|
	vc = d1 * d4 - d3 * d2;
 | 
						|
	if (vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f) {
 | 
						|
		v = d1 / (d1 - d3);
 | 
						|
		/* barycentric coordinates (1-v,v,0) */
 | 
						|
		madd_v3_v3v3fl(r, a, ab, v);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	/* Check if P in vertex region outside C */
 | 
						|
	sub_v3_v3v3(cp, p, c);
 | 
						|
	d5 = dot_v3v3(ab, cp);
 | 
						|
	d6 = dot_v3v3(ac, cp);
 | 
						|
	if (d6 >= 0.0f && d5 <= d6) {
 | 
						|
		/* barycentric coordinates (0,0,1) */
 | 
						|
		copy_v3_v3(r, c);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	/* Check if P in edge region of AC, if so return projection of P onto AC */
 | 
						|
	vb = d5 * d2 - d1 * d6;
 | 
						|
	if (vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f) {
 | 
						|
		w = d2 / (d2 - d6);
 | 
						|
		/* barycentric coordinates (1-w,0,w) */
 | 
						|
		madd_v3_v3v3fl(r, a, ac, w);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	/* Check if P in edge region of BC, if so return projection of P onto BC */
 | 
						|
	va = d3 * d6 - d5 * d4;
 | 
						|
	if (va <= 0.0f && (d4 - d3) >= 0.0f && (d5 - d6) >= 0.0f) {
 | 
						|
		w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
 | 
						|
		/* barycentric coordinates (0,1-w,w) */
 | 
						|
		sub_v3_v3v3(r, c, b);
 | 
						|
		mul_v3_fl(r, w);
 | 
						|
		add_v3_v3(r, b);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* P inside face region. Compute Q through its barycentric coordinates (u,v,w) */
 | 
						|
	denom = 1.0f / (va + vb + vc);
 | 
						|
	v = vb * denom;
 | 
						|
	w = vc * denom;
 | 
						|
 | 
						|
	/* = u*a + v*b + w*c, u = va * denom = 1.0f - v - w */
 | 
						|
	/* ac * w */
 | 
						|
	mul_v3_fl(ac, w);
 | 
						|
	/* a + ab * v */
 | 
						|
	madd_v3_v3v3fl(r, a, ab, v);
 | 
						|
	/* a + ab * v + ac * w */
 | 
						|
	add_v3_v3(r, ac);
 | 
						|
}
 | 
						|
 | 
						|
/******************************* Intersection ********************************/
 | 
						|
 | 
						|
/* intersect Line-Line, shorts */
 | 
						|
int isect_seg_seg_v2_int(const int v1[2], const int v2[2], const int v3[2], const int v4[2])
 | 
						|
{
 | 
						|
	float div, lambda, mu;
 | 
						|
 | 
						|
	div = (float)((v2[0] - v1[0]) * (v4[1] - v3[1]) - (v2[1] - v1[1]) * (v4[0] - v3[0]));
 | 
						|
	if (div == 0.0f) return ISECT_LINE_LINE_COLINEAR;
 | 
						|
 | 
						|
	lambda = (float)((v1[1] - v3[1]) * (v4[0] - v3[0]) - (v1[0] - v3[0]) * (v4[1] - v3[1])) / div;
 | 
						|
 | 
						|
	mu = (float)((v1[1] - v3[1]) * (v2[0] - v1[0]) - (v1[0] - v3[0]) * (v2[1] - v1[1])) / div;
 | 
						|
 | 
						|
	if (lambda >= 0.0f && lambda <= 1.0f && mu >= 0.0f && mu <= 1.0f) {
 | 
						|
		if (lambda == 0.0f || lambda == 1.0f || mu == 0.0f || mu == 1.0f) return ISECT_LINE_LINE_EXACT;
 | 
						|
		return ISECT_LINE_LINE_CROSS;
 | 
						|
	}
 | 
						|
	return ISECT_LINE_LINE_NONE;
 | 
						|
}
 | 
						|
 | 
						|
/* intersect Line-Line, floats - gives intersection point */
 | 
						|
int isect_line_line_v2_point(const float v0[2], const float v1[2], const float v2[2], const float v3[2], float r_vi[2])
 | 
						|
{
 | 
						|
	float s10[2], s32[2];
 | 
						|
	float div;
 | 
						|
 | 
						|
	sub_v2_v2v2(s10, v1, v0);
 | 
						|
	sub_v2_v2v2(s32, v3, v2);
 | 
						|
 | 
						|
	div = cross_v2v2(s10, s32);
 | 
						|
	if (div != 0.0f) {
 | 
						|
		const float u = cross_v2v2(v1, v0);
 | 
						|
		const float v = cross_v2v2(v3, v2);
 | 
						|
 | 
						|
		r_vi[0] = ((s32[0] * u) - (s10[0] * v)) / div;
 | 
						|
		r_vi[1] = ((s32[1] * u) - (s10[1] * v)) / div;
 | 
						|
 | 
						|
		return ISECT_LINE_LINE_CROSS;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		return ISECT_LINE_LINE_COLINEAR;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* intersect Line-Line, floats */
 | 
						|
int isect_seg_seg_v2(const float v1[2], const float v2[2], const float v3[2], const float v4[2])
 | 
						|
{
 | 
						|
	float div, lambda, mu;
 | 
						|
 | 
						|
	div = (v2[0] - v1[0]) * (v4[1] - v3[1]) - (v2[1] - v1[1]) * (v4[0] - v3[0]);
 | 
						|
	if (div == 0.0f) return ISECT_LINE_LINE_COLINEAR;
 | 
						|
 | 
						|
	lambda = ((float)(v1[1] - v3[1]) * (v4[0] - v3[0]) - (v1[0] - v3[0]) * (v4[1] - v3[1])) / div;
 | 
						|
 | 
						|
	mu = ((float)(v1[1] - v3[1]) * (v2[0] - v1[0]) - (v1[0] - v3[0]) * (v2[1] - v1[1])) / div;
 | 
						|
 | 
						|
	if (lambda >= 0.0f && lambda <= 1.0f && mu >= 0.0f && mu <= 1.0f) {
 | 
						|
		if (lambda == 0.0f || lambda == 1.0f || mu == 0.0f || mu == 1.0f) return ISECT_LINE_LINE_EXACT;
 | 
						|
		return ISECT_LINE_LINE_CROSS;
 | 
						|
	}
 | 
						|
	return ISECT_LINE_LINE_NONE;
 | 
						|
}
 | 
						|
 | 
						|
/* get intersection point of two 2D segments and return intersection type:
 | 
						|
 *  -1: collinear
 | 
						|
 *   1: intersection
 | 
						|
 */
 | 
						|
int isect_seg_seg_v2_point(
 | 
						|
        const float v0[2], const float v1[2],
 | 
						|
        const float v2[2], const float v3[2],
 | 
						|
        float r_vi[2])
 | 
						|
{
 | 
						|
	float s10[2], s32[2], s30[2], d;
 | 
						|
	const float eps = 1e-6f;
 | 
						|
	const float eps_sq = eps * eps;
 | 
						|
 | 
						|
	sub_v2_v2v2(s10, v1, v0);
 | 
						|
	sub_v2_v2v2(s32, v3, v2);
 | 
						|
	sub_v2_v2v2(s30, v3, v0);
 | 
						|
 | 
						|
	d = cross_v2v2(s10, s32);
 | 
						|
 | 
						|
	if (d != 0) {
 | 
						|
		float u, v;
 | 
						|
 | 
						|
		u = cross_v2v2(s30, s32) / d;
 | 
						|
		v = cross_v2v2(s10, s30) / d;
 | 
						|
 | 
						|
		if ((u >= -eps && u <= 1.0f + eps) &&
 | 
						|
		    (v >= -eps && v <= 1.0f + eps))
 | 
						|
		{
 | 
						|
			/* intersection */
 | 
						|
			float vi_test[2];
 | 
						|
			float s_vi_v2[2];
 | 
						|
 | 
						|
			madd_v2_v2v2fl(vi_test, v0, s10, u);
 | 
						|
 | 
						|
			/* When 'd' approaches zero, float precision lets non-overlapping co-linear segments
 | 
						|
			 * detect as an intersection. So re-calculate 'v' to ensure the point overlaps both.
 | 
						|
			 * see T45123 */
 | 
						|
 | 
						|
			/* inline since we have most vars already */
 | 
						|
#if 0
 | 
						|
			v = line_point_factor_v2(ix_test, v2, v3);
 | 
						|
#else
 | 
						|
			sub_v2_v2v2(s_vi_v2, vi_test, v2);
 | 
						|
			v = (dot_v2v2(s32, s_vi_v2) / dot_v2v2(s32, s32));
 | 
						|
#endif
 | 
						|
			if (v >= -eps && v <= 1.0f + eps) {
 | 
						|
				copy_v2_v2(r_vi, vi_test);
 | 
						|
				return 1;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* out of segment intersection */
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		if ((cross_v2v2(s10, s30) == 0.0f) &&
 | 
						|
		    (cross_v2v2(s32, s30) == 0.0f))
 | 
						|
		{
 | 
						|
			/* equal lines */
 | 
						|
			float s20[2];
 | 
						|
			float u_a, u_b;
 | 
						|
 | 
						|
			if (equals_v2v2(v0, v1)) {
 | 
						|
				if (len_squared_v2v2(v2, v3) > eps_sq) {
 | 
						|
					/* use non-point segment as basis */
 | 
						|
					SWAP(const float *, v0, v2);
 | 
						|
					SWAP(const float *, v1, v3);
 | 
						|
 | 
						|
					sub_v2_v2v2(s10, v1, v0);
 | 
						|
					sub_v2_v2v2(s30, v3, v0);
 | 
						|
				}
 | 
						|
				else { /* both of segments are points */
 | 
						|
					if (equals_v2v2(v0, v2)) { /* points are equal */
 | 
						|
						copy_v2_v2(r_vi, v0);
 | 
						|
						return 1;
 | 
						|
					}
 | 
						|
 | 
						|
					/* two different points */
 | 
						|
					return -1;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			sub_v2_v2v2(s20, v2, v0);
 | 
						|
 | 
						|
			u_a = dot_v2v2(s20, s10) / dot_v2v2(s10, s10);
 | 
						|
			u_b = dot_v2v2(s30, s10) / dot_v2v2(s10, s10);
 | 
						|
 | 
						|
			if (u_a > u_b)
 | 
						|
				SWAP(float, u_a, u_b);
 | 
						|
 | 
						|
			if (u_a > 1.0f + eps || u_b < -eps) {
 | 
						|
				/* non-overlapping segments */
 | 
						|
				return -1;
 | 
						|
			}
 | 
						|
			else if (max_ff(0.0f, u_a) == min_ff(1.0f, u_b)) {
 | 
						|
				/* one common point: can return result */
 | 
						|
				madd_v2_v2v2fl(r_vi, v0, s10, max_ff(0, u_a));
 | 
						|
				return 1;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* lines are collinear */
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
bool isect_seg_seg_v2_simple(const float v1[2], const float v2[2], const float v3[2], const float v4[2])
 | 
						|
{
 | 
						|
#define CCW(A, B, C) \
 | 
						|
	((C[1] - A[1]) * (B[0] - A[0]) > \
 | 
						|
	 (B[1] - A[1]) * (C[0] - A[0]))
 | 
						|
 | 
						|
	return CCW(v1, v3, v4) != CCW(v2, v3, v4) && CCW(v1, v2, v3) != CCW(v1, v2, v4);
 | 
						|
 | 
						|
#undef CCW
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * \param l1, l2: Coordinates (point of line).
 | 
						|
 * \param sp, r:  Coordinate and radius (sphere).
 | 
						|
 * \return r_p1, r_p2: Intersection coordinates.
 | 
						|
 *
 | 
						|
 * \note The order of assignment for intersection points (\a r_p1, \a r_p2) is predictable,
 | 
						|
 * based on the direction defined by ``l2 - l1``,
 | 
						|
 * this direction compared with the normal of each point on the sphere:
 | 
						|
 * \a r_p1 always has a >= 0.0 dot product.
 | 
						|
 * \a r_p2 always has a <= 0.0 dot product.
 | 
						|
 * For example, when \a l1 is inside the sphere and \a l2 is outside,
 | 
						|
 * \a r_p1 will always be between \a l1 and \a l2.
 | 
						|
 */
 | 
						|
int isect_line_sphere_v3(const float l1[3], const float l2[3],
 | 
						|
                         const float sp[3], const float r,
 | 
						|
                         float r_p1[3], float r_p2[3])
 | 
						|
{
 | 
						|
	/* adapted for use in blender by Campbell Barton - 2011
 | 
						|
	 *
 | 
						|
	 * atelier iebele abel - 2001
 | 
						|
	 * atelier@iebele.nl
 | 
						|
	 * http://www.iebele.nl
 | 
						|
	 *
 | 
						|
	 * sphere_line_intersection function adapted from:
 | 
						|
	 * http://astronomy.swin.edu.au/pbourke/geometry/sphereline
 | 
						|
	 * Paul Bourke pbourke@swin.edu.au
 | 
						|
	 */
 | 
						|
 | 
						|
	const float ldir[3] = {
 | 
						|
		l2[0] - l1[0],
 | 
						|
		l2[1] - l1[1],
 | 
						|
		l2[2] - l1[2]
 | 
						|
	};
 | 
						|
 | 
						|
	const float a = len_squared_v3(ldir);
 | 
						|
 | 
						|
	const float b = 2.0f *
 | 
						|
	                (ldir[0] * (l1[0] - sp[0]) +
 | 
						|
	                 ldir[1] * (l1[1] - sp[1]) +
 | 
						|
	                 ldir[2] * (l1[2] - sp[2]));
 | 
						|
 | 
						|
	const float c =
 | 
						|
	    len_squared_v3(sp) +
 | 
						|
	    len_squared_v3(l1) -
 | 
						|
	    (2.0f * dot_v3v3(sp, l1)) -
 | 
						|
	    (r * r);
 | 
						|
 | 
						|
	const float i = b * b - 4.0f * a * c;
 | 
						|
 | 
						|
	float mu;
 | 
						|
 | 
						|
	if (i < 0.0f) {
 | 
						|
		/* no intersections */
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	else if (i == 0.0f) {
 | 
						|
		/* one intersection */
 | 
						|
		mu = -b / (2.0f * a);
 | 
						|
		madd_v3_v3v3fl(r_p1, l1, ldir, mu);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	else if (i > 0.0f) {
 | 
						|
		const float i_sqrt = sqrtf(i);  /* avoid calc twice */
 | 
						|
 | 
						|
		/* first intersection */
 | 
						|
		mu = (-b + i_sqrt) / (2.0f * a);
 | 
						|
		madd_v3_v3v3fl(r_p1, l1, ldir, mu);
 | 
						|
 | 
						|
		/* second intersection */
 | 
						|
		mu = (-b - i_sqrt) / (2.0f * a);
 | 
						|
		madd_v3_v3v3fl(r_p2, l1, ldir, mu);
 | 
						|
		return 2;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* math domain error - nan */
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* keep in sync with isect_line_sphere_v3 */
 | 
						|
int isect_line_sphere_v2(const float l1[2], const float l2[2],
 | 
						|
                         const float sp[2], const float r,
 | 
						|
                         float r_p1[2], float r_p2[2])
 | 
						|
{
 | 
						|
	const float ldir[2] = {l2[0] - l1[0],
 | 
						|
	                       l2[1] - l1[1]};
 | 
						|
 | 
						|
	const float a = dot_v2v2(ldir, ldir);
 | 
						|
 | 
						|
	const float b = 2.0f *
 | 
						|
	                (ldir[0] * (l1[0] - sp[0]) +
 | 
						|
	                 ldir[1] * (l1[1] - sp[1]));
 | 
						|
 | 
						|
	const float c =
 | 
						|
	    dot_v2v2(sp, sp) +
 | 
						|
	    dot_v2v2(l1, l1) -
 | 
						|
	    (2.0f * dot_v2v2(sp, l1)) -
 | 
						|
	    (r * r);
 | 
						|
 | 
						|
	const float i = b * b - 4.0f * a * c;
 | 
						|
 | 
						|
	float mu;
 | 
						|
 | 
						|
	if (i < 0.0f) {
 | 
						|
		/* no intersections */
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	else if (i == 0.0f) {
 | 
						|
		/* one intersection */
 | 
						|
		mu = -b / (2.0f * a);
 | 
						|
		madd_v2_v2v2fl(r_p1, l1, ldir, mu);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	else if (i > 0.0f) {
 | 
						|
		const float i_sqrt = sqrtf(i);  /* avoid calc twice */
 | 
						|
 | 
						|
		/* first intersection */
 | 
						|
		mu = (-b + i_sqrt) / (2.0f * a);
 | 
						|
		madd_v2_v2v2fl(r_p1, l1, ldir, mu);
 | 
						|
 | 
						|
		/* second intersection */
 | 
						|
		mu = (-b - i_sqrt) / (2.0f * a);
 | 
						|
		madd_v2_v2v2fl(r_p2, l1, ldir, mu);
 | 
						|
		return 2;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* math domain error - nan */
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* point in polygon (keep float and int versions in sync) */
 | 
						|
#if 0
 | 
						|
bool isect_point_poly_v2(const float pt[2], const float verts[][2], const unsigned int nr,
 | 
						|
                         const bool use_holes)
 | 
						|
{
 | 
						|
	/* we do the angle rule, define that all added angles should be about zero or (2 * PI) */
 | 
						|
	float angletot = 0.0;
 | 
						|
	float fp1[2], fp2[2];
 | 
						|
	unsigned int i;
 | 
						|
	const float *p1, *p2;
 | 
						|
 | 
						|
	p1 = verts[nr - 1];
 | 
						|
 | 
						|
	/* first vector */
 | 
						|
	fp1[0] = (float)(p1[0] - pt[0]);
 | 
						|
	fp1[1] = (float)(p1[1] - pt[1]);
 | 
						|
 | 
						|
	for (i = 0; i < nr; i++) {
 | 
						|
		p2 = verts[i];
 | 
						|
 | 
						|
		/* second vector */
 | 
						|
		fp2[0] = (float)(p2[0] - pt[0]);
 | 
						|
		fp2[1] = (float)(p2[1] - pt[1]);
 | 
						|
 | 
						|
		/* dot and angle and cross */
 | 
						|
		angletot += angle_signed_v2v2(fp1, fp2);
 | 
						|
 | 
						|
		/* circulate */
 | 
						|
		copy_v2_v2(fp1, fp2);
 | 
						|
		p1 = p2;
 | 
						|
	}
 | 
						|
 | 
						|
	angletot = fabsf(angletot);
 | 
						|
	if (use_holes) {
 | 
						|
		const float nested = floorf((angletot / (float)(M_PI * 2.0)) + 0.00001f);
 | 
						|
		angletot -= nested * (float)(M_PI * 2.0);
 | 
						|
		return (angletot > 4.0f) != ((int)nested % 2);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		return (angletot > 4.0f);
 | 
						|
	}
 | 
						|
}
 | 
						|
bool isect_point_poly_v2_int(const int pt[2], const int verts[][2], const unsigned int nr,
 | 
						|
                             const bool use_holes)
 | 
						|
{
 | 
						|
	/* we do the angle rule, define that all added angles should be about zero or (2 * PI) */
 | 
						|
	float angletot = 0.0;
 | 
						|
	float fp1[2], fp2[2];
 | 
						|
	unsigned int i;
 | 
						|
	const int *p1, *p2;
 | 
						|
 | 
						|
	p1 = verts[nr - 1];
 | 
						|
 | 
						|
	/* first vector */
 | 
						|
	fp1[0] = (float)(p1[0] - pt[0]);
 | 
						|
	fp1[1] = (float)(p1[1] - pt[1]);
 | 
						|
 | 
						|
	for (i = 0; i < nr; i++) {
 | 
						|
		p2 = verts[i];
 | 
						|
 | 
						|
		/* second vector */
 | 
						|
		fp2[0] = (float)(p2[0] - pt[0]);
 | 
						|
		fp2[1] = (float)(p2[1] - pt[1]);
 | 
						|
 | 
						|
		/* dot and angle and cross */
 | 
						|
		angletot += angle_signed_v2v2(fp1, fp2);
 | 
						|
 | 
						|
		/* circulate */
 | 
						|
		copy_v2_v2(fp1, fp2);
 | 
						|
		p1 = p2;
 | 
						|
	}
 | 
						|
 | 
						|
	angletot = fabsf(angletot);
 | 
						|
	if (use_holes) {
 | 
						|
		const float nested = floorf((angletot / (float)(M_PI * 2.0)) + 0.00001f);
 | 
						|
		angletot -= nested * (float)(M_PI * 2.0);
 | 
						|
		return (angletot > 4.0f) != ((int)nested % 2);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		return (angletot > 4.0f);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
bool isect_point_poly_v2(const float pt[2], const float verts[][2], const unsigned int nr,
 | 
						|
                         const bool UNUSED(use_holes))
 | 
						|
{
 | 
						|
	unsigned int i, j;
 | 
						|
	bool isect = false;
 | 
						|
	for (i = 0, j = nr - 1; i < nr; j = i++) {
 | 
						|
		if (((verts[i][1] > pt[1]) != (verts[j][1] > pt[1])) &&
 | 
						|
		    (pt[0] < (verts[j][0] - verts[i][0]) * (pt[1] - verts[i][1]) / (verts[j][1] - verts[i][1]) + verts[i][0]))
 | 
						|
		{
 | 
						|
			isect = !isect;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return isect;
 | 
						|
}
 | 
						|
bool isect_point_poly_v2_int(const int pt[2], const int verts[][2], const unsigned int nr,
 | 
						|
                             const bool UNUSED(use_holes))
 | 
						|
{
 | 
						|
	unsigned int i, j;
 | 
						|
	bool isect = false;
 | 
						|
	for (i = 0, j = nr - 1; i < nr; j = i++) {
 | 
						|
		if (((verts[i][1] > pt[1]) != (verts[j][1] > pt[1])) &&
 | 
						|
		    (pt[0] < (verts[j][0] - verts[i][0]) * (pt[1] - verts[i][1]) / (verts[j][1] - verts[i][1]) + verts[i][0]))
 | 
						|
		{
 | 
						|
			isect = !isect;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return isect;
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/* point in tri */
 | 
						|
 | 
						|
/* only single direction */
 | 
						|
bool isect_point_tri_v2_cw(const float pt[2], const float v1[2], const float v2[2], const float v3[2])
 | 
						|
{
 | 
						|
	if (line_point_side_v2(v1, v2, pt) >= 0.0f) {
 | 
						|
		if (line_point_side_v2(v2, v3, pt) >= 0.0f) {
 | 
						|
			if (line_point_side_v2(v3, v1, pt) >= 0.0f) {
 | 
						|
				return true;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
int isect_point_tri_v2(const float pt[2], const float v1[2], const float v2[2], const float v3[2])
 | 
						|
{
 | 
						|
	if (line_point_side_v2(v1, v2, pt) >= 0.0f) {
 | 
						|
		if (line_point_side_v2(v2, v3, pt) >= 0.0f) {
 | 
						|
			if (line_point_side_v2(v3, v1, pt) >= 0.0f) {
 | 
						|
				return 1;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		if (!(line_point_side_v2(v2, v3, pt) >= 0.0f)) {
 | 
						|
			if (!(line_point_side_v2(v3, v1, pt) >= 0.0f)) {
 | 
						|
				return -1;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* point in quad - only convex quads */
 | 
						|
int isect_point_quad_v2(const float pt[2], const float v1[2], const float v2[2], const float v3[2], const float v4[2])
 | 
						|
{
 | 
						|
	if (line_point_side_v2(v1, v2, pt) >= 0.0f) {
 | 
						|
		if (line_point_side_v2(v2, v3, pt) >= 0.0f) {
 | 
						|
			if (line_point_side_v2(v3, v4, pt) >= 0.0f) {
 | 
						|
				if (line_point_side_v2(v4, v1, pt) >= 0.0f) {
 | 
						|
					return 1;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		if (!(line_point_side_v2(v2, v3, pt) >= 0.0f)) {
 | 
						|
			if (!(line_point_side_v2(v3, v4, pt) >= 0.0f)) {
 | 
						|
				if (!(line_point_side_v2(v4, v1, pt) >= 0.0f)) {
 | 
						|
					return -1;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* moved from effect.c
 | 
						|
 * test if the line starting at p1 ending at p2 intersects the triangle v0..v2
 | 
						|
 * return non zero if it does
 | 
						|
 */
 | 
						|
bool isect_line_segment_tri_v3(
 | 
						|
        const float p1[3], const float p2[3],
 | 
						|
        const float v0[3], const float v1[3], const float v2[3],
 | 
						|
        float *r_lambda, float r_uv[2])
 | 
						|
{
 | 
						|
 | 
						|
	float p[3], s[3], d[3], e1[3], e2[3], q[3];
 | 
						|
	float a, f, u, v;
 | 
						|
 | 
						|
	sub_v3_v3v3(e1, v1, v0);
 | 
						|
	sub_v3_v3v3(e2, v2, v0);
 | 
						|
	sub_v3_v3v3(d, p2, p1);
 | 
						|
 | 
						|
	cross_v3_v3v3(p, d, e2);
 | 
						|
	a = dot_v3v3(e1, p);
 | 
						|
	if (a == 0.0f) return false;
 | 
						|
	f = 1.0f / a;
 | 
						|
 | 
						|
	sub_v3_v3v3(s, p1, v0);
 | 
						|
 | 
						|
	u = f * dot_v3v3(s, p);
 | 
						|
	if ((u < 0.0f) || (u > 1.0f)) return false;
 | 
						|
 | 
						|
	cross_v3_v3v3(q, s, e1);
 | 
						|
 | 
						|
	v = f * dot_v3v3(d, q);
 | 
						|
	if ((v < 0.0f) || ((u + v) > 1.0f)) return false;
 | 
						|
 | 
						|
	*r_lambda = f * dot_v3v3(e2, q);
 | 
						|
	if ((*r_lambda < 0.0f) || (*r_lambda > 1.0f)) return false;
 | 
						|
 | 
						|
	if (r_uv) {
 | 
						|
		r_uv[0] = u;
 | 
						|
		r_uv[1] = v;
 | 
						|
	}
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/* like isect_line_segment_tri_v3, but allows epsilon tolerance around triangle */
 | 
						|
bool isect_line_segment_tri_epsilon_v3(
 | 
						|
        const float p1[3], const float p2[3],
 | 
						|
        const float v0[3], const float v1[3], const float v2[3],
 | 
						|
        float *r_lambda, float r_uv[2], const float epsilon)
 | 
						|
{
 | 
						|
 | 
						|
	float p[3], s[3], d[3], e1[3], e2[3], q[3];
 | 
						|
	float a, f, u, v;
 | 
						|
 | 
						|
	sub_v3_v3v3(e1, v1, v0);
 | 
						|
	sub_v3_v3v3(e2, v2, v0);
 | 
						|
	sub_v3_v3v3(d, p2, p1);
 | 
						|
 | 
						|
	cross_v3_v3v3(p, d, e2);
 | 
						|
	a = dot_v3v3(e1, p);
 | 
						|
	if (a == 0.0f) return false;
 | 
						|
	f = 1.0f / a;
 | 
						|
 | 
						|
	sub_v3_v3v3(s, p1, v0);
 | 
						|
 | 
						|
	u = f * dot_v3v3(s, p);
 | 
						|
	if ((u < -epsilon) || (u > 1.0f + epsilon)) return false;
 | 
						|
 | 
						|
	cross_v3_v3v3(q, s, e1);
 | 
						|
 | 
						|
	v = f * dot_v3v3(d, q);
 | 
						|
	if ((v < -epsilon) || ((u + v) > 1.0f + epsilon)) return false;
 | 
						|
 | 
						|
	*r_lambda = f * dot_v3v3(e2, q);
 | 
						|
	if ((*r_lambda < 0.0f) || (*r_lambda > 1.0f)) return false;
 | 
						|
 | 
						|
	if (r_uv) {
 | 
						|
		r_uv[0] = u;
 | 
						|
		r_uv[1] = v;
 | 
						|
	}
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/* moved from effect.c
 | 
						|
 * test if the ray starting at p1 going in d direction intersects the triangle v0..v2
 | 
						|
 * return non zero if it does
 | 
						|
 */
 | 
						|
bool isect_ray_tri_v3(
 | 
						|
        const float ray_origin[3], const float ray_direction[3],
 | 
						|
        const float v0[3], const float v1[3], const float v2[3],
 | 
						|
        float *r_lambda, float r_uv[2])
 | 
						|
{
 | 
						|
	/* note: these values were 0.000001 in 2.4x but for projection snapping on
 | 
						|
	 * a human head (1BU == 1m), subsurf level 2, this gave many errors - campbell */
 | 
						|
	const float epsilon = 0.00000001f;
 | 
						|
	float p[3], s[3], e1[3], e2[3], q[3];
 | 
						|
	float a, f, u, v;
 | 
						|
 | 
						|
	sub_v3_v3v3(e1, v1, v0);
 | 
						|
	sub_v3_v3v3(e2, v2, v0);
 | 
						|
 | 
						|
	cross_v3_v3v3(p, ray_direction, e2);
 | 
						|
	a = dot_v3v3(e1, p);
 | 
						|
	if ((a > -epsilon) && (a < epsilon)) return false;
 | 
						|
	f = 1.0f / a;
 | 
						|
 | 
						|
	sub_v3_v3v3(s, ray_origin, v0);
 | 
						|
 | 
						|
	u = f * dot_v3v3(s, p);
 | 
						|
	if ((u < 0.0f) || (u > 1.0f)) return false;
 | 
						|
 | 
						|
	cross_v3_v3v3(q, s, e1);
 | 
						|
 | 
						|
	v = f * dot_v3v3(ray_direction, q);
 | 
						|
	if ((v < 0.0f) || ((u + v) > 1.0f)) return false;
 | 
						|
 | 
						|
	*r_lambda = f * dot_v3v3(e2, q);
 | 
						|
	if ((*r_lambda < 0.0f)) return false;
 | 
						|
 | 
						|
	if (r_uv) {
 | 
						|
		r_uv[0] = u;
 | 
						|
		r_uv[1] = v;
 | 
						|
	}
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * if clip is nonzero, will only return true if lambda is >= 0.0
 | 
						|
 * (i.e. intersection point is along positive \a ray_direction)
 | 
						|
 *
 | 
						|
 * \note #line_plane_factor_v3() shares logic.
 | 
						|
 */
 | 
						|
bool isect_ray_plane_v3(
 | 
						|
        const float ray_origin[3], const float ray_direction[3],
 | 
						|
        const float plane[4],
 | 
						|
        float *r_lambda, const bool clip)
 | 
						|
{
 | 
						|
	float h[3], plane_co[3];
 | 
						|
	float dot;
 | 
						|
 | 
						|
	dot = dot_v3v3(plane, ray_direction);
 | 
						|
	if (dot == 0.0f) {
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
	mul_v3_v3fl(plane_co, plane, (-plane[3] / len_squared_v3(plane)));
 | 
						|
	sub_v3_v3v3(h, ray_origin, plane_co);
 | 
						|
	*r_lambda = -dot_v3v3(plane, h) / dot;
 | 
						|
	if (clip && (*r_lambda < 0.0f)) {
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
bool isect_ray_tri_epsilon_v3(
 | 
						|
        const float ray_origin[3], const float ray_direction[3],
 | 
						|
        const float v0[3], const float v1[3], const float v2[3],
 | 
						|
        float *r_lambda, float r_uv[2], const float epsilon)
 | 
						|
{
 | 
						|
	float p[3], s[3], e1[3], e2[3], q[3];
 | 
						|
	float a, f, u, v;
 | 
						|
 | 
						|
	sub_v3_v3v3(e1, v1, v0);
 | 
						|
	sub_v3_v3v3(e2, v2, v0);
 | 
						|
 | 
						|
	cross_v3_v3v3(p, ray_direction, e2);
 | 
						|
	a = dot_v3v3(e1, p);
 | 
						|
	if (a == 0.0f) return false;
 | 
						|
	f = 1.0f / a;
 | 
						|
 | 
						|
	sub_v3_v3v3(s, ray_origin, v0);
 | 
						|
 | 
						|
	u = f * dot_v3v3(s, p);
 | 
						|
	if ((u < -epsilon) || (u > 1.0f + epsilon)) return false;
 | 
						|
 | 
						|
	cross_v3_v3v3(q, s, e1);
 | 
						|
 | 
						|
	v = f * dot_v3v3(ray_direction, q);
 | 
						|
	if ((v < -epsilon) || ((u + v) > 1.0f + epsilon)) return false;
 | 
						|
 | 
						|
	*r_lambda = f * dot_v3v3(e2, q);
 | 
						|
	if ((*r_lambda < 0.0f)) return false;
 | 
						|
 | 
						|
	if (r_uv) {
 | 
						|
		r_uv[0] = u;
 | 
						|
		r_uv[1] = v;
 | 
						|
	}
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
void isect_ray_tri_watertight_v3_precalc(struct IsectRayPrecalc *isect_precalc, const float ray_direction[3])
 | 
						|
{
 | 
						|
	float inv_dir_z;
 | 
						|
 | 
						|
	/* Calculate dimension where the ray direction is maximal. */
 | 
						|
	int kz = axis_dominant_v3_single(ray_direction);
 | 
						|
	int kx = (kz != 2) ? (kz + 1) : 0;
 | 
						|
	int ky = (kx != 2) ? (kx + 1) : 0;
 | 
						|
 | 
						|
	/* Swap kx and ky dimensions to preserve winding direction of triangles. */
 | 
						|
	if (ray_direction[kz] < 0.0f) {
 | 
						|
		SWAP(int, kx, ky);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Calculate the shear constants. */
 | 
						|
	inv_dir_z = 1.0f / ray_direction[kz];
 | 
						|
	isect_precalc->sx = ray_direction[kx] * inv_dir_z;
 | 
						|
	isect_precalc->sy = ray_direction[ky] * inv_dir_z;
 | 
						|
	isect_precalc->sz = inv_dir_z;
 | 
						|
 | 
						|
	/* Store the dimensions. */
 | 
						|
	isect_precalc->kx = kx;
 | 
						|
	isect_precalc->ky = ky;
 | 
						|
	isect_precalc->kz = kz;
 | 
						|
}
 | 
						|
 | 
						|
bool isect_ray_tri_watertight_v3(
 | 
						|
        const float ray_origin[3], const struct IsectRayPrecalc *isect_precalc,
 | 
						|
        const float v0[3], const float v1[3], const float v2[3],
 | 
						|
        float *r_lambda, float r_uv[2])
 | 
						|
{
 | 
						|
	const int kx = isect_precalc->kx;
 | 
						|
	const int ky = isect_precalc->ky;
 | 
						|
	const int kz = isect_precalc->kz;
 | 
						|
	const float sx = isect_precalc->sx;
 | 
						|
	const float sy = isect_precalc->sy;
 | 
						|
	const float sz = isect_precalc->sz;
 | 
						|
 | 
						|
	/* Calculate vertices relative to ray origin. */
 | 
						|
	const float a[3] = {v0[0] - ray_origin[0], v0[1] - ray_origin[1], v0[2] - ray_origin[2]};
 | 
						|
	const float b[3] = {v1[0] - ray_origin[0], v1[1] - ray_origin[1], v1[2] - ray_origin[2]};
 | 
						|
	const float c[3] = {v2[0] - ray_origin[0], v2[1] - ray_origin[1], v2[2] - ray_origin[2]};
 | 
						|
 | 
						|
	const float a_kx = a[kx], a_ky = a[ky], a_kz = a[kz];
 | 
						|
	const float b_kx = b[kx], b_ky = b[ky], b_kz = b[kz];
 | 
						|
	const float c_kx = c[kx], c_ky = c[ky], c_kz = c[kz];
 | 
						|
 | 
						|
	/* Perform shear and scale of vertices. */
 | 
						|
	const float ax = a_kx - sx * a_kz;
 | 
						|
	const float ay = a_ky - sy * a_kz;
 | 
						|
	const float bx = b_kx - sx * b_kz;
 | 
						|
	const float by = b_ky - sy * b_kz;
 | 
						|
	const float cx = c_kx - sx * c_kz;
 | 
						|
	const float cy = c_ky - sy * c_kz;
 | 
						|
 | 
						|
	/* Calculate scaled barycentric coordinates. */
 | 
						|
	const float u = cx * by - cy * bx;
 | 
						|
	const float v = ax * cy - ay * cx;
 | 
						|
	const float w = bx * ay - by * ax;
 | 
						|
	float det;
 | 
						|
 | 
						|
	if ((u < 0.0f || v < 0.0f || w < 0.0f) &&
 | 
						|
	    (u > 0.0f || v > 0.0f || w > 0.0f))
 | 
						|
	{
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Calculate determinant. */
 | 
						|
	det = u + v + w;
 | 
						|
	if (UNLIKELY(det == 0.0f)) {
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* Calculate scaled z-coordinates of vertices and use them to calculate
 | 
						|
		 * the hit distance.
 | 
						|
		 */
 | 
						|
		const int sign_det = (float_as_int(det) & (int)0x80000000);
 | 
						|
		const float t = (u * a_kz + v * b_kz + w * c_kz) * sz;
 | 
						|
		const float sign_t = xor_fl(t, sign_det);
 | 
						|
		if ((sign_t < 0.0f)
 | 
						|
		    /* differ from Cycles, don't read r_lambda's original value
 | 
						|
		     * otherwise we won't match any of the other intersect functions here...
 | 
						|
		     * which would be confusing */
 | 
						|
#if 0
 | 
						|
		    ||
 | 
						|
		    (sign_T > *r_lambda * xor_signmask(det, sign_mask))
 | 
						|
#endif
 | 
						|
		    )
 | 
						|
		{
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			/* Normalize u, v and t. */
 | 
						|
			const float inv_det = 1.0f / det;
 | 
						|
			if (r_uv) {
 | 
						|
				r_uv[0] = u * inv_det;
 | 
						|
				r_uv[1] = v * inv_det;
 | 
						|
			}
 | 
						|
			*r_lambda = t * inv_det;
 | 
						|
			return true;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
bool isect_ray_tri_watertight_v3_simple(
 | 
						|
        const float ray_origin[3], const float ray_direction[3],
 | 
						|
        const float v0[3], const float v1[3], const float v2[3],
 | 
						|
        float *r_lambda, float r_uv[2])
 | 
						|
{
 | 
						|
	struct IsectRayPrecalc isect_precalc;
 | 
						|
	isect_ray_tri_watertight_v3_precalc(&isect_precalc, ray_direction);
 | 
						|
	return isect_ray_tri_watertight_v3(ray_origin, &isect_precalc, v0, v1, v2, r_lambda, r_uv);
 | 
						|
}
 | 
						|
 | 
						|
#if 0  /* UNUSED */
 | 
						|
/**
 | 
						|
 * A version of #isect_ray_tri_v3 which takes a threshold argument
 | 
						|
 * so rays slightly outside the triangle to be considered as intersecting.
 | 
						|
 */
 | 
						|
bool isect_ray_tri_threshold_v3(
 | 
						|
        const float ray_origin[3], const float ray_direction[3],
 | 
						|
        const float v0[3], const float v1[3], const float v2[3],
 | 
						|
        float *r_lambda, float r_uv[2], const float threshold)
 | 
						|
{
 | 
						|
	const float epsilon = 0.00000001f;
 | 
						|
	float p[3], s[3], e1[3], e2[3], q[3];
 | 
						|
	float a, f, u, v;
 | 
						|
	float du, dv;
 | 
						|
 | 
						|
	sub_v3_v3v3(e1, v1, v0);
 | 
						|
	sub_v3_v3v3(e2, v2, v0);
 | 
						|
 | 
						|
	cross_v3_v3v3(p, ray_direction, e2);
 | 
						|
	a = dot_v3v3(e1, p);
 | 
						|
	if ((a > -epsilon) && (a < epsilon)) return false;
 | 
						|
	f = 1.0f / a;
 | 
						|
 | 
						|
	sub_v3_v3v3(s, ray_origin, v0);
 | 
						|
 | 
						|
	cross_v3_v3v3(q, s, e1);
 | 
						|
	*r_lambda = f * dot_v3v3(e2, q);
 | 
						|
	if ((*r_lambda < 0.0f)) return false;
 | 
						|
 | 
						|
	u = f * dot_v3v3(s, p);
 | 
						|
	v = f * dot_v3v3(ray_direction, q);
 | 
						|
 | 
						|
	if (u > 0 && v > 0 && u + v > 1) {
 | 
						|
		float t = (u + v - 1) / 2;
 | 
						|
		du = u - t;
 | 
						|
		dv = v - t;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		if      (u < 0) du = u;
 | 
						|
		else if (u > 1) du = u - 1;
 | 
						|
		else            du = 0.0f;
 | 
						|
 | 
						|
		if      (v < 0) dv = v;
 | 
						|
		else if (v > 1) dv = v - 1;
 | 
						|
		else            dv = 0.0f;
 | 
						|
	}
 | 
						|
 | 
						|
	mul_v3_fl(e1, du);
 | 
						|
	mul_v3_fl(e2, dv);
 | 
						|
 | 
						|
	if (len_squared_v3(e1) + len_squared_v3(e2) > threshold * threshold) {
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	if (r_uv) {
 | 
						|
		r_uv[0] = u;
 | 
						|
		r_uv[1] = v;
 | 
						|
	}
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
bool isect_ray_seg_v2(
 | 
						|
        const float ray_origin[2], const float ray_direction[2],
 | 
						|
        const float v0[2], const float v1[2],
 | 
						|
        float *r_lambda, float *r_u)
 | 
						|
{
 | 
						|
	float v0_local[2], v1_local[2];
 | 
						|
	sub_v2_v2v2(v0_local, v0, ray_origin);
 | 
						|
	sub_v2_v2v2(v1_local, v1, ray_origin);
 | 
						|
 | 
						|
	float s10[2];
 | 
						|
	float det;
 | 
						|
 | 
						|
	sub_v2_v2v2(s10, v1_local, v0_local);
 | 
						|
 | 
						|
	det = cross_v2v2(ray_direction, s10);
 | 
						|
	if (det != 0.0f) {
 | 
						|
		const float v = cross_v2v2(v0_local, v1_local);
 | 
						|
		float p[2] = {(ray_direction[0] * v) / det, (ray_direction[1] * v) / det};
 | 
						|
 | 
						|
		const float t = (dot_v2v2(p, ray_direction) / dot_v2v2(ray_direction, ray_direction));
 | 
						|
		if ((t >= 0.0f) == 0) {
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
 | 
						|
		float h[2];
 | 
						|
		sub_v2_v2v2(h, v1_local, p);
 | 
						|
		const float u = (dot_v2v2(s10, h) / dot_v2v2(s10, s10));
 | 
						|
		if ((u >= 0.0f && u <= 1.0f) == 0) {
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
 | 
						|
		if (r_lambda) {
 | 
						|
			*r_lambda = t;
 | 
						|
		}
 | 
						|
		if (r_u) {
 | 
						|
			*r_u = u;
 | 
						|
		}
 | 
						|
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Check if a point is behind all planes.
 | 
						|
 */
 | 
						|
bool isect_point_planes_v3(float (*planes)[4], int totplane, const float p[3])
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < totplane; i++) {
 | 
						|
		if (plane_point_side_v3(planes[i], p) > 0.0f) {
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Intersect line/plane.
 | 
						|
 *
 | 
						|
 * \param r_isect_co The intersection point.
 | 
						|
 * \param l1 The first point of the line.
 | 
						|
 * \param l2 The second point of the line.
 | 
						|
 * \param plane_co A point on the plane to intersect with.
 | 
						|
 * \param plane_no The direction of the plane (does not need to be normalized).
 | 
						|
 *
 | 
						|
 * \note #line_plane_factor_v3() shares logic.
 | 
						|
 */
 | 
						|
bool isect_line_plane_v3(
 | 
						|
        float r_isect_co[3],
 | 
						|
        const float l1[3], const float l2[3],
 | 
						|
        const float plane_co[3], const float plane_no[3])
 | 
						|
{
 | 
						|
	float u[3], h[3];
 | 
						|
	float dot;
 | 
						|
 | 
						|
	sub_v3_v3v3(u, l2, l1);
 | 
						|
	sub_v3_v3v3(h, l1, plane_co);
 | 
						|
	dot = dot_v3v3(plane_no, u);
 | 
						|
 | 
						|
	if (fabsf(dot) > FLT_EPSILON) {
 | 
						|
		float lambda = -dot_v3v3(plane_no, h) / dot;
 | 
						|
		madd_v3_v3v3fl(r_isect_co, l1, u, lambda);
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* The segment is parallel to plane */
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Intersect three planes, return the point where all 3 meet.
 | 
						|
 * See Graphics Gems 1 pg 305
 | 
						|
 *
 | 
						|
 * \param plane_a, plane_b, plane_c: Planes.
 | 
						|
 * \param r_isect_co: The resulting intersection point.
 | 
						|
 */
 | 
						|
bool isect_plane_plane_plane_v3(
 | 
						|
        const float plane_a[4], const float plane_b[4], const float plane_c[4],
 | 
						|
        float r_isect_co[3])
 | 
						|
{
 | 
						|
	float det;
 | 
						|
 | 
						|
	det = determinant_m3(UNPACK3(plane_a), UNPACK3(plane_b), UNPACK3(plane_c));
 | 
						|
 | 
						|
	if (det != 0.0f) {
 | 
						|
		float tmp[3];
 | 
						|
 | 
						|
		/* (plane_b.xyz.cross(plane_c.xyz) * -plane_a[3] +
 | 
						|
		 *  plane_c.xyz.cross(plane_a.xyz) * -plane_b[3] +
 | 
						|
		 *  plane_a.xyz.cross(plane_b.xyz) * -plane_c[3]) / det; */
 | 
						|
 | 
						|
		cross_v3_v3v3(tmp, plane_c, plane_b);
 | 
						|
		mul_v3_v3fl(r_isect_co, tmp, plane_a[3]);
 | 
						|
 | 
						|
		cross_v3_v3v3(tmp, plane_a, plane_c);
 | 
						|
		madd_v3_v3fl(r_isect_co, tmp, plane_b[3]);
 | 
						|
 | 
						|
		cross_v3_v3v3(tmp, plane_b, plane_a);
 | 
						|
		madd_v3_v3fl(r_isect_co, tmp, plane_c[3]);
 | 
						|
 | 
						|
		mul_v3_fl(r_isect_co, 1.0f / det);
 | 
						|
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Intersect two planes, return a point on the intersection and a vector
 | 
						|
 * that runs on the direction of the intersection.
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * \note this is a slightly reduced version of #isect_plane_plane_plane_v3
 | 
						|
 *
 | 
						|
 * \param plane_a, plane_b: Planes.
 | 
						|
 * \param r_isect_co: The resulting intersection point.
 | 
						|
 * \param r_isect_no: The resulting vector of the intersection.
 | 
						|
 *
 | 
						|
 * \note \a r_isect_no isn't unit length.
 | 
						|
 */
 | 
						|
bool isect_plane_plane_v3(
 | 
						|
        const float plane_a[4], const float plane_b[4],
 | 
						|
        float r_isect_co[3], float r_isect_no[3])
 | 
						|
{
 | 
						|
	float det, plane_c[3];
 | 
						|
 | 
						|
	/* direction is simply the cross product */
 | 
						|
	cross_v3_v3v3(plane_c, plane_a, plane_b);
 | 
						|
 | 
						|
	/* in this case we don't need to use 'determinant_m3' */
 | 
						|
	det = len_squared_v3(plane_c);
 | 
						|
 | 
						|
	if (det != 0.0f) {
 | 
						|
		float tmp[3];
 | 
						|
 | 
						|
		/* (plane_b.xyz.cross(plane_c.xyz) * -plane_a[3] +
 | 
						|
		 *  plane_c.xyz.cross(plane_a.xyz) * -plane_b[3]) / det; */
 | 
						|
		cross_v3_v3v3(tmp, plane_c, plane_b);
 | 
						|
		mul_v3_v3fl(r_isect_co, tmp, plane_a[3]);
 | 
						|
 | 
						|
		cross_v3_v3v3(tmp, plane_a, plane_c);
 | 
						|
		madd_v3_v3fl(r_isect_co, tmp, plane_b[3]);
 | 
						|
 | 
						|
		mul_v3_fl(r_isect_co, 1.0f / det);
 | 
						|
 | 
						|
		copy_v3_v3(r_isect_no, plane_c);
 | 
						|
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Intersect two triangles.
 | 
						|
 *
 | 
						|
 * \param r_i1, r_i2: Optional arguments to retrieve the overlapping edge between the 2 triangles.
 | 
						|
 * \return true when the triangles intersect.
 | 
						|
 *
 | 
						|
 * \note intersections between coplanar triangles are currently undetected.
 | 
						|
 */
 | 
						|
bool isect_tri_tri_epsilon_v3(
 | 
						|
        const float t_a0[3], const float t_a1[3], const float t_a2[3],
 | 
						|
        const float t_b0[3], const float t_b1[3], const float t_b2[3],
 | 
						|
        float r_i1[3], float r_i2[3],
 | 
						|
        const float epsilon)
 | 
						|
{
 | 
						|
	const float *tri_pair[2][3] = {{t_a0, t_a1, t_a2}, {t_b0, t_b1, t_b2}};
 | 
						|
	float plane_a[4], plane_b[4];
 | 
						|
	float plane_co[3], plane_no[3];
 | 
						|
 | 
						|
	BLI_assert((r_i1 != NULL) == (r_i2 != NULL));
 | 
						|
 | 
						|
	/* normalizing is needed for small triangles T46007 */
 | 
						|
	normal_tri_v3(plane_a, UNPACK3(tri_pair[0]));
 | 
						|
	normal_tri_v3(plane_b, UNPACK3(tri_pair[1]));
 | 
						|
 | 
						|
	plane_a[3] = -dot_v3v3(plane_a, t_a0);
 | 
						|
	plane_b[3] = -dot_v3v3(plane_b, t_b0);
 | 
						|
 | 
						|
	if (isect_plane_plane_v3(plane_a, plane_b, plane_co, plane_no) &&
 | 
						|
	    (normalize_v3(plane_no) > epsilon))
 | 
						|
	{
 | 
						|
		/**
 | 
						|
		 * Implementation note: its simpler to project the triangles onto the intersection plane
 | 
						|
		 * before intersecting their edges with the ray, defined by 'isect_plane_plane_v3'.
 | 
						|
		 * This way we can use 'line_point_factor_v3_ex' to see if an edge crosses 'co_proj',
 | 
						|
		 * then use the factor to calculate the world-space point.
 | 
						|
		 */
 | 
						|
		struct {
 | 
						|
			float min, max;
 | 
						|
		} range[2] = {{FLT_MAX, -FLT_MAX}, {FLT_MAX, -FLT_MAX}};
 | 
						|
		int t;
 | 
						|
		float co_proj[3];
 | 
						|
 | 
						|
		closest_to_plane3_normalized_v3(co_proj, plane_no, plane_co);
 | 
						|
 | 
						|
		/* For both triangles, find the overlap with the line defined by the ray [co_proj, plane_no].
 | 
						|
		 * When the ranges overlap we know the triangles do too. */
 | 
						|
		for (t = 0; t < 2; t++) {
 | 
						|
			int j, j_prev;
 | 
						|
			float tri_proj[3][3];
 | 
						|
 | 
						|
			closest_to_plane3_normalized_v3(tri_proj[0], plane_no, tri_pair[t][0]);
 | 
						|
			closest_to_plane3_normalized_v3(tri_proj[1], plane_no, tri_pair[t][1]);
 | 
						|
			closest_to_plane3_normalized_v3(tri_proj[2], plane_no, tri_pair[t][2]);
 | 
						|
 | 
						|
			for (j = 0, j_prev = 2; j < 3; j_prev = j++) {
 | 
						|
				/* note that its important to have a very small nonzero epsilon here
 | 
						|
				 * otherwise this fails for very small faces.
 | 
						|
				 * However if its too small, large adjacent faces will count as intersecting */
 | 
						|
				const float edge_fac = line_point_factor_v3_ex(co_proj, tri_proj[j_prev], tri_proj[j], 1e-10f, -1.0f);
 | 
						|
				/* ignore collinear lines, they are either an edge shared between 2 tri's
 | 
						|
				 * (which runs along [co_proj, plane_no], but can be safely ignored).
 | 
						|
				 *
 | 
						|
				 * or a collinear edge placed away from the ray - which we don't intersect with & can ignore. */
 | 
						|
				if (UNLIKELY(edge_fac == -1.0f)) {
 | 
						|
					/* pass */
 | 
						|
				}
 | 
						|
				else if (edge_fac > 0.0f && edge_fac < 1.0f) {
 | 
						|
					float ix_tri[3];
 | 
						|
					float span_fac;
 | 
						|
 | 
						|
					interp_v3_v3v3(ix_tri, tri_pair[t][j_prev], tri_pair[t][j], edge_fac);
 | 
						|
					/* the actual distance, since 'plane_no' is normalized */
 | 
						|
					span_fac = dot_v3v3(plane_no, ix_tri);
 | 
						|
 | 
						|
					range[t].min = min_ff(range[t].min, span_fac);
 | 
						|
					range[t].max = max_ff(range[t].max, span_fac);
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			if (range[t].min == FLT_MAX) {
 | 
						|
				return false;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (((range[0].min > range[1].max) ||
 | 
						|
		     (range[0].max < range[1].min)) == 0)
 | 
						|
		{
 | 
						|
			if (r_i1 && r_i2) {
 | 
						|
				project_plane_v3_v3v3(plane_co, plane_co, plane_no);
 | 
						|
				madd_v3_v3v3fl(r_i1, plane_co, plane_no, max_ff(range[0].min, range[1].min));
 | 
						|
				madd_v3_v3v3fl(r_i2, plane_co, plane_no, min_ff(range[0].max, range[1].max));
 | 
						|
			}
 | 
						|
 | 
						|
			return true;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/* Adapted from the paper by Kasper Fauerby */
 | 
						|
 | 
						|
/* "Improved Collision detection and Response" */
 | 
						|
static bool getLowestRoot(const float a, const float b, const float c, const float maxR, float *root)
 | 
						|
{
 | 
						|
	/* Check if a solution exists */
 | 
						|
	const float determinant = b * b - 4.0f * a * c;
 | 
						|
 | 
						|
	/* If determinant is negative it means no solutions. */
 | 
						|
	if (determinant >= 0.0f) {
 | 
						|
		/* calculate the two roots: (if determinant == 0 then
 | 
						|
		 * x1==x2 but lets disregard that slight optimization) */
 | 
						|
		const float sqrtD = sqrtf(determinant);
 | 
						|
		float r1 = (-b - sqrtD) / (2.0f * a);
 | 
						|
		float r2 = (-b + sqrtD) / (2.0f * a);
 | 
						|
 | 
						|
		/* Sort so x1 <= x2 */
 | 
						|
		if (r1 > r2)
 | 
						|
			SWAP(float, r1, r2);
 | 
						|
 | 
						|
		/* Get lowest root: */
 | 
						|
		if (r1 > 0.0f && r1 < maxR) {
 | 
						|
			*root = r1;
 | 
						|
			return true;
 | 
						|
		}
 | 
						|
 | 
						|
		/* It is possible that we want x2 - this can happen */
 | 
						|
		/* if x1 < 0 */
 | 
						|
		if (r2 > 0.0f && r2 < maxR) {
 | 
						|
			*root = r2;
 | 
						|
			return true;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/* No (valid) solutions */
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool isect_sweeping_sphere_tri_v3(const float p1[3], const float p2[3], const float radius,
 | 
						|
                                  const float v0[3], const float v1[3], const float v2[3],
 | 
						|
                                  float *r_lambda, float ipoint[3])
 | 
						|
{
 | 
						|
	float e1[3], e2[3], e3[3], point[3], vel[3], /*dist[3],*/ nor[3], temp[3], bv[3];
 | 
						|
	float a, b, c, d, e, x, y, z, radius2 = radius * radius;
 | 
						|
	float elen2, edotv, edotbv, nordotv;
 | 
						|
	float newLambda;
 | 
						|
	bool found_by_sweep = false;
 | 
						|
 | 
						|
	sub_v3_v3v3(e1, v1, v0);
 | 
						|
	sub_v3_v3v3(e2, v2, v0);
 | 
						|
	sub_v3_v3v3(vel, p2, p1);
 | 
						|
 | 
						|
	/*---test plane of tri---*/
 | 
						|
	cross_v3_v3v3(nor, e1, e2);
 | 
						|
	normalize_v3(nor);
 | 
						|
 | 
						|
	/* flip normal */
 | 
						|
	if (dot_v3v3(nor, vel) > 0.0f) negate_v3(nor);
 | 
						|
 | 
						|
	a = dot_v3v3(p1, nor) - dot_v3v3(v0, nor);
 | 
						|
	nordotv = dot_v3v3(nor, vel);
 | 
						|
 | 
						|
	if (fabsf(nordotv) < 0.000001f) {
 | 
						|
		if (fabsf(a) >= radius) {
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		float t0 = (-a + radius) / nordotv;
 | 
						|
		float t1 = (-a - radius) / nordotv;
 | 
						|
 | 
						|
		if (t0 > t1)
 | 
						|
			SWAP(float, t0, t1);
 | 
						|
 | 
						|
		if (t0 > 1.0f || t1 < 0.0f) return false;
 | 
						|
 | 
						|
		/* clamp to [0, 1] */
 | 
						|
		CLAMP(t0, 0.0f, 1.0f);
 | 
						|
		CLAMP(t1, 0.0f, 1.0f);
 | 
						|
 | 
						|
		/*---test inside of tri---*/
 | 
						|
		/* plane intersection point */
 | 
						|
 | 
						|
		point[0] = p1[0] + vel[0] * t0 - nor[0] * radius;
 | 
						|
		point[1] = p1[1] + vel[1] * t0 - nor[1] * radius;
 | 
						|
		point[2] = p1[2] + vel[2] * t0 - nor[2] * radius;
 | 
						|
 | 
						|
 | 
						|
		/* is the point in the tri? */
 | 
						|
		a = dot_v3v3(e1, e1);
 | 
						|
		b = dot_v3v3(e1, e2);
 | 
						|
		c = dot_v3v3(e2, e2);
 | 
						|
 | 
						|
		sub_v3_v3v3(temp, point, v0);
 | 
						|
		d = dot_v3v3(temp, e1);
 | 
						|
		e = dot_v3v3(temp, e2);
 | 
						|
 | 
						|
		x = d * c - e * b;
 | 
						|
		y = e * a - d * b;
 | 
						|
		z = x + y - (a * c - b * b);
 | 
						|
 | 
						|
 | 
						|
		if (z <= 0.0f && (x >= 0.0f && y >= 0.0f)) {
 | 
						|
			//(((unsigned int)z)& ~(((unsigned int)x)|((unsigned int)y))) & 0x80000000) {
 | 
						|
			*r_lambda = t0;
 | 
						|
			copy_v3_v3(ipoint, point);
 | 
						|
			return true;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	*r_lambda = 1.0f;
 | 
						|
 | 
						|
	/*---test points---*/
 | 
						|
	a = dot_v3v3(vel, vel);
 | 
						|
 | 
						|
	/*v0*/
 | 
						|
	sub_v3_v3v3(temp, p1, v0);
 | 
						|
	b = 2.0f * dot_v3v3(vel, temp);
 | 
						|
	c = dot_v3v3(temp, temp) - radius2;
 | 
						|
 | 
						|
	if (getLowestRoot(a, b, c, *r_lambda, r_lambda)) {
 | 
						|
		copy_v3_v3(ipoint, v0);
 | 
						|
		found_by_sweep = true;
 | 
						|
	}
 | 
						|
 | 
						|
	/*v1*/
 | 
						|
	sub_v3_v3v3(temp, p1, v1);
 | 
						|
	b = 2.0f * dot_v3v3(vel, temp);
 | 
						|
	c = dot_v3v3(temp, temp) - radius2;
 | 
						|
 | 
						|
	if (getLowestRoot(a, b, c, *r_lambda, r_lambda)) {
 | 
						|
		copy_v3_v3(ipoint, v1);
 | 
						|
		found_by_sweep = true;
 | 
						|
	}
 | 
						|
 | 
						|
	/*v2*/
 | 
						|
	sub_v3_v3v3(temp, p1, v2);
 | 
						|
	b = 2.0f * dot_v3v3(vel, temp);
 | 
						|
	c = dot_v3v3(temp, temp) - radius2;
 | 
						|
 | 
						|
	if (getLowestRoot(a, b, c, *r_lambda, r_lambda)) {
 | 
						|
		copy_v3_v3(ipoint, v2);
 | 
						|
		found_by_sweep = true;
 | 
						|
	}
 | 
						|
 | 
						|
	/*---test edges---*/
 | 
						|
	sub_v3_v3v3(e3, v2, v1);  /* wasnt yet calculated */
 | 
						|
 | 
						|
 | 
						|
	/*e1*/
 | 
						|
	sub_v3_v3v3(bv, v0, p1);
 | 
						|
 | 
						|
	elen2 = dot_v3v3(e1, e1);
 | 
						|
	edotv = dot_v3v3(e1, vel);
 | 
						|
	edotbv = dot_v3v3(e1, bv);
 | 
						|
 | 
						|
	a = elen2 * (-dot_v3v3(vel, vel)) + edotv * edotv;
 | 
						|
	b = 2.0f * (elen2 * dot_v3v3(vel, bv) - edotv * edotbv);
 | 
						|
	c = elen2 * (radius2 - dot_v3v3(bv, bv)) + edotbv * edotbv;
 | 
						|
 | 
						|
	if (getLowestRoot(a, b, c, *r_lambda, &newLambda)) {
 | 
						|
		e = (edotv * newLambda - edotbv) / elen2;
 | 
						|
 | 
						|
		if (e >= 0.0f && e <= 1.0f) {
 | 
						|
			*r_lambda = newLambda;
 | 
						|
			copy_v3_v3(ipoint, e1);
 | 
						|
			mul_v3_fl(ipoint, e);
 | 
						|
			add_v3_v3(ipoint, v0);
 | 
						|
			found_by_sweep = true;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*e2*/
 | 
						|
	/*bv is same*/
 | 
						|
	elen2 = dot_v3v3(e2, e2);
 | 
						|
	edotv = dot_v3v3(e2, vel);
 | 
						|
	edotbv = dot_v3v3(e2, bv);
 | 
						|
 | 
						|
	a = elen2 * (-dot_v3v3(vel, vel)) + edotv * edotv;
 | 
						|
	b = 2.0f * (elen2 * dot_v3v3(vel, bv) - edotv * edotbv);
 | 
						|
	c = elen2 * (radius2 - dot_v3v3(bv, bv)) + edotbv * edotbv;
 | 
						|
 | 
						|
	if (getLowestRoot(a, b, c, *r_lambda, &newLambda)) {
 | 
						|
		e = (edotv * newLambda - edotbv) / elen2;
 | 
						|
 | 
						|
		if (e >= 0.0f && e <= 1.0f) {
 | 
						|
			*r_lambda = newLambda;
 | 
						|
			copy_v3_v3(ipoint, e2);
 | 
						|
			mul_v3_fl(ipoint, e);
 | 
						|
			add_v3_v3(ipoint, v0);
 | 
						|
			found_by_sweep = true;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*e3*/
 | 
						|
	/* sub_v3_v3v3(bv, v0, p1); */ /* UNUSED */
 | 
						|
	/* elen2 = dot_v3v3(e1, e1); */ /* UNUSED */
 | 
						|
	/* edotv = dot_v3v3(e1, vel); */ /* UNUSED */
 | 
						|
	/* edotbv = dot_v3v3(e1, bv); */ /* UNUSED */
 | 
						|
 | 
						|
	sub_v3_v3v3(bv, v1, p1);
 | 
						|
	elen2 = dot_v3v3(e3, e3);
 | 
						|
	edotv = dot_v3v3(e3, vel);
 | 
						|
	edotbv = dot_v3v3(e3, bv);
 | 
						|
 | 
						|
	a = elen2 * (-dot_v3v3(vel, vel)) + edotv * edotv;
 | 
						|
	b = 2.0f * (elen2 * dot_v3v3(vel, bv) - edotv * edotbv);
 | 
						|
	c = elen2 * (radius2 - dot_v3v3(bv, bv)) + edotbv * edotbv;
 | 
						|
 | 
						|
	if (getLowestRoot(a, b, c, *r_lambda, &newLambda)) {
 | 
						|
		e = (edotv * newLambda - edotbv) / elen2;
 | 
						|
 | 
						|
		if (e >= 0.0f && e <= 1.0f) {
 | 
						|
			*r_lambda = newLambda;
 | 
						|
			copy_v3_v3(ipoint, e3);
 | 
						|
			mul_v3_fl(ipoint, e);
 | 
						|
			add_v3_v3(ipoint, v1);
 | 
						|
			found_by_sweep = true;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	return found_by_sweep;
 | 
						|
}
 | 
						|
 | 
						|
bool isect_axial_line_segment_tri_v3(
 | 
						|
        const int axis, const float p1[3], const float p2[3],
 | 
						|
        const float v0[3], const float v1[3], const float v2[3], float *r_lambda)
 | 
						|
{
 | 
						|
	const float epsilon = 0.000001f;
 | 
						|
	float p[3], e1[3], e2[3];
 | 
						|
	float u, v, f;
 | 
						|
	int a0 = axis, a1 = (axis + 1) % 3, a2 = (axis + 2) % 3;
 | 
						|
 | 
						|
#if 0
 | 
						|
	return isect_line_segment_tri_v3(p1, p2, v0, v1, v2, lambda);
 | 
						|
 | 
						|
	/* first a simple bounding box test */
 | 
						|
	if (min_fff(v0[a1], v1[a1], v2[a1]) > p1[a1]) return false;
 | 
						|
	if (min_fff(v0[a2], v1[a2], v2[a2]) > p1[a2]) return false;
 | 
						|
	if (max_fff(v0[a1], v1[a1], v2[a1]) < p1[a1]) return false;
 | 
						|
	if (max_fff(v0[a2], v1[a2], v2[a2]) < p1[a2]) return false;
 | 
						|
 | 
						|
	/* then a full intersection test */
 | 
						|
#endif
 | 
						|
 | 
						|
	sub_v3_v3v3(e1, v1, v0);
 | 
						|
	sub_v3_v3v3(e2, v2, v0);
 | 
						|
	sub_v3_v3v3(p, v0, p1);
 | 
						|
 | 
						|
	f = (e2[a1] * e1[a2] - e2[a2] * e1[a1]);
 | 
						|
	if ((f > -epsilon) && (f < epsilon)) return false;
 | 
						|
 | 
						|
	v = (p[a2] * e1[a1] - p[a1] * e1[a2]) / f;
 | 
						|
	if ((v < 0.0f) || (v > 1.0f)) return false;
 | 
						|
 | 
						|
	f = e1[a1];
 | 
						|
	if ((f > -epsilon) && (f < epsilon)) {
 | 
						|
		f = e1[a2];
 | 
						|
		if ((f > -epsilon) && (f < epsilon)) return false;
 | 
						|
		u = (-p[a2] - v * e2[a2]) / f;
 | 
						|
	}
 | 
						|
	else
 | 
						|
		u = (-p[a1] - v * e2[a1]) / f;
 | 
						|
 | 
						|
	if ((u < 0.0f) || ((u + v) > 1.0f)) return false;
 | 
						|
 | 
						|
	*r_lambda = (p[a0] + u * e1[a0] + v * e2[a0]) / (p2[a0] - p1[a0]);
 | 
						|
 | 
						|
	if ((*r_lambda < 0.0f) || (*r_lambda > 1.0f)) return false;
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * \return The number of point of interests
 | 
						|
 * 0 - lines are collinear
 | 
						|
 * 1 - lines are coplanar, i1 is set to intersection
 | 
						|
 * 2 - i1 and i2 are the nearest points on line 1 (v1, v2) and line 2 (v3, v4) respectively
 | 
						|
 */
 | 
						|
int isect_line_line_epsilon_v3(
 | 
						|
        const float v1[3], const float v2[3],
 | 
						|
        const float v3[3], const float v4[3],
 | 
						|
        float r_i1[3], float r_i2[3],
 | 
						|
        const float epsilon)
 | 
						|
{
 | 
						|
	float a[3], b[3], c[3], ab[3], cb[3];
 | 
						|
	float d, div;
 | 
						|
 | 
						|
	sub_v3_v3v3(c, v3, v1);
 | 
						|
	sub_v3_v3v3(a, v2, v1);
 | 
						|
	sub_v3_v3v3(b, v4, v3);
 | 
						|
 | 
						|
	cross_v3_v3v3(ab, a, b);
 | 
						|
	d = dot_v3v3(c, ab);
 | 
						|
	div = dot_v3v3(ab, ab);
 | 
						|
 | 
						|
	/* important not to use an epsilon here, see: T45919 */
 | 
						|
	/* test zero length line */
 | 
						|
	if (UNLIKELY(div == 0.0f)) {
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	/* test if the two lines are coplanar */
 | 
						|
	else if (UNLIKELY(fabsf(d) <= epsilon)) {
 | 
						|
		cross_v3_v3v3(cb, c, b);
 | 
						|
 | 
						|
		mul_v3_fl(a, dot_v3v3(cb, ab) / div);
 | 
						|
		add_v3_v3v3(r_i1, v1, a);
 | 
						|
		copy_v3_v3(r_i2, r_i1);
 | 
						|
 | 
						|
		return 1; /* one intersection only */
 | 
						|
	}
 | 
						|
	/* if not */
 | 
						|
	else {
 | 
						|
		float n[3], t[3];
 | 
						|
		float v3t[3], v4t[3];
 | 
						|
		sub_v3_v3v3(t, v1, v3);
 | 
						|
 | 
						|
		/* offset between both plane where the lines lies */
 | 
						|
		cross_v3_v3v3(n, a, b);
 | 
						|
		project_v3_v3v3(t, t, n);
 | 
						|
 | 
						|
		/* for the first line, offset the second line until it is coplanar */
 | 
						|
		add_v3_v3v3(v3t, v3, t);
 | 
						|
		add_v3_v3v3(v4t, v4, t);
 | 
						|
 | 
						|
		sub_v3_v3v3(c, v3t, v1);
 | 
						|
		sub_v3_v3v3(a, v2, v1);
 | 
						|
		sub_v3_v3v3(b, v4t, v3t);
 | 
						|
 | 
						|
		cross_v3_v3v3(ab, a, b);
 | 
						|
		cross_v3_v3v3(cb, c, b);
 | 
						|
 | 
						|
		mul_v3_fl(a, dot_v3v3(cb, ab) / dot_v3v3(ab, ab));
 | 
						|
		add_v3_v3v3(r_i1, v1, a);
 | 
						|
 | 
						|
		/* for the second line, just substract the offset from the first intersection point */
 | 
						|
		sub_v3_v3v3(r_i2, r_i1, t);
 | 
						|
 | 
						|
		return 2; /* two nearest points */
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int isect_line_line_v3(
 | 
						|
        const float v1[3], const float v2[3],
 | 
						|
        const float v3[3], const float v4[3],
 | 
						|
        float r_i1[3], float r_i2[3])
 | 
						|
{
 | 
						|
	const float epsilon = 0.000001f;
 | 
						|
	return isect_line_line_epsilon_v3(v1, v2, v3, v4, r_i1, r_i2, epsilon);
 | 
						|
}
 | 
						|
 | 
						|
/** Intersection point strictly between the two lines
 | 
						|
 * \return false when no intersection is found
 | 
						|
 */
 | 
						|
bool isect_line_line_strict_v3(const float v1[3], const float v2[3],
 | 
						|
                               const float v3[3], const float v4[3],
 | 
						|
                               float vi[3], float *r_lambda)
 | 
						|
{
 | 
						|
	const float epsilon = 0.000001f;
 | 
						|
	float a[3], b[3], c[3], ab[3], cb[3], ca[3];
 | 
						|
	float d, div;
 | 
						|
 | 
						|
	sub_v3_v3v3(c, v3, v1);
 | 
						|
	sub_v3_v3v3(a, v2, v1);
 | 
						|
	sub_v3_v3v3(b, v4, v3);
 | 
						|
 | 
						|
	cross_v3_v3v3(ab, a, b);
 | 
						|
	d = dot_v3v3(c, ab);
 | 
						|
	div = dot_v3v3(ab, ab);
 | 
						|
 | 
						|
	/* important not to use an epsilon here, see: T45919 */
 | 
						|
	/* test zero length line */
 | 
						|
	if (UNLIKELY(div == 0.0f)) {
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
	/* test if the two lines are coplanar */
 | 
						|
	else if (UNLIKELY(fabsf(d) < epsilon)) {
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		float f1, f2;
 | 
						|
		cross_v3_v3v3(cb, c, b);
 | 
						|
		cross_v3_v3v3(ca, c, a);
 | 
						|
 | 
						|
		f1 = dot_v3v3(cb, ab) / div;
 | 
						|
		f2 = dot_v3v3(ca, ab) / div;
 | 
						|
 | 
						|
		if (f1 >= 0 && f1 <= 1 &&
 | 
						|
		    f2 >= 0 && f2 <= 1)
 | 
						|
		{
 | 
						|
			mul_v3_fl(a, f1);
 | 
						|
			add_v3_v3v3(vi, v1, a);
 | 
						|
 | 
						|
			if (r_lambda) *r_lambda = f1;
 | 
						|
 | 
						|
			return true; /* intersection found */
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
bool isect_aabb_aabb_v3(const float min1[3], const float max1[3], const float min2[3], const float max2[3])
 | 
						|
{
 | 
						|
	return (min1[0] < max2[0] && min1[1] < max2[1] && min1[2] < max2[2] &&
 | 
						|
	        min2[0] < max1[0] && min2[1] < max1[1] && min2[2] < max1[2]);
 | 
						|
}
 | 
						|
 | 
						|
void isect_ray_aabb_v3_precalc(
 | 
						|
        struct IsectRayAABB_Precalc *data,
 | 
						|
        const float ray_origin[3], const float ray_direction[3])
 | 
						|
{
 | 
						|
	copy_v3_v3(data->ray_origin, ray_origin);
 | 
						|
 | 
						|
	data->ray_inv_dir[0] = 1.0f / ray_direction[0];
 | 
						|
	data->ray_inv_dir[1] = 1.0f / ray_direction[1];
 | 
						|
	data->ray_inv_dir[2] = 1.0f / ray_direction[2];
 | 
						|
 | 
						|
	data->sign[0] = data->ray_inv_dir[0] < 0.0f;
 | 
						|
	data->sign[1] = data->ray_inv_dir[1] < 0.0f;
 | 
						|
	data->sign[2] = data->ray_inv_dir[2] < 0.0f;
 | 
						|
}
 | 
						|
 | 
						|
/* Adapted from http://www.gamedev.net/community/forums/topic.asp?topic_id=459973 */
 | 
						|
bool isect_ray_aabb_v3(
 | 
						|
        const struct IsectRayAABB_Precalc *data, const float bb_min[3],
 | 
						|
        const float bb_max[3], float *tmin_out)
 | 
						|
{
 | 
						|
	float bbox[2][3];
 | 
						|
 | 
						|
	copy_v3_v3(bbox[0], bb_min);
 | 
						|
	copy_v3_v3(bbox[1], bb_max);
 | 
						|
 | 
						|
	float tmin = (bbox[data->sign[0]][0] - data->ray_origin[0]) * data->ray_inv_dir[0];
 | 
						|
	float tmax = (bbox[1 - data->sign[0]][0] - data->ray_origin[0]) * data->ray_inv_dir[0];
 | 
						|
 | 
						|
	const float tymin = (bbox[data->sign[1]][1] - data->ray_origin[1]) * data->ray_inv_dir[1];
 | 
						|
	const float tymax = (bbox[1 - data->sign[1]][1] - data->ray_origin[1]) * data->ray_inv_dir[1];
 | 
						|
 | 
						|
	if ((tmin > tymax) || (tymin > tmax))
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (tymin > tmin)
 | 
						|
		tmin = tymin;
 | 
						|
 | 
						|
	if (tymax < tmax)
 | 
						|
		tmax = tymax;
 | 
						|
 | 
						|
	const float tzmin = (bbox[data->sign[2]][2] - data->ray_origin[2]) * data->ray_inv_dir[2];
 | 
						|
	const float tzmax = (bbox[1 - data->sign[2]][2] - data->ray_origin[2]) * data->ray_inv_dir[2];
 | 
						|
 | 
						|
	if ((tmin > tzmax) || (tzmin > tmax))
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (tzmin > tmin)
 | 
						|
		tmin = tzmin;
 | 
						|
 | 
						|
	/* Note: tmax does not need to be updated since we don't use it
 | 
						|
	 * keeping this here for future reference - jwilkins */
 | 
						|
	//if (tzmax < tmax) tmax = tzmax;
 | 
						|
 | 
						|
	if (tmin_out)
 | 
						|
		(*tmin_out) = tmin;
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
void dist_squared_ray_to_aabb_v3_precalc(
 | 
						|
        struct NearestRayToAABB_Precalc *data,
 | 
						|
        const float ray_origin[3], const float ray_direction[3])
 | 
						|
{
 | 
						|
	float dir_sq[3];
 | 
						|
 | 
						|
	for (int i = 0; i < 3; i++) {
 | 
						|
		data->ray_origin[i] = ray_origin[i];
 | 
						|
		data->ray_direction[i] = ray_direction[i];
 | 
						|
		data->ray_inv_dir[i] = (data->ray_direction[i] != 0.0f) ? (1.0f / data->ray_direction[i]) : FLT_MAX;
 | 
						|
		/* It has to be a function of `ray_inv_dir`,
 | 
						|
		 * since the division of 1 by 0.0f, can be -inf or +inf */
 | 
						|
		data->sign[i] = (data->ray_inv_dir[i] < 0.0f);
 | 
						|
 | 
						|
		dir_sq[i] = SQUARE(data->ray_direction[i]);
 | 
						|
	}
 | 
						|
 | 
						|
	/* `diag_sq` Length square of each face diagonal */
 | 
						|
	float diag_sq[3] = {
 | 
						|
		dir_sq[1] + dir_sq[2],
 | 
						|
		dir_sq[0] + dir_sq[2],
 | 
						|
		dir_sq[0] + dir_sq[1],
 | 
						|
	};
 | 
						|
	data->idiag_sq[0] = (diag_sq[0] > FLT_EPSILON) ? (1.0f / diag_sq[0]) : FLT_MAX;
 | 
						|
	data->idiag_sq[1] = (diag_sq[1] > FLT_EPSILON) ? (1.0f / diag_sq[1]) : FLT_MAX;
 | 
						|
	data->idiag_sq[2] = (diag_sq[2] > FLT_EPSILON) ? (1.0f / diag_sq[2]) : FLT_MAX;
 | 
						|
 | 
						|
	data->cdot_axis[0] = data->ray_direction[0] * data->idiag_sq[0];
 | 
						|
	data->cdot_axis[1] = data->ray_direction[1] * data->idiag_sq[1];
 | 
						|
	data->cdot_axis[2] = data->ray_direction[2] * data->idiag_sq[2];
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Returns the squared distance from a ray to a bound-box `AABB`.
 | 
						|
 * It is based on `fast_ray_nearest_hit` solution to obtain
 | 
						|
 * the coordinates of the nearest edge of Bound Box to the ray
 | 
						|
 */
 | 
						|
float dist_squared_ray_to_aabb_v3(
 | 
						|
        const struct NearestRayToAABB_Precalc *data,
 | 
						|
        const float bb_min[3], const float bb_max[3],
 | 
						|
        bool r_axis_closest[3])
 | 
						|
{
 | 
						|
	/* `tmin` is a vector that has the smaller distances to each of the
 | 
						|
	 * infinite planes of the `AABB` faces (hit in nearest face X plane,
 | 
						|
	 * nearest face Y plane and nearest face Z plane) */
 | 
						|
	float local_bvmin[3], local_bvmax[3];
 | 
						|
 | 
						|
	if (data->sign[0] == 0) {
 | 
						|
		local_bvmin[0] = bb_min[0] - data->ray_origin[0];
 | 
						|
		local_bvmax[0] = bb_max[0] - data->ray_origin[0];
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		local_bvmin[0] = bb_max[0] - data->ray_origin[0];
 | 
						|
		local_bvmax[0] = bb_min[0] - data->ray_origin[0];
 | 
						|
	}
 | 
						|
 | 
						|
	if (data->sign[1] == 0) {
 | 
						|
		local_bvmin[1] = bb_min[1] - data->ray_origin[1];
 | 
						|
		local_bvmax[1] = bb_max[1] - data->ray_origin[1];
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		local_bvmin[1] = bb_max[1] - data->ray_origin[1];
 | 
						|
		local_bvmax[1] = bb_min[1] - data->ray_origin[1];
 | 
						|
	}
 | 
						|
 | 
						|
	if (data->sign[2] == 0) {
 | 
						|
		local_bvmin[2] = bb_min[2] - data->ray_origin[2];
 | 
						|
		local_bvmax[2] = bb_max[2] - data->ray_origin[2];
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		local_bvmin[2] = bb_max[2] - data->ray_origin[2];
 | 
						|
		local_bvmax[2] = bb_min[2] - data->ray_origin[2];
 | 
						|
	}
 | 
						|
 | 
						|
	const float tmin[3] = {
 | 
						|
		local_bvmin[0] * data->ray_inv_dir[0],
 | 
						|
		local_bvmin[1] * data->ray_inv_dir[1],
 | 
						|
		local_bvmin[2] * data->ray_inv_dir[2],
 | 
						|
	};
 | 
						|
 | 
						|
	/* `tmax` is a vector that has the longer distances to each of the
 | 
						|
	 * infinite planes of the `AABB` faces (hit in farthest face X plane,
 | 
						|
	 * farthest face Y plane and farthest face Z plane) */
 | 
						|
	const float tmax[3] = {
 | 
						|
		local_bvmax[0] * data->ray_inv_dir[0],
 | 
						|
		local_bvmax[1] * data->ray_inv_dir[1],
 | 
						|
		local_bvmax[2] * data->ray_inv_dir[2],
 | 
						|
	};
 | 
						|
	/* `v1` and `v3` is be the coordinates of the nearest `AABB` edge to the ray*/
 | 
						|
	float v1[3], v2[3];
 | 
						|
	/* `rtmin` is the highest value of the smaller distances. == max_axis_v3(tmin)
 | 
						|
	 * `rtmax` is the lowest value of longer distances. == min_axis_v3(tmax)*/
 | 
						|
	float rtmin, rtmax, mul, rdist;
 | 
						|
	/* `main_axis` is the axis equivalent to edge close to the ray */
 | 
						|
	int main_axis;
 | 
						|
 | 
						|
	r_axis_closest[0] = false;
 | 
						|
	r_axis_closest[1] = false;
 | 
						|
	r_axis_closest[2] = false;
 | 
						|
 | 
						|
	/* *** min_axis_v3(tmax) *** */
 | 
						|
	if ((tmax[0] <= tmax[1]) && (tmax[0] <= tmax[2])) {
 | 
						|
		// printf("# Hit in X %s\n", data->sign[0] ? "min", "max");
 | 
						|
		rtmax = tmax[0];
 | 
						|
		v1[0] = v2[0] = local_bvmax[0];
 | 
						|
		mul = local_bvmax[0] * data->ray_direction[0];
 | 
						|
		main_axis = 3;
 | 
						|
		r_axis_closest[0] = data->sign[0];
 | 
						|
	}
 | 
						|
	else if ((tmax[1] <= tmax[0]) && (tmax[1] <= tmax[2])) {
 | 
						|
		// printf("# Hit in Y %s\n", data->sign[1] ? "min", "max");
 | 
						|
		rtmax = tmax[1];
 | 
						|
		v1[1] = v2[1] = local_bvmax[1];
 | 
						|
		mul = local_bvmax[1] * data->ray_direction[1];
 | 
						|
		main_axis = 2;
 | 
						|
		r_axis_closest[1] = data->sign[1];
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		// printf("# Hit in Z %s\n", data->sign[2] ? "min", "max");
 | 
						|
		rtmax = tmax[2];
 | 
						|
		v1[2] = v2[2] = local_bvmax[2];
 | 
						|
		mul = local_bvmax[2] * data->ray_direction[2];
 | 
						|
		main_axis = 1;
 | 
						|
		r_axis_closest[2] = data->sign[2];
 | 
						|
	}
 | 
						|
 | 
						|
	/* *** max_axis_v3(tmin) *** */
 | 
						|
	if ((tmin[0] >= tmin[1]) && (tmin[0] >= tmin[2])) {
 | 
						|
		// printf("# To X %s\n", data->sign[0] ? "max", "min");
 | 
						|
		rtmin = tmin[0];
 | 
						|
		v1[0] = v2[0] = local_bvmin[0];
 | 
						|
		mul += local_bvmin[0] * data->ray_direction[0];
 | 
						|
		main_axis -= 3;
 | 
						|
		r_axis_closest[0] = !data->sign[0];
 | 
						|
	}
 | 
						|
	else if ((tmin[1] >= tmin[0]) && (tmin[1] >= tmin[2])) {
 | 
						|
		// printf("# To Y %s\n", data->sign[1] ? "max", "min");
 | 
						|
		rtmin = tmin[1];
 | 
						|
		v1[1] = v2[1] = local_bvmin[1];
 | 
						|
		mul += local_bvmin[1] * data->ray_direction[1];
 | 
						|
		main_axis -= 1;
 | 
						|
		r_axis_closest[1] = !data->sign[1];
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		// printf("# To Z %s\n", data->sign[2] ? "max", "min");
 | 
						|
		rtmin = tmin[2];
 | 
						|
		v1[2] = v2[2] = local_bvmin[2];
 | 
						|
		mul += local_bvmin[2] * data->ray_direction[2];
 | 
						|
		main_axis -= 2;
 | 
						|
		r_axis_closest[2] = !data->sign[2];
 | 
						|
	}
 | 
						|
	/* *** end min/max axis *** */
 | 
						|
 | 
						|
 | 
						|
	/* `if rtmax < 0`, the whole `AABB` is behing us */
 | 
						|
	if ((rtmax < 0.0f) && (rtmin < 0.0f)) {
 | 
						|
		return FLT_MAX;
 | 
						|
	}
 | 
						|
 | 
						|
	if (main_axis < 0) {
 | 
						|
		main_axis += 3;
 | 
						|
	}
 | 
						|
 | 
						|
	if (data->sign[main_axis] == 0) {
 | 
						|
		v1[main_axis] = local_bvmin[main_axis];
 | 
						|
		v2[main_axis] = local_bvmax[main_axis];
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		v1[main_axis] = local_bvmax[main_axis];
 | 
						|
		v2[main_axis] = local_bvmin[main_axis];
 | 
						|
	}
 | 
						|
 | 
						|
	/* if rtmin < rtmax, ray intersect `AABB` */
 | 
						|
	if (rtmin <= rtmax) {
 | 
						|
		const float proj = rtmin * data->ray_direction[main_axis];
 | 
						|
		rdist = 0.0f;
 | 
						|
		r_axis_closest[main_axis] = (proj - v1[main_axis]) < (v2[main_axis] - proj);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* `proj` equals to nearest point on the ray closest to the edge `v1 v2` of the `AABB`. */
 | 
						|
		const float proj = mul * data->cdot_axis[main_axis];
 | 
						|
		float depth;
 | 
						|
		if (v1[main_axis] > proj) {  /* the nearest point to the ray is the point v1 */
 | 
						|
			/* `depth` is equivalent the distance from the origin to the point v1,
 | 
						|
			 * Here's a faster way to calculate the dot product of v1 and ray
 | 
						|
			 * (depth = dot_v3v3(v1, data->ray.direction))*/
 | 
						|
			depth = mul + data->ray_direction[main_axis] * v1[main_axis];
 | 
						|
			rdist = len_squared_v3(v1) - SQUARE(depth);
 | 
						|
			r_axis_closest[main_axis] = true;
 | 
						|
		}
 | 
						|
		else if (v2[main_axis] < proj) {  /* the nearest point of the ray is the point v2 */
 | 
						|
			depth = mul + data->ray_direction[main_axis] * v2[main_axis];
 | 
						|
			rdist = len_squared_v3(v2) - SQUARE(depth);
 | 
						|
			r_axis_closest[main_axis] = false;
 | 
						|
		}
 | 
						|
		else {  /* the nearest point of the ray is on the edge of the `AABB`. */
 | 
						|
			float v[2];
 | 
						|
			mul *= data->idiag_sq[main_axis];
 | 
						|
			if (main_axis == 0) {
 | 
						|
				v[0] = (mul * data->ray_direction[1]) - v1[1];
 | 
						|
				v[1] = (mul * data->ray_direction[2]) - v1[2];
 | 
						|
			}
 | 
						|
			else if (main_axis == 1) {
 | 
						|
				v[0] = (mul * data->ray_direction[0]) - v1[0];
 | 
						|
				v[1] = (mul * data->ray_direction[2]) - v1[2];
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				v[0] = (mul * data->ray_direction[0]) - v1[0];
 | 
						|
				v[1] = (mul * data->ray_direction[1]) - v1[1];
 | 
						|
			}
 | 
						|
			rdist = len_squared_v2(v);
 | 
						|
			r_axis_closest[main_axis] = (proj - v1[main_axis]) < (v2[main_axis] - proj);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return rdist;
 | 
						|
}
 | 
						|
 | 
						|
/* find closest point to p on line through (l1, l2) and return lambda,
 | 
						|
 * where (0 <= lambda <= 1) when cp is in the line segment (l1, l2)
 | 
						|
 */
 | 
						|
float closest_to_line_v3(float r_close[3], const float p[3], const float l1[3], const float l2[3])
 | 
						|
{
 | 
						|
	float h[3], u[3], lambda;
 | 
						|
	sub_v3_v3v3(u, l2, l1);
 | 
						|
	sub_v3_v3v3(h, p, l1);
 | 
						|
	lambda = dot_v3v3(u, h) / dot_v3v3(u, u);
 | 
						|
	r_close[0] = l1[0] + u[0] * lambda;
 | 
						|
	r_close[1] = l1[1] + u[1] * lambda;
 | 
						|
	r_close[2] = l1[2] + u[2] * lambda;
 | 
						|
	return lambda;
 | 
						|
}
 | 
						|
 | 
						|
float closest_to_line_v2(float r_close[2], const float p[2], const float l1[2], const float l2[2])
 | 
						|
{
 | 
						|
	float h[2], u[2], lambda;
 | 
						|
	sub_v2_v2v2(u, l2, l1);
 | 
						|
	sub_v2_v2v2(h, p, l1);
 | 
						|
	lambda = dot_v2v2(u, h) / dot_v2v2(u, u);
 | 
						|
	r_close[0] = l1[0] + u[0] * lambda;
 | 
						|
	r_close[1] = l1[1] + u[1] * lambda;
 | 
						|
	return lambda;
 | 
						|
}
 | 
						|
 | 
						|
float ray_point_factor_v3_ex(
 | 
						|
        const float p[3], const float ray_origin[3], const float ray_direction[3],
 | 
						|
        const float epsilon, const float fallback)
 | 
						|
{
 | 
						|
	float p_relative[3];
 | 
						|
	sub_v3_v3v3(p_relative, p, ray_origin);
 | 
						|
	const float dot = dot_v3v3(ray_direction, ray_direction);
 | 
						|
	return (fabsf(dot) > epsilon) ? (dot_v3v3(ray_direction, p_relative) / dot) : fallback;
 | 
						|
}
 | 
						|
 | 
						|
float ray_point_factor_v3(
 | 
						|
        const float p[3], const float ray_origin[3], const float ray_direction[3])
 | 
						|
{
 | 
						|
	return ray_point_factor_v3_ex(p, ray_origin, ray_direction, 0.0f, 0.0f);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * A simplified version of #closest_to_line_v3
 | 
						|
 * we only need to return the ``lambda``
 | 
						|
 *
 | 
						|
 * \param epsilon: avoid approaching divide-by-zero.
 | 
						|
 * Passing a zero will just check for nonzero division.
 | 
						|
 */
 | 
						|
float line_point_factor_v3_ex(
 | 
						|
        const float p[3], const float l1[3], const float l2[3],
 | 
						|
        const float epsilon, const float fallback)
 | 
						|
{
 | 
						|
	float h[3], u[3];
 | 
						|
	float dot;
 | 
						|
	sub_v3_v3v3(u, l2, l1);
 | 
						|
	sub_v3_v3v3(h, p, l1);
 | 
						|
#if 0
 | 
						|
	return (dot_v3v3(u, h) / dot_v3v3(u, u));
 | 
						|
#else
 | 
						|
	/* better check for zero */
 | 
						|
	dot = dot_v3v3(u, u);
 | 
						|
	return (fabsf(dot) > epsilon) ? (dot_v3v3(u, h) / dot) : fallback;
 | 
						|
#endif
 | 
						|
}
 | 
						|
float line_point_factor_v3(
 | 
						|
        const float p[3], const float l1[3], const float l2[3])
 | 
						|
{
 | 
						|
	return line_point_factor_v3_ex(p, l1, l2, 0.0f, 0.0f);
 | 
						|
}
 | 
						|
 | 
						|
float line_point_factor_v2_ex(
 | 
						|
        const float p[2], const float l1[2], const float l2[2],
 | 
						|
        const float epsilon, const float fallback)
 | 
						|
{
 | 
						|
	float h[2], u[2];
 | 
						|
	float dot;
 | 
						|
	sub_v2_v2v2(u, l2, l1);
 | 
						|
	sub_v2_v2v2(h, p, l1);
 | 
						|
#if 0
 | 
						|
	return (dot_v2v2(u, h) / dot_v2v2(u, u));
 | 
						|
#else
 | 
						|
	/* better check for zero */
 | 
						|
	dot = dot_v2v2(u, u);
 | 
						|
	return (fabsf(dot) > epsilon) ? (dot_v2v2(u, h) / dot) : fallback;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
float line_point_factor_v2(const float p[2], const float l1[2], const float l2[2])
 | 
						|
{
 | 
						|
	return line_point_factor_v2_ex(p, l1, l2, 0.0f, 0.0f);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * \note #isect_line_plane_v3() shares logic
 | 
						|
 */
 | 
						|
float line_plane_factor_v3(const float plane_co[3], const float plane_no[3],
 | 
						|
                           const float l1[3], const float l2[3])
 | 
						|
{
 | 
						|
	float u[3], h[3];
 | 
						|
	float dot;
 | 
						|
	sub_v3_v3v3(u, l2, l1);
 | 
						|
	sub_v3_v3v3(h, l1, plane_co);
 | 
						|
	dot = dot_v3v3(plane_no, u);
 | 
						|
	return (dot != 0.0f) ? -dot_v3v3(plane_no, h) / dot : 0.0f;
 | 
						|
}
 | 
						|
 | 
						|
/** Ensure the distance between these points is no greater than 'dist'.
 | 
						|
 *  If it is, scale then both into the center.
 | 
						|
 */
 | 
						|
void limit_dist_v3(float v1[3], float v2[3], const float dist)
 | 
						|
{
 | 
						|
	const float dist_old = len_v3v3(v1, v2);
 | 
						|
 | 
						|
	if (dist_old > dist) {
 | 
						|
		float v1_old[3];
 | 
						|
		float v2_old[3];
 | 
						|
		float fac = (dist / dist_old) * 0.5f;
 | 
						|
 | 
						|
		copy_v3_v3(v1_old, v1);
 | 
						|
		copy_v3_v3(v2_old, v2);
 | 
						|
 | 
						|
		interp_v3_v3v3(v1, v1_old, v2_old, 0.5f - fac);
 | 
						|
		interp_v3_v3v3(v2, v1_old, v2_old, 0.5f + fac);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *     x1,y2
 | 
						|
 *     |  \
 | 
						|
 *     |   \     .(a,b)
 | 
						|
 *     |    \
 | 
						|
 *     x1,y1-- x2,y1
 | 
						|
 */
 | 
						|
int isect_point_tri_v2_int(const int x1, const int y1, const int x2, const int y2, const int a, const int b)
 | 
						|
{
 | 
						|
	float v1[2], v2[2], v3[2], p[2];
 | 
						|
 | 
						|
	v1[0] = (float)x1;
 | 
						|
	v1[1] = (float)y1;
 | 
						|
 | 
						|
	v2[0] = (float)x1;
 | 
						|
	v2[1] = (float)y2;
 | 
						|
 | 
						|
	v3[0] = (float)x2;
 | 
						|
	v3[1] = (float)y1;
 | 
						|
 | 
						|
	p[0] = (float)a;
 | 
						|
	p[1] = (float)b;
 | 
						|
 | 
						|
	return isect_point_tri_v2(p, v1, v2, v3);
 | 
						|
}
 | 
						|
 | 
						|
static bool point_in_slice(const float p[3], const float v1[3], const float l1[3], const float l2[3])
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * what is a slice ?
 | 
						|
	 * some maths:
 | 
						|
	 * a line including (l1, l2) and a point not on the line
 | 
						|
	 * define a subset of R3 delimited by planes parallel to the line and orthogonal
 | 
						|
	 * to the (point --> line) distance vector, one plane on the line one on the point,
 | 
						|
	 * the room inside usually is rather small compared to R3 though still infinite
 | 
						|
	 * useful for restricting (speeding up) searches
 | 
						|
	 * e.g. all points of triangular prism are within the intersection of 3 'slices'
 | 
						|
	 * another trivial case : cube
 | 
						|
	 * but see a 'spat' which is a deformed cube with paired parallel planes needs only 3 slices too
 | 
						|
	 */
 | 
						|
	float h, rp[3], cp[3], q[3];
 | 
						|
 | 
						|
	closest_to_line_v3(cp, v1, l1, l2);
 | 
						|
	sub_v3_v3v3(q, cp, v1);
 | 
						|
 | 
						|
	sub_v3_v3v3(rp, p, v1);
 | 
						|
	h = dot_v3v3(q, rp) / dot_v3v3(q, q);
 | 
						|
	/* note: when 'h' is nan/-nan, this check returns false
 | 
						|
	 * without explicit check - covering the degenerate case */
 | 
						|
	return (h >= 0.0f && h <= 1.0f);
 | 
						|
}
 | 
						|
 | 
						|
#if 0
 | 
						|
 | 
						|
/* adult sister defining the slice planes by the origin and the normal
 | 
						|
 * NOTE |normal| may not be 1 but defining the thickness of the slice */
 | 
						|
static int point_in_slice_as(float p[3], float origin[3], float normal[3])
 | 
						|
{
 | 
						|
	float h, rp[3];
 | 
						|
	sub_v3_v3v3(rp, p, origin);
 | 
						|
	h = dot_v3v3(normal, rp) / dot_v3v3(normal, normal);
 | 
						|
	if (h < 0.0f || h > 1.0f) return 0;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*mama (knowing the squared length of the normal) */
 | 
						|
static int point_in_slice_m(float p[3], float origin[3], float normal[3], float lns)
 | 
						|
{
 | 
						|
	float h, rp[3];
 | 
						|
	sub_v3_v3v3(rp, p, origin);
 | 
						|
	h = dot_v3v3(normal, rp) / lns;
 | 
						|
	if (h < 0.0f || h > 1.0f) return 0;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
bool isect_point_tri_prism_v3(const float p[3], const float v1[3], const float v2[3], const float v3[3])
 | 
						|
{
 | 
						|
	if (!point_in_slice(p, v1, v2, v3)) return false;
 | 
						|
	if (!point_in_slice(p, v2, v3, v1)) return false;
 | 
						|
	if (!point_in_slice(p, v3, v1, v2)) return false;
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * \param r_vi The point \a p projected onto the triangle.
 | 
						|
 * \return True when \a p is inside the triangle.
 | 
						|
 * \note Its up to the caller to check the distance between \a p and \a r_vi against an error margin.
 | 
						|
 */
 | 
						|
bool isect_point_tri_v3(
 | 
						|
        const float p[3], const float v1[3], const float v2[3], const float v3[3],
 | 
						|
        float r_isect_co[3])
 | 
						|
{
 | 
						|
	if (isect_point_tri_prism_v3(p, v1, v2, v3)) {
 | 
						|
		float plane[4];
 | 
						|
		float no[3];
 | 
						|
 | 
						|
		/* Could use normal_tri_v3, but doesn't have to be unit-length */
 | 
						|
		cross_tri_v3(no, v1, v2, v3);
 | 
						|
		BLI_assert(len_squared_v3(no) != 0.0f);
 | 
						|
 | 
						|
		plane_from_point_normal_v3(plane, v1, no);
 | 
						|
		closest_to_plane_v3(r_isect_co, plane, p);
 | 
						|
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
bool clip_segment_v3_plane(
 | 
						|
        const float p1[3], const float p2[3],
 | 
						|
        const float plane[4],
 | 
						|
        float r_p1[3], float r_p2[3])
 | 
						|
{
 | 
						|
	float dp[3], div;
 | 
						|
 | 
						|
	sub_v3_v3v3(dp, p2, p1);
 | 
						|
	div = dot_v3v3(dp, plane);
 | 
						|
 | 
						|
	if (div == 0.0f) /* parallel */
 | 
						|
		return true;
 | 
						|
 | 
						|
	float t = -plane_point_side_v3(plane, p1);
 | 
						|
 | 
						|
	if (div > 0.0f) {
 | 
						|
		/* behind plane, completely clipped */
 | 
						|
		if (t >= div) {
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
		else if (t > 0.0f) {
 | 
						|
			const float p1_copy[3] = {UNPACK3(p1)};
 | 
						|
			copy_v3_v3(r_p2, p2);
 | 
						|
			madd_v3_v3v3fl(r_p1, p1_copy, dp, t / div);
 | 
						|
			return true;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* behind plane, completely clipped */
 | 
						|
		if (t >= 0.0f) {
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
		else if (t > div) {
 | 
						|
			const float p1_copy[3] = {UNPACK3(p1)};
 | 
						|
			copy_v3_v3(r_p1, p1);
 | 
						|
			madd_v3_v3v3fl(r_p2, p1_copy, dp, t / div);
 | 
						|
			return true;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* incase input/output values match (above also) */
 | 
						|
	const float p1_copy[3] = {UNPACK3(p1)};
 | 
						|
	copy_v3_v3(r_p2, p2);
 | 
						|
	copy_v3_v3(r_p1, p1_copy);
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
bool clip_segment_v3_plane_n(
 | 
						|
        const float p1[3], const float p2[3],
 | 
						|
        const float plane_array[][4], const int plane_tot,
 | 
						|
        float r_p1[3], float r_p2[3])
 | 
						|
{
 | 
						|
	/* intersect from both directions */
 | 
						|
	float p1_fac = 0.0f, p2_fac = 1.0f;
 | 
						|
 | 
						|
	float dp[3];
 | 
						|
	sub_v3_v3v3(dp, p2, p1);
 | 
						|
 | 
						|
	for (int i = 0; i < plane_tot; i++) {
 | 
						|
		const float *plane = plane_array[i];
 | 
						|
		const float div = dot_v3v3(dp, plane);
 | 
						|
 | 
						|
		if (div != 0.0f) {
 | 
						|
			float t = -plane_point_side_v3(plane, p1);
 | 
						|
			if (div > 0.0f) {
 | 
						|
				/* clip p1 lower bounds */
 | 
						|
				if (t >= div) {
 | 
						|
					return false;
 | 
						|
				}
 | 
						|
				else if (t > 0.0f) {
 | 
						|
					t /= div;
 | 
						|
					if (t > p1_fac) {
 | 
						|
						p1_fac = t;
 | 
						|
						if (p1_fac > p2_fac) {
 | 
						|
							return false;
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else if (div < 0.0f) {
 | 
						|
				/* clip p2 upper bounds */
 | 
						|
				if (t >= 0.0f) {
 | 
						|
					return false;
 | 
						|
				}
 | 
						|
				else if (t > div) {
 | 
						|
					t /= div;
 | 
						|
					if (t < p2_fac) {
 | 
						|
						p2_fac = t;
 | 
						|
						if (p1_fac > p2_fac) {
 | 
						|
							return false;
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* incase input/output values match */
 | 
						|
	const float p1_copy[3] = {UNPACK3(p1)};
 | 
						|
 | 
						|
	madd_v3_v3v3fl(r_p1, p1_copy, dp, p1_fac);
 | 
						|
	madd_v3_v3v3fl(r_p2, p1_copy, dp, p2_fac);
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
void plot_line_v2v2i(const int p1[2], const int p2[2], bool (*callback)(int, int, void *), void *userData)
 | 
						|
{
 | 
						|
	int x1 = p1[0];
 | 
						|
	int y1 = p1[1];
 | 
						|
	int x2 = p2[0];
 | 
						|
	int y2 = p2[1];
 | 
						|
 | 
						|
	signed char ix;
 | 
						|
	signed char iy;
 | 
						|
 | 
						|
	/* if x1 == x2 or y1 == y2, then it does not matter what we set here */
 | 
						|
	int delta_x = (x2 > x1 ? ((void)(ix = 1), x2 - x1) : ((void)(ix = -1), x1 - x2)) << 1;
 | 
						|
	int delta_y = (y2 > y1 ? ((void)(iy = 1), y2 - y1) : ((void)(iy = -1), y1 - y2)) << 1;
 | 
						|
 | 
						|
	if (callback(x1, y1, userData) == 0) {
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (delta_x >= delta_y) {
 | 
						|
		/* error may go below zero */
 | 
						|
		int error = delta_y - (delta_x >> 1);
 | 
						|
 | 
						|
		while (x1 != x2) {
 | 
						|
			if (error >= 0) {
 | 
						|
				if (error || (ix > 0)) {
 | 
						|
					y1 += iy;
 | 
						|
					error -= delta_x;
 | 
						|
				}
 | 
						|
				/* else do nothing */
 | 
						|
			}
 | 
						|
			/* else do nothing */
 | 
						|
 | 
						|
			x1 += ix;
 | 
						|
			error += delta_y;
 | 
						|
 | 
						|
			if (callback(x1, y1, userData) == 0) {
 | 
						|
				return;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* error may go below zero */
 | 
						|
		int error = delta_x - (delta_y >> 1);
 | 
						|
 | 
						|
		while (y1 != y2) {
 | 
						|
			if (error >= 0) {
 | 
						|
				if (error || (iy > 0)) {
 | 
						|
					x1 += ix;
 | 
						|
					error -= delta_y;
 | 
						|
				}
 | 
						|
				/* else do nothing */
 | 
						|
			}
 | 
						|
			/* else do nothing */
 | 
						|
 | 
						|
			y1 += iy;
 | 
						|
			error += delta_x;
 | 
						|
 | 
						|
			if (callback(x1, y1, userData) == 0) {
 | 
						|
				return;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * \param callback: Takes the x, y coords and x-span (\a x_end is not inclusive),
 | 
						|
 * note that \a x_end will always be greater than \a x, so we can use:
 | 
						|
 *
 | 
						|
 * \code{.c}
 | 
						|
 * do {
 | 
						|
 *     func(x, y);
 | 
						|
 * } while (++x != x_end);
 | 
						|
 * \endcode
 | 
						|
 */
 | 
						|
void fill_poly_v2i_n(
 | 
						|
        const int xmin, const int ymin, const int xmax, const int ymax,
 | 
						|
        const int verts[][2], const int nr,
 | 
						|
        void (*callback)(int x, int x_end, int y, void *), void *userData)
 | 
						|
{
 | 
						|
	/* originally by Darel Rex Finley, 2007 */
 | 
						|
 | 
						|
	int  nodes, pixel_y, i, j, swap;
 | 
						|
	int *node_x = MEM_mallocN(sizeof(*node_x) * (size_t)(nr + 1), __func__);
 | 
						|
 | 
						|
	/* Loop through the rows of the image. */
 | 
						|
	for (pixel_y = ymin; pixel_y < ymax; pixel_y++) {
 | 
						|
 | 
						|
		/* Build a list of nodes. */
 | 
						|
		nodes = 0; j = nr - 1;
 | 
						|
		for (i = 0; i < nr; i++) {
 | 
						|
			if ((verts[i][1] < pixel_y && verts[j][1] >= pixel_y) ||
 | 
						|
			    (verts[j][1] < pixel_y && verts[i][1] >= pixel_y))
 | 
						|
			{
 | 
						|
				node_x[nodes++] = (int)(verts[i][0] +
 | 
						|
				                        ((double)(pixel_y - verts[i][1]) / (verts[j][1] - verts[i][1])) *
 | 
						|
				                        (verts[j][0] - verts[i][0]));
 | 
						|
			}
 | 
						|
			j = i;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Sort the nodes, via a simple "Bubble" sort. */
 | 
						|
		i = 0;
 | 
						|
		while (i < nodes - 1) {
 | 
						|
			if (node_x[i] > node_x[i + 1]) {
 | 
						|
				SWAP_TVAL(swap, node_x[i], node_x[i + 1]);
 | 
						|
				if (i) i--;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				i++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* Fill the pixels between node pairs. */
 | 
						|
		for (i = 0; i < nodes; i += 2) {
 | 
						|
			if (node_x[i] >= xmax) break;
 | 
						|
			if (node_x[i + 1] >  xmin) {
 | 
						|
				if (node_x[i    ] < xmin) node_x[i    ] = xmin;
 | 
						|
				if (node_x[i + 1] > xmax) node_x[i + 1] = xmax;
 | 
						|
 | 
						|
#if 0
 | 
						|
				/* for many x/y calls */
 | 
						|
				for (j = node_x[i]; j < node_x[i + 1]; j++) {
 | 
						|
					callback(j - xmin, pixel_y - ymin, userData);
 | 
						|
				}
 | 
						|
#else
 | 
						|
				/* for single call per x-span */
 | 
						|
				if (node_x[i] < node_x[i + 1]) {
 | 
						|
					callback(node_x[i] - xmin, node_x[i + 1] - xmin, pixel_y - ymin, userData);
 | 
						|
				}
 | 
						|
#endif
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	MEM_freeN(node_x);
 | 
						|
}
 | 
						|
 | 
						|
/****************************** Axis Utils ********************************/
 | 
						|
 | 
						|
/**
 | 
						|
 * \brief Normal to x,y matrix
 | 
						|
 *
 | 
						|
 * Creates a 3x3 matrix from a normal.
 | 
						|
 * This matrix can be applied to vectors so their 'z' axis runs along \a normal.
 | 
						|
 * In practice it means you can use x,y as 2d coords. \see
 | 
						|
 *
 | 
						|
 * \param r_mat The matrix to return.
 | 
						|
 * \param normal A unit length vector.
 | 
						|
 */
 | 
						|
void axis_dominant_v3_to_m3(float r_mat[3][3], const float normal[3])
 | 
						|
{
 | 
						|
	BLI_ASSERT_UNIT_V3(normal);
 | 
						|
 | 
						|
	copy_v3_v3(r_mat[2], normal);
 | 
						|
	ortho_basis_v3v3_v3(r_mat[0], r_mat[1], r_mat[2]);
 | 
						|
 | 
						|
	BLI_ASSERT_UNIT_V3(r_mat[0]);
 | 
						|
	BLI_ASSERT_UNIT_V3(r_mat[1]);
 | 
						|
 | 
						|
	transpose_m3(r_mat);
 | 
						|
 | 
						|
	BLI_assert(!is_negative_m3(r_mat));
 | 
						|
	BLI_assert((fabsf(dot_m3_v3_row_z(r_mat, normal) - 1.0f) < BLI_ASSERT_UNIT_EPSILON) || is_zero_v3(normal));
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Same as axis_dominant_v3_to_m3, but flips the normal
 | 
						|
 */
 | 
						|
void axis_dominant_v3_to_m3_negate(float r_mat[3][3], const float normal[3])
 | 
						|
{
 | 
						|
	BLI_ASSERT_UNIT_V3(normal);
 | 
						|
 | 
						|
	negate_v3_v3(r_mat[2], normal);
 | 
						|
	ortho_basis_v3v3_v3(r_mat[0], r_mat[1], r_mat[2]);
 | 
						|
 | 
						|
	BLI_ASSERT_UNIT_V3(r_mat[0]);
 | 
						|
	BLI_ASSERT_UNIT_V3(r_mat[1]);
 | 
						|
 | 
						|
	transpose_m3(r_mat);
 | 
						|
 | 
						|
	BLI_assert(!is_negative_m3(r_mat));
 | 
						|
	BLI_assert((dot_m3_v3_row_z(r_mat, normal) < BLI_ASSERT_UNIT_EPSILON) || is_zero_v3(normal));
 | 
						|
}
 | 
						|
 | 
						|
/****************************** Interpolation ********************************/
 | 
						|
 | 
						|
static float tri_signed_area(const float v1[3], const float v2[3], const float v3[3], const int i, const int j)
 | 
						|
{
 | 
						|
	return 0.5f * ((v1[i] - v2[i]) * (v2[j] - v3[j]) + (v1[j] - v2[j]) * (v3[i] - v2[i]));
 | 
						|
}
 | 
						|
 | 
						|
/* return 1 when degenerate */
 | 
						|
static bool barycentric_weights(const float v1[3], const float v2[3], const float v3[3], const float co[3], const float n[3], float w[3])
 | 
						|
{
 | 
						|
	float wtot;
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	axis_dominant_v3(&i, &j, n);
 | 
						|
 | 
						|
	w[0] = tri_signed_area(v2, v3, co, i, j);
 | 
						|
	w[1] = tri_signed_area(v3, v1, co, i, j);
 | 
						|
	w[2] = tri_signed_area(v1, v2, co, i, j);
 | 
						|
 | 
						|
	wtot = w[0] + w[1] + w[2];
 | 
						|
 | 
						|
	if (fabsf(wtot) > FLT_EPSILON) {
 | 
						|
		mul_v3_fl(w, 1.0f / wtot);
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* zero area triangle */
 | 
						|
		copy_v3_fl(w, 1.0f / 3.0f);
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void interp_weights_face_v3(float w[4], const float v1[3], const float v2[3], const float v3[3], const float v4[3], const float co[3])
 | 
						|
{
 | 
						|
	float w2[3];
 | 
						|
 | 
						|
	w[0] = w[1] = w[2] = w[3] = 0.0f;
 | 
						|
 | 
						|
	/* first check for exact match */
 | 
						|
	if (equals_v3v3(co, v1))
 | 
						|
		w[0] = 1.0f;
 | 
						|
	else if (equals_v3v3(co, v2))
 | 
						|
		w[1] = 1.0f;
 | 
						|
	else if (equals_v3v3(co, v3))
 | 
						|
		w[2] = 1.0f;
 | 
						|
	else if (v4 && equals_v3v3(co, v4))
 | 
						|
		w[3] = 1.0f;
 | 
						|
	else {
 | 
						|
		/* otherwise compute barycentric interpolation weights */
 | 
						|
		float n1[3], n2[3], n[3];
 | 
						|
		bool degenerate;
 | 
						|
 | 
						|
		sub_v3_v3v3(n1, v1, v3);
 | 
						|
		if (v4) {
 | 
						|
			sub_v3_v3v3(n2, v2, v4);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			sub_v3_v3v3(n2, v2, v3);
 | 
						|
		}
 | 
						|
		cross_v3_v3v3(n, n1, n2);
 | 
						|
 | 
						|
		/* OpenGL seems to split this way, so we do too */
 | 
						|
		if (v4) {
 | 
						|
			degenerate = barycentric_weights(v1, v2, v4, co, n, w);
 | 
						|
			SWAP(float, w[2], w[3]);
 | 
						|
 | 
						|
			if (degenerate || (w[0] < 0.0f)) {
 | 
						|
				/* if w[1] is negative, co is on the other side of the v1-v3 edge,
 | 
						|
				 * so we interpolate using the other triangle */
 | 
						|
				degenerate = barycentric_weights(v2, v3, v4, co, n, w2);
 | 
						|
 | 
						|
				if (!degenerate) {
 | 
						|
					w[0] = 0.0f;
 | 
						|
					w[1] = w2[0];
 | 
						|
					w[2] = w2[1];
 | 
						|
					w[3] = w2[2];
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			barycentric_weights(v1, v2, v3, co, n, w);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* return 1 of point is inside triangle, 2 if it's on the edge, 0 if point is outside of triangle */
 | 
						|
int barycentric_inside_triangle_v2(const float w[3])
 | 
						|
{
 | 
						|
	if (IN_RANGE(w[0], 0.0f, 1.0f) &&
 | 
						|
	    IN_RANGE(w[1], 0.0f, 1.0f) &&
 | 
						|
	    IN_RANGE(w[2], 0.0f, 1.0f))
 | 
						|
	{
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	else if (IN_RANGE_INCL(w[0], 0.0f, 1.0f) &&
 | 
						|
	         IN_RANGE_INCL(w[1], 0.0f, 1.0f) &&
 | 
						|
	         IN_RANGE_INCL(w[2], 0.0f, 1.0f))
 | 
						|
	{
 | 
						|
		return 2;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* returns 0 for degenerated triangles */
 | 
						|
bool barycentric_coords_v2(const float v1[2], const float v2[2], const float v3[2], const float co[2], float w[3])
 | 
						|
{
 | 
						|
	const float x = co[0], y = co[1];
 | 
						|
	const float x1 = v1[0], y1 = v1[1];
 | 
						|
	const float x2 = v2[0], y2 = v2[1];
 | 
						|
	const float x3 = v3[0], y3 = v3[1];
 | 
						|
	const float det = (y2 - y3) * (x1 - x3) + (x3 - x2) * (y1 - y3);
 | 
						|
 | 
						|
	if (fabsf(det) > FLT_EPSILON) {
 | 
						|
		w[0] = ((y2 - y3) * (x - x3) + (x3 - x2) * (y - y3)) / det;
 | 
						|
		w[1] = ((y3 - y1) * (x - x3) + (x1 - x3) * (y - y3)) / det;
 | 
						|
		w[2] = 1.0f - w[0] - w[1];
 | 
						|
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * \note: using #cross_tri_v2 means locations outside the triangle are correctly weighted
 | 
						|
 */
 | 
						|
void barycentric_weights_v2(const float v1[2], const float v2[2], const float v3[2], const float co[2], float w[3])
 | 
						|
{
 | 
						|
	float wtot;
 | 
						|
 | 
						|
	w[0] = cross_tri_v2(v2, v3, co);
 | 
						|
	w[1] = cross_tri_v2(v3, v1, co);
 | 
						|
	w[2] = cross_tri_v2(v1, v2, co);
 | 
						|
	wtot = w[0] + w[1] + w[2];
 | 
						|
 | 
						|
	if (wtot != 0.0f) {
 | 
						|
		mul_v3_fl(w, 1.0f / wtot);
 | 
						|
	}
 | 
						|
	else { /* dummy values for zero area face */
 | 
						|
		copy_v3_fl(w, 1.0f / 3.0f);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * still use 2D X,Y space but this works for verts transformed by a perspective matrix,
 | 
						|
 * using their 4th component as a weight
 | 
						|
 */
 | 
						|
void barycentric_weights_v2_persp(const float v1[4], const float v2[4], const float v3[4], const float co[2], float w[3])
 | 
						|
{
 | 
						|
	float wtot;
 | 
						|
 | 
						|
	w[0] = cross_tri_v2(v2, v3, co) / v1[3];
 | 
						|
	w[1] = cross_tri_v2(v3, v1, co) / v2[3];
 | 
						|
	w[2] = cross_tri_v2(v1, v2, co) / v3[3];
 | 
						|
	wtot = w[0] + w[1] + w[2];
 | 
						|
 | 
						|
	if (wtot != 0.0f) {
 | 
						|
		mul_v3_fl(w, 1.0f / wtot);
 | 
						|
	}
 | 
						|
	else { /* dummy values for zero area face */
 | 
						|
		w[0] = w[1] = w[2] = 1.0f / 3.0f;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* same as #barycentric_weights_v2 but works with a quad,
 | 
						|
 * note: untested for values outside the quad's bounds
 | 
						|
 * this is #interp_weights_poly_v2 expanded for quads only */
 | 
						|
void barycentric_weights_v2_quad(const float v1[2], const float v2[2], const float v3[2], const float v4[2],
 | 
						|
                                 const float co[2], float w[4])
 | 
						|
{
 | 
						|
	/* note: fabsf() here is not needed for convex quads (and not used in interp_weights_poly_v2).
 | 
						|
	 *       but in the case of concave/bow-tie quads for the mask rasterizer it gives unreliable results
 | 
						|
	 *       without adding absf(). If this becomes an issue for more general usage we could have
 | 
						|
	 *       this optional or use a different function - Campbell */
 | 
						|
#define MEAN_VALUE_HALF_TAN_V2(_area, i1, i2) \
 | 
						|
	        ((_area = cross_v2v2(dirs[i1], dirs[i2])) != 0.0f ? \
 | 
						|
	         fabsf(((lens[i1] * lens[i2]) - dot_v2v2(dirs[i1], dirs[i2])) / _area) : 0.0f)
 | 
						|
 | 
						|
	const float dirs[4][2] = {
 | 
						|
	    {v1[0] - co[0], v1[1] - co[1]},
 | 
						|
	    {v2[0] - co[0], v2[1] - co[1]},
 | 
						|
	    {v3[0] - co[0], v3[1] - co[1]},
 | 
						|
	    {v4[0] - co[0], v4[1] - co[1]},
 | 
						|
	};
 | 
						|
 | 
						|
	const float lens[4] = {
 | 
						|
	    len_v2(dirs[0]),
 | 
						|
	    len_v2(dirs[1]),
 | 
						|
	    len_v2(dirs[2]),
 | 
						|
	    len_v2(dirs[3]),
 | 
						|
	};
 | 
						|
 | 
						|
	/* avoid divide by zero */
 | 
						|
	if      (UNLIKELY(lens[0] < FLT_EPSILON)) { w[0] = 1.0f; w[1] = w[2] = w[3] = 0.0f; }
 | 
						|
	else if (UNLIKELY(lens[1] < FLT_EPSILON)) { w[1] = 1.0f; w[0] = w[2] = w[3] = 0.0f; }
 | 
						|
	else if (UNLIKELY(lens[2] < FLT_EPSILON)) { w[2] = 1.0f; w[0] = w[1] = w[3] = 0.0f; }
 | 
						|
	else if (UNLIKELY(lens[3] < FLT_EPSILON)) { w[3] = 1.0f; w[0] = w[1] = w[2] = 0.0f; }
 | 
						|
	else {
 | 
						|
		float wtot, area;
 | 
						|
 | 
						|
		/* variable 'area' is just for storage,
 | 
						|
		 * the order its initialized doesn't matter */
 | 
						|
#ifdef __clang__
 | 
						|
#  pragma clang diagnostic push
 | 
						|
#  pragma clang diagnostic ignored "-Wunsequenced"
 | 
						|
#endif
 | 
						|
 | 
						|
		/* inline mean_value_half_tan four times here */
 | 
						|
		const float t[4] = {
 | 
						|
			MEAN_VALUE_HALF_TAN_V2(area, 0, 1),
 | 
						|
			MEAN_VALUE_HALF_TAN_V2(area, 1, 2),
 | 
						|
			MEAN_VALUE_HALF_TAN_V2(area, 2, 3),
 | 
						|
			MEAN_VALUE_HALF_TAN_V2(area, 3, 0),
 | 
						|
		};
 | 
						|
 | 
						|
#ifdef __clang__
 | 
						|
#  pragma clang diagnostic pop
 | 
						|
#endif
 | 
						|
 | 
						|
#undef MEAN_VALUE_HALF_TAN_V2
 | 
						|
 | 
						|
		w[0] = (t[3] + t[0]) / lens[0];
 | 
						|
		w[1] = (t[0] + t[1]) / lens[1];
 | 
						|
		w[2] = (t[1] + t[2]) / lens[2];
 | 
						|
		w[3] = (t[2] + t[3]) / lens[3];
 | 
						|
 | 
						|
		wtot = w[0] + w[1] + w[2] + w[3];
 | 
						|
 | 
						|
		if (wtot != 0.0f) {
 | 
						|
			mul_v4_fl(w, 1.0f / wtot);
 | 
						|
		}
 | 
						|
		else { /* dummy values for zero area face */
 | 
						|
			copy_v4_fl(w, 1.0f / 4.0f);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* given 2 triangles in 3D space, and a point in relation to the first triangle.
 | 
						|
 * calculate the location of a point in relation to the second triangle.
 | 
						|
 * Useful for finding relative positions with geometry */
 | 
						|
void transform_point_by_tri_v3(
 | 
						|
        float pt_tar[3], float const pt_src[3],
 | 
						|
        const float tri_tar_p1[3], const float tri_tar_p2[3], const float tri_tar_p3[3],
 | 
						|
        const float tri_src_p1[3], const float tri_src_p2[3], const float tri_src_p3[3])
 | 
						|
{
 | 
						|
	/* this works by moving the source triangle so its normal is pointing on the Z
 | 
						|
	 * axis where its barycentric weights can be calculated in 2D and its Z offset can
 | 
						|
	 *  be re-applied. The weights are applied directly to the targets 3D points and the
 | 
						|
	 *  z-depth is used to scale the targets normal as an offset.
 | 
						|
	 * This saves transforming the target into its Z-Up orientation and back (which could also work) */
 | 
						|
	float no_tar[3], no_src[3];
 | 
						|
	float mat_src[3][3];
 | 
						|
	float pt_src_xy[3];
 | 
						|
	float tri_xy_src[3][3];
 | 
						|
	float w_src[3];
 | 
						|
	float area_tar, area_src;
 | 
						|
	float z_ofs_src;
 | 
						|
 | 
						|
	normal_tri_v3(no_tar, tri_tar_p1, tri_tar_p2, tri_tar_p3);
 | 
						|
	normal_tri_v3(no_src, tri_src_p1, tri_src_p2, tri_src_p3);
 | 
						|
 | 
						|
	axis_dominant_v3_to_m3(mat_src, no_src);
 | 
						|
 | 
						|
	/* make the source tri xy space */
 | 
						|
	mul_v3_m3v3(pt_src_xy,     mat_src, pt_src);
 | 
						|
	mul_v3_m3v3(tri_xy_src[0], mat_src, tri_src_p1);
 | 
						|
	mul_v3_m3v3(tri_xy_src[1], mat_src, tri_src_p2);
 | 
						|
	mul_v3_m3v3(tri_xy_src[2], mat_src, tri_src_p3);
 | 
						|
 | 
						|
 | 
						|
	barycentric_weights_v2(tri_xy_src[0], tri_xy_src[1], tri_xy_src[2], pt_src_xy, w_src);
 | 
						|
	interp_v3_v3v3v3(pt_tar, tri_tar_p1, tri_tar_p2, tri_tar_p3, w_src);
 | 
						|
 | 
						|
	area_tar = sqrtf(area_tri_v3(tri_tar_p1, tri_tar_p2, tri_tar_p3));
 | 
						|
	area_src = sqrtf(area_tri_v2(tri_xy_src[0], tri_xy_src[1], tri_xy_src[2]));
 | 
						|
 | 
						|
	z_ofs_src = pt_src_xy[2] - tri_xy_src[0][2];
 | 
						|
	madd_v3_v3v3fl(pt_tar, pt_tar, no_tar, (z_ofs_src / area_src) * area_tar);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Simply re-interpolates,
 | 
						|
 * assumes p_src is between \a l_src_p1-l_src_p2
 | 
						|
 */
 | 
						|
void transform_point_by_seg_v3(
 | 
						|
        float p_dst[3], const float p_src[3],
 | 
						|
        const float l_dst_p1[3], const float l_dst_p2[3],
 | 
						|
        const float l_src_p1[3], const float l_src_p2[3])
 | 
						|
{
 | 
						|
	float t = line_point_factor_v3(p_src, l_src_p1, l_src_p2);
 | 
						|
	interp_v3_v3v3(p_dst, l_dst_p1, l_dst_p2, t);
 | 
						|
}
 | 
						|
 | 
						|
/* given an array with some invalid values this function interpolates valid values
 | 
						|
 * replacing the invalid ones */
 | 
						|
int interp_sparse_array(float *array, const int list_size, const float skipval)
 | 
						|
{
 | 
						|
	int found_invalid = 0;
 | 
						|
	int found_valid = 0;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < list_size; i++) {
 | 
						|
		if (array[i] == skipval)
 | 
						|
			found_invalid = 1;
 | 
						|
		else
 | 
						|
			found_valid = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (found_valid == 0) {
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	else if (found_invalid == 0) {
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* found invalid depths, interpolate */
 | 
						|
		float valid_last = skipval;
 | 
						|
		int valid_ofs = 0;
 | 
						|
 | 
						|
		float *array_up = MEM_callocN(sizeof(float) * (size_t)list_size, "interp_sparse_array up");
 | 
						|
		float *array_down = MEM_callocN(sizeof(float) * (size_t)list_size, "interp_sparse_array up");
 | 
						|
 | 
						|
		int *ofs_tot_up = MEM_callocN(sizeof(int) * (size_t)list_size, "interp_sparse_array tup");
 | 
						|
		int *ofs_tot_down = MEM_callocN(sizeof(int) * (size_t)list_size, "interp_sparse_array tdown");
 | 
						|
 | 
						|
		for (i = 0; i < list_size; i++) {
 | 
						|
			if (array[i] == skipval) {
 | 
						|
				array_up[i] = valid_last;
 | 
						|
				ofs_tot_up[i] = ++valid_ofs;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				valid_last = array[i];
 | 
						|
				valid_ofs = 0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		valid_last = skipval;
 | 
						|
		valid_ofs = 0;
 | 
						|
 | 
						|
		for (i = list_size - 1; i >= 0; i--) {
 | 
						|
			if (array[i] == skipval) {
 | 
						|
				array_down[i] = valid_last;
 | 
						|
				ofs_tot_down[i] = ++valid_ofs;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				valid_last = array[i];
 | 
						|
				valid_ofs = 0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* now blend */
 | 
						|
		for (i = 0; i < list_size; i++) {
 | 
						|
			if (array[i] == skipval) {
 | 
						|
				if (array_up[i] != skipval && array_down[i] != skipval) {
 | 
						|
					array[i] = ((array_up[i]   * (float)ofs_tot_down[i]) +
 | 
						|
					            (array_down[i] * (float)ofs_tot_up[i])) / (float)(ofs_tot_down[i] + ofs_tot_up[i]);
 | 
						|
				}
 | 
						|
				else if (array_up[i] != skipval) {
 | 
						|
					array[i] = array_up[i];
 | 
						|
				}
 | 
						|
				else if (array_down[i] != skipval) {
 | 
						|
					array[i] = array_down[i];
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		MEM_freeN(array_up);
 | 
						|
		MEM_freeN(array_down);
 | 
						|
 | 
						|
		MEM_freeN(ofs_tot_up);
 | 
						|
		MEM_freeN(ofs_tot_down);
 | 
						|
	}
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/** \name interp_weights_poly_v2, v3
 | 
						|
 * \{ */
 | 
						|
 | 
						|
#define IS_POINT_IX     (1 << 0)
 | 
						|
#define IS_SEGMENT_IX   (1 << 1)
 | 
						|
 | 
						|
#define DIR_V3_SET(d_len, va, vb)  { \
 | 
						|
	sub_v3_v3v3((d_len)->dir, va, vb); \
 | 
						|
	(d_len)->len = len_v3((d_len)->dir); \
 | 
						|
} (void)0
 | 
						|
 | 
						|
#define DIR_V2_SET(d_len, va, vb)  { \
 | 
						|
	sub_v2_v2v2((d_len)->dir, va, vb); \
 | 
						|
	(d_len)->len = len_v2((d_len)->dir); \
 | 
						|
} (void)0
 | 
						|
 | 
						|
struct Float3_Len {
 | 
						|
	float dir[3], len;
 | 
						|
};
 | 
						|
 | 
						|
struct Float2_Len {
 | 
						|
	float dir[2], len;
 | 
						|
};
 | 
						|
 | 
						|
/* Mean value weights - smooth interpolation weights for polygons with
 | 
						|
 * more than 3 vertices */
 | 
						|
static float mean_value_half_tan_v3(const struct Float3_Len *d_curr, const struct Float3_Len *d_next)
 | 
						|
{
 | 
						|
	float cross[3], area;
 | 
						|
	cross_v3_v3v3(cross, d_curr->dir, d_next->dir);
 | 
						|
	area = len_v3(cross);
 | 
						|
	if (LIKELY(fabsf(area) > FLT_EPSILON)) {
 | 
						|
		const float dot = dot_v3v3(d_curr->dir, d_next->dir);
 | 
						|
		const float len = d_curr->len * d_next->len;
 | 
						|
		return (len - dot) / area;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		return 0.0f;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static float mean_value_half_tan_v2(const struct Float2_Len *d_curr, const struct Float2_Len *d_next)
 | 
						|
{
 | 
						|
	float area;
 | 
						|
	/* different from the 3d version but still correct */
 | 
						|
	area = cross_v2v2(d_curr->dir, d_next->dir);
 | 
						|
	if (LIKELY(fabsf(area) > FLT_EPSILON)) {
 | 
						|
		const float dot = dot_v2v2(d_curr->dir, d_next->dir);
 | 
						|
		const float len = d_curr->len * d_next->len;
 | 
						|
		return (len - dot) / area;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		return 0.0f;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void interp_weights_poly_v3(float *w, float v[][3], const int n, const float co[3])
 | 
						|
{
 | 
						|
	const float eps = 1e-5f;  /* take care, low values cause [#36105] */
 | 
						|
	const float eps_sq = eps * eps;
 | 
						|
	const float *v_curr, *v_next;
 | 
						|
	float ht_prev, ht;  /* half tangents */
 | 
						|
	float totweight = 0.0f;
 | 
						|
	int i_curr, i_next;
 | 
						|
	char ix_flag = 0;
 | 
						|
	struct Float3_Len d_curr, d_next;
 | 
						|
 | 
						|
	/* loop over 'i_next' */
 | 
						|
	i_curr = n - 1;
 | 
						|
	i_next = 0;
 | 
						|
 | 
						|
	v_curr = v[i_curr];
 | 
						|
	v_next = v[i_next];
 | 
						|
 | 
						|
	DIR_V3_SET(&d_curr, v_curr - 3 /* v[n - 2] */, co);
 | 
						|
	DIR_V3_SET(&d_next, v_curr     /* v[n - 1] */, co);
 | 
						|
	ht_prev = mean_value_half_tan_v3(&d_curr, &d_next);
 | 
						|
 | 
						|
	while (i_next < n) {
 | 
						|
		/* Mark Mayer et al algorithm that is used here does not operate well if vertex is close
 | 
						|
		 * to borders of face. In that case, do simple linear interpolation between the two edge vertices */
 | 
						|
 | 
						|
		/* 'd_next.len' is infact 'd_curr.len', just avoid copy to begin with */
 | 
						|
		if (UNLIKELY(d_next.len < eps)) {
 | 
						|
			ix_flag = IS_POINT_IX;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		else if (UNLIKELY(dist_squared_to_line_segment_v3(co, v_curr, v_next) < eps_sq)) {
 | 
						|
			ix_flag = IS_SEGMENT_IX;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		d_curr = d_next;
 | 
						|
		DIR_V3_SET(&d_next, v_next, co);
 | 
						|
		ht = mean_value_half_tan_v3(&d_curr, &d_next);
 | 
						|
		w[i_curr] = (ht_prev + ht) / d_curr.len;
 | 
						|
		totweight += w[i_curr];
 | 
						|
 | 
						|
		/* step */
 | 
						|
		i_curr = i_next++;
 | 
						|
		v_curr = v_next;
 | 
						|
		v_next = v[i_next];
 | 
						|
 | 
						|
		ht_prev = ht;
 | 
						|
	}
 | 
						|
 | 
						|
	if (ix_flag) {
 | 
						|
		memset(w, 0, sizeof(*w) * (size_t)n);
 | 
						|
 | 
						|
		if (ix_flag & IS_POINT_IX) {
 | 
						|
			w[i_curr] = 1.0f;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			float fac = line_point_factor_v3(co, v_curr, v_next);
 | 
						|
			CLAMP(fac, 0.0f, 1.0f);
 | 
						|
			w[i_curr] = 1.0f - fac;
 | 
						|
			w[i_next] = fac;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		if (totweight != 0.0f) {
 | 
						|
			for (i_curr = 0; i_curr < n; i_curr++) {
 | 
						|
				w[i_curr] /= totweight;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void interp_weights_poly_v2(float *w, float v[][2], const int n, const float co[2])
 | 
						|
{
 | 
						|
	const float eps = 1e-5f;  /* take care, low values cause [#36105] */
 | 
						|
	const float eps_sq = eps * eps;
 | 
						|
	const float *v_curr, *v_next;
 | 
						|
	float ht_prev, ht;  /* half tangents */
 | 
						|
	float totweight = 0.0f;
 | 
						|
	int i_curr, i_next;
 | 
						|
	char ix_flag = 0;
 | 
						|
	struct Float2_Len d_curr, d_next;
 | 
						|
 | 
						|
	/* loop over 'i_next' */
 | 
						|
	i_curr = n - 1;
 | 
						|
	i_next = 0;
 | 
						|
 | 
						|
	v_curr = v[i_curr];
 | 
						|
	v_next = v[i_next];
 | 
						|
 | 
						|
	DIR_V2_SET(&d_curr, v_curr - 2 /* v[n - 2] */, co);
 | 
						|
	DIR_V2_SET(&d_next, v_curr     /* v[n - 1] */, co);
 | 
						|
	ht_prev = mean_value_half_tan_v2(&d_curr, &d_next);
 | 
						|
 | 
						|
	while (i_next < n) {
 | 
						|
		/* Mark Mayer et al algorithm that is used here does not operate well if vertex is close
 | 
						|
		 * to borders of face. In that case, do simple linear interpolation between the two edge vertices */
 | 
						|
 | 
						|
		/* 'd_next.len' is infact 'd_curr.len', just avoid copy to begin with */
 | 
						|
		if (UNLIKELY(d_next.len < eps)) {
 | 
						|
			ix_flag = IS_POINT_IX;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		else if (UNLIKELY(dist_squared_to_line_segment_v2(co, v_curr, v_next) < eps_sq)) {
 | 
						|
			ix_flag = IS_SEGMENT_IX;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		d_curr = d_next;
 | 
						|
		DIR_V2_SET(&d_next, v_next, co);
 | 
						|
		ht = mean_value_half_tan_v2(&d_curr, &d_next);
 | 
						|
		w[i_curr] = (ht_prev + ht) / d_curr.len;
 | 
						|
		totweight += w[i_curr];
 | 
						|
 | 
						|
		/* step */
 | 
						|
		i_curr = i_next++;
 | 
						|
		v_curr = v_next;
 | 
						|
		v_next = v[i_next];
 | 
						|
 | 
						|
		ht_prev = ht;
 | 
						|
	}
 | 
						|
 | 
						|
	if (ix_flag) {
 | 
						|
		memset(w, 0, sizeof(*w) * (size_t)n);
 | 
						|
 | 
						|
		if (ix_flag & IS_POINT_IX) {
 | 
						|
			w[i_curr] = 1.0f;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			float fac = line_point_factor_v2(co, v_curr, v_next);
 | 
						|
			CLAMP(fac, 0.0f, 1.0f);
 | 
						|
			w[i_curr] = 1.0f - fac;
 | 
						|
			w[i_next] = fac;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		if (totweight != 0.0f) {
 | 
						|
			for (i_curr = 0; i_curr < n; i_curr++) {
 | 
						|
				w[i_curr] /= totweight;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#undef IS_POINT_IX
 | 
						|
#undef IS_SEGMENT_IX
 | 
						|
 | 
						|
#undef DIR_V3_SET
 | 
						|
#undef DIR_V2_SET
 | 
						|
 | 
						|
/** \} */
 | 
						|
 | 
						|
 | 
						|
/* (x1, v1)(t1=0)------(x2, v2)(t2=1), 0<t<1 --> (x, v)(t) */
 | 
						|
void interp_cubic_v3(float x[3], float v[3], const float x1[3], const float v1[3], const float x2[3], const float v2[3], const float t)
 | 
						|
{
 | 
						|
	float a[3], b[3];
 | 
						|
	const float t2 = t * t;
 | 
						|
	const float t3 = t2 * t;
 | 
						|
 | 
						|
	/* cubic interpolation */
 | 
						|
	a[0] = v1[0] + v2[0] + 2 * (x1[0] - x2[0]);
 | 
						|
	a[1] = v1[1] + v2[1] + 2 * (x1[1] - x2[1]);
 | 
						|
	a[2] = v1[2] + v2[2] + 2 * (x1[2] - x2[2]);
 | 
						|
 | 
						|
	b[0] = -2 * v1[0] - v2[0] - 3 * (x1[0] - x2[0]);
 | 
						|
	b[1] = -2 * v1[1] - v2[1] - 3 * (x1[1] - x2[1]);
 | 
						|
	b[2] = -2 * v1[2] - v2[2] - 3 * (x1[2] - x2[2]);
 | 
						|
 | 
						|
	x[0] = a[0] * t3 + b[0] * t2 + v1[0] * t + x1[0];
 | 
						|
	x[1] = a[1] * t3 + b[1] * t2 + v1[1] * t + x1[1];
 | 
						|
	x[2] = a[2] * t3 + b[2] * t2 + v1[2] * t + x1[2];
 | 
						|
 | 
						|
	v[0] = 3 * a[0] * t2 + 2 * b[0] * t + v1[0];
 | 
						|
	v[1] = 3 * a[1] * t2 + 2 * b[1] * t + v1[1];
 | 
						|
	v[2] = 3 * a[2] * t2 + 2 * b[2] * t + v1[2];
 | 
						|
}
 | 
						|
 | 
						|
/* unfortunately internal calculations have to be done at double precision to achieve correct/stable results. */
 | 
						|
 | 
						|
#define IS_ZERO(x) ((x > (-DBL_EPSILON) && x < DBL_EPSILON) ? 1 : 0)
 | 
						|
 | 
						|
/**
 | 
						|
 * Barycentric reverse
 | 
						|
 *
 | 
						|
 * Compute coordinates (u, v) for point \a st with respect to triangle (\a st0, \a st1, \a st2)
 | 
						|
 */
 | 
						|
void resolve_tri_uv_v2(float r_uv[2], const float st[2],
 | 
						|
                       const float st0[2], const float st1[2], const float st2[2])
 | 
						|
{
 | 
						|
	/* find UV such that
 | 
						|
	 * t = u * t0 + v * t1 + (1 - u - v) * t2
 | 
						|
	 * u * (t0 - t2) + v * (t1 - t2) = t - t2 */
 | 
						|
	const double a = st0[0] - st2[0], b = st1[0] - st2[0];
 | 
						|
	const double c = st0[1] - st2[1], d = st1[1] - st2[1];
 | 
						|
	const double det = a * d - c * b;
 | 
						|
 | 
						|
	/* det should never be zero since the determinant is the signed ST area of the triangle. */
 | 
						|
	if (IS_ZERO(det) == 0) {
 | 
						|
		const double x[2] = {st[0] - st2[0], st[1] - st2[1]};
 | 
						|
 | 
						|
		r_uv[0] = (float)((d * x[0] - b * x[1]) / det);
 | 
						|
		r_uv[1] = (float)(((-c) * x[0] + a * x[1]) / det);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		zero_v2(r_uv);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Barycentric reverse 3d
 | 
						|
 *
 | 
						|
 * Compute coordinates (u, v) for point \a st with respect to triangle (\a st0, \a st1, \a st2)
 | 
						|
 */
 | 
						|
void resolve_tri_uv_v3(float r_uv[2], const float st[3], const float st0[3], const float st1[3], const float st2[3])
 | 
						|
{
 | 
						|
	float v0[3], v1[3], v2[3];
 | 
						|
	double d00, d01, d11, d20, d21, det;
 | 
						|
 | 
						|
	sub_v3_v3v3(v0, st1, st0);
 | 
						|
	sub_v3_v3v3(v1, st2, st0);
 | 
						|
	sub_v3_v3v3(v2, st, st0);
 | 
						|
 | 
						|
	d00 = dot_v3v3(v0, v0);
 | 
						|
	d01 = dot_v3v3(v0, v1);
 | 
						|
	d11 = dot_v3v3(v1, v1);
 | 
						|
	d20 = dot_v3v3(v2, v0);
 | 
						|
	d21 = dot_v3v3(v2, v1);
 | 
						|
 | 
						|
	det = d00 * d11 - d01 * d01;
 | 
						|
 | 
						|
	/* det should never be zero since the determinant is the signed ST area of the triangle. */
 | 
						|
	if (IS_ZERO(det) == 0) {
 | 
						|
		float w;
 | 
						|
 | 
						|
		w =       (float)((d00 * d21 - d01 * d20) / det);
 | 
						|
		r_uv[1] = (float)((d11 * d20 - d01 * d21) / det);
 | 
						|
		r_uv[0] = 1.0f - r_uv[1] - w;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		zero_v2(r_uv);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* bilinear reverse */
 | 
						|
void resolve_quad_uv_v2(float r_uv[2], const float st[2],
 | 
						|
                        const float st0[2], const float st1[2], const float st2[2], const float st3[2])
 | 
						|
{
 | 
						|
	resolve_quad_uv_v2_deriv(r_uv, NULL, st, st0, st1, st2, st3);
 | 
						|
}
 | 
						|
 | 
						|
/* bilinear reverse with derivatives */
 | 
						|
void resolve_quad_uv_v2_deriv(float r_uv[2], float r_deriv[2][2],
 | 
						|
                              const float st[2], const float st0[2], const float st1[2], const float st2[2], const float st3[2])
 | 
						|
{
 | 
						|
	const double signed_area = (st0[0] * st1[1] - st0[1] * st1[0]) + (st1[0] * st2[1] - st1[1] * st2[0]) +
 | 
						|
	                           (st2[0] * st3[1] - st2[1] * st3[0]) + (st3[0] * st0[1] - st3[1] * st0[0]);
 | 
						|
 | 
						|
	/* X is 2D cross product (determinant)
 | 
						|
	 * A = (p0 - p) X (p0 - p3)*/
 | 
						|
	const double a = (st0[0] - st[0]) * (st0[1] - st3[1]) - (st0[1] - st[1]) * (st0[0] - st3[0]);
 | 
						|
 | 
						|
	/* B = ( (p0 - p) X (p1 - p2) + (p1 - p) X (p0 - p3) ) / 2 */
 | 
						|
	const double b = 0.5 * (double)(((st0[0] - st[0]) * (st1[1] - st2[1]) - (st0[1] - st[1]) * (st1[0] - st2[0])) +
 | 
						|
	                                ((st1[0] - st[0]) * (st0[1] - st3[1]) - (st1[1] - st[1]) * (st0[0] - st3[0])));
 | 
						|
 | 
						|
	/* C = (p1-p) X (p1-p2) */
 | 
						|
	const double fC = (st1[0] - st[0]) * (st1[1] - st2[1]) - (st1[1] - st[1]) * (st1[0] - st2[0]);
 | 
						|
	double denom = a - 2 * b + fC;
 | 
						|
 | 
						|
	/* clear outputs */
 | 
						|
	zero_v2(r_uv);
 | 
						|
 | 
						|
	if (IS_ZERO(denom) != 0) {
 | 
						|
		const double fDen = a - fC;
 | 
						|
		if (IS_ZERO(fDen) == 0)
 | 
						|
			r_uv[0] = (float)(a / fDen);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		const double desc_sq = b * b - a * fC;
 | 
						|
		const double desc = sqrt(desc_sq < 0.0 ? 0.0 : desc_sq);
 | 
						|
		const double s = signed_area > 0 ? (-1.0) : 1.0;
 | 
						|
 | 
						|
		r_uv[0] = (float)(((a - b) + s * desc) / denom);
 | 
						|
	}
 | 
						|
 | 
						|
	/* find UV such that
 | 
						|
	 * fST = (1-u)(1-v) * ST0 + u * (1-v) * ST1 + u * v * ST2 + (1-u) * v * ST3 */
 | 
						|
	{
 | 
						|
		const double denom_s = (1 - r_uv[0]) * (st0[0] - st3[0]) + r_uv[0] * (st1[0] - st2[0]);
 | 
						|
		const double denom_t = (1 - r_uv[0]) * (st0[1] - st3[1]) + r_uv[0] * (st1[1] - st2[1]);
 | 
						|
		int i = 0;
 | 
						|
		denom = denom_s;
 | 
						|
 | 
						|
		if (fabs(denom_s) < fabs(denom_t)) {
 | 
						|
			i = 1;
 | 
						|
			denom = denom_t;
 | 
						|
		}
 | 
						|
 | 
						|
		if (IS_ZERO(denom) == 0)
 | 
						|
			r_uv[1] = (float)((double)((1.0f - r_uv[0]) * (st0[i] - st[i]) + r_uv[0] * (st1[i] - st[i])) / denom);
 | 
						|
	}
 | 
						|
 | 
						|
	if (r_deriv) {
 | 
						|
		float tmp1[2], tmp2[2], s[2], t[2];
 | 
						|
		
 | 
						|
		/* clear outputs */
 | 
						|
		zero_v2(r_deriv[0]);
 | 
						|
		zero_v2(r_deriv[1]);
 | 
						|
		
 | 
						|
		sub_v2_v2v2(tmp1, st1, st0);
 | 
						|
		sub_v2_v2v2(tmp2, st2, st3);
 | 
						|
		interp_v2_v2v2(s, tmp1, tmp2, r_uv[1]);
 | 
						|
		sub_v2_v2v2(tmp1, st3, st0);
 | 
						|
		sub_v2_v2v2(tmp2, st2, st1);
 | 
						|
		interp_v2_v2v2(t, tmp1, tmp2, r_uv[0]);
 | 
						|
 | 
						|
		denom = t[0] * s[1] - t[1] * s[0];
 | 
						|
 | 
						|
		if (!IS_ZERO(denom)) {
 | 
						|
			double inv_denom = 1.0 / denom;
 | 
						|
			r_deriv[0][0] = (float)((double)-t[1] * inv_denom);
 | 
						|
			r_deriv[0][1] = (float)((double) t[0] * inv_denom);
 | 
						|
			r_deriv[1][0] = (float)((double) s[1] * inv_denom);
 | 
						|
			r_deriv[1][1] = (float)((double)-s[0] * inv_denom);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* a version of resolve_quad_uv_v2 that only calculates the 'u' */
 | 
						|
float resolve_quad_u_v2(
 | 
						|
        const float st[2],
 | 
						|
        const float st0[2], const float st1[2], const float st2[2], const float st3[2])
 | 
						|
{
 | 
						|
	const double signed_area = (st0[0] * st1[1] - st0[1] * st1[0]) + (st1[0] * st2[1] - st1[1] * st2[0]) +
 | 
						|
	                           (st2[0] * st3[1] - st2[1] * st3[0]) + (st3[0] * st0[1] - st3[1] * st0[0]);
 | 
						|
 | 
						|
	/* X is 2D cross product (determinant)
 | 
						|
	 * A = (p0 - p) X (p0 - p3)*/
 | 
						|
	const double a = (st0[0] - st[0]) * (st0[1] - st3[1]) - (st0[1] - st[1]) * (st0[0] - st3[0]);
 | 
						|
 | 
						|
	/* B = ( (p0 - p) X (p1 - p2) + (p1 - p) X (p0 - p3) ) / 2 */
 | 
						|
	const double b = 0.5 * (double)(((st0[0] - st[0]) * (st1[1] - st2[1]) - (st0[1] - st[1]) * (st1[0] - st2[0])) +
 | 
						|
	                                ((st1[0] - st[0]) * (st0[1] - st3[1]) - (st1[1] - st[1]) * (st0[0] - st3[0])));
 | 
						|
 | 
						|
	/* C = (p1-p) X (p1-p2) */
 | 
						|
	const double fC = (st1[0] - st[0]) * (st1[1] - st2[1]) - (st1[1] - st[1]) * (st1[0] - st2[0]);
 | 
						|
	double denom = a - 2 * b + fC;
 | 
						|
 | 
						|
	if (IS_ZERO(denom) != 0) {
 | 
						|
		const double fDen = a - fC;
 | 
						|
		if (IS_ZERO(fDen) == 0)
 | 
						|
			return (float)(a / fDen);
 | 
						|
		else
 | 
						|
			return 0.0f;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		const double desc_sq = b * b - a * fC;
 | 
						|
		const double desc = sqrt(desc_sq < 0.0 ? 0.0 : desc_sq);
 | 
						|
		const double s = signed_area > 0 ? (-1.0) : 1.0;
 | 
						|
 | 
						|
		return (float)(((a - b) + s * desc) / denom);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#undef IS_ZERO
 | 
						|
 | 
						|
/* reverse of the functions above */
 | 
						|
void interp_bilinear_quad_v3(float data[4][3], float u, float v, float res[3])
 | 
						|
{
 | 
						|
	float vec[3];
 | 
						|
 | 
						|
	copy_v3_v3(res, data[0]);
 | 
						|
	mul_v3_fl(res, (1 - u) * (1 - v));
 | 
						|
	copy_v3_v3(vec, data[1]);
 | 
						|
	mul_v3_fl(vec, u * (1 - v)); add_v3_v3(res, vec);
 | 
						|
	copy_v3_v3(vec, data[2]);
 | 
						|
	mul_v3_fl(vec, u * v); add_v3_v3(res, vec);
 | 
						|
	copy_v3_v3(vec, data[3]);
 | 
						|
	mul_v3_fl(vec, (1 - u) * v); add_v3_v3(res, vec);
 | 
						|
}
 | 
						|
 | 
						|
void interp_barycentric_tri_v3(float data[3][3], float u, float v, float res[3])
 | 
						|
{
 | 
						|
	float vec[3];
 | 
						|
 | 
						|
	copy_v3_v3(res, data[0]);
 | 
						|
	mul_v3_fl(res, u);
 | 
						|
	copy_v3_v3(vec, data[1]);
 | 
						|
	mul_v3_fl(vec, v); add_v3_v3(res, vec);
 | 
						|
	copy_v3_v3(vec, data[2]);
 | 
						|
	mul_v3_fl(vec, 1.0f - u - v); add_v3_v3(res, vec);
 | 
						|
}
 | 
						|
 | 
						|
/***************************** View & Projection *****************************/
 | 
						|
 | 
						|
void orthographic_m4(float matrix[4][4], const float left, const float right, const float bottom, const float top,
 | 
						|
                     const float nearClip, const float farClip)
 | 
						|
{
 | 
						|
	float Xdelta, Ydelta, Zdelta;
 | 
						|
 | 
						|
	Xdelta = right - left;
 | 
						|
	Ydelta = top - bottom;
 | 
						|
	Zdelta = farClip - nearClip;
 | 
						|
	if (Xdelta == 0.0f || Ydelta == 0.0f || Zdelta == 0.0f) {
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	unit_m4(matrix);
 | 
						|
	matrix[0][0] = 2.0f / Xdelta;
 | 
						|
	matrix[3][0] = -(right + left) / Xdelta;
 | 
						|
	matrix[1][1] = 2.0f / Ydelta;
 | 
						|
	matrix[3][1] = -(top + bottom) / Ydelta;
 | 
						|
	matrix[2][2] = -2.0f / Zdelta; /* note: negate Z	*/
 | 
						|
	matrix[3][2] = -(farClip + nearClip) / Zdelta;
 | 
						|
}
 | 
						|
 | 
						|
void perspective_m4(float mat[4][4], const float left, const float right, const float bottom, const float top,
 | 
						|
                    const float nearClip, const float farClip)
 | 
						|
{
 | 
						|
	const float Xdelta = right - left;
 | 
						|
	const float Ydelta = top - bottom;
 | 
						|
	const float Zdelta = farClip - nearClip;
 | 
						|
 | 
						|
	if (Xdelta == 0.0f || Ydelta == 0.0f || Zdelta == 0.0f) {
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	mat[0][0] = nearClip * 2.0f / Xdelta;
 | 
						|
	mat[1][1] = nearClip * 2.0f / Ydelta;
 | 
						|
	mat[2][0] = (right + left) / Xdelta; /* note: negate Z	*/
 | 
						|
	mat[2][1] = (top + bottom) / Ydelta;
 | 
						|
	mat[2][2] = -(farClip + nearClip) / Zdelta;
 | 
						|
	mat[2][3] = -1.0f;
 | 
						|
	mat[3][2] = (-2.0f * nearClip * farClip) / Zdelta;
 | 
						|
	mat[0][1] = mat[0][2] = mat[0][3] =
 | 
						|
	mat[1][0] = mat[1][2] = mat[1][3] =
 | 
						|
	mat[3][0] = mat[3][1] = mat[3][3] = 0.0f;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/* translate a matrix created by orthographic_m4 or perspective_m4 in XY coords (used to jitter the view) */
 | 
						|
void window_translate_m4(float winmat[4][4], float perspmat[4][4], const float x, const float y)
 | 
						|
{
 | 
						|
	if (winmat[2][3] == -1.0f) {
 | 
						|
		/* in the case of a win-matrix, this means perspective always */
 | 
						|
		float v1[3];
 | 
						|
		float v2[3];
 | 
						|
		float len1, len2;
 | 
						|
 | 
						|
		v1[0] = perspmat[0][0];
 | 
						|
		v1[1] = perspmat[1][0];
 | 
						|
		v1[2] = perspmat[2][0];
 | 
						|
 | 
						|
		v2[0] = perspmat[0][1];
 | 
						|
		v2[1] = perspmat[1][1];
 | 
						|
		v2[2] = perspmat[2][1];
 | 
						|
 | 
						|
		len1 = (1.0f / len_v3(v1));
 | 
						|
		len2 = (1.0f / len_v3(v2));
 | 
						|
 | 
						|
		winmat[2][0] += len1 * winmat[0][0] * x;
 | 
						|
		winmat[2][1] += len2 * winmat[1][1] * y;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		winmat[3][0] += x;
 | 
						|
		winmat[3][1] += y;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Frustum planes extraction from a projection matrix (homogeneous 4d vector representations of planes).
 | 
						|
 *
 | 
						|
 * plane parameters can be NULL if you do not need them.
 | 
						|
 */
 | 
						|
void planes_from_projmat(float mat[4][4], float left[4], float right[4], float top[4], float bottom[4],
 | 
						|
                         float near[4], float far[4])
 | 
						|
{
 | 
						|
	/* References:
 | 
						|
	 *
 | 
						|
	 * https://fgiesen.wordpress.com/2012/08/31/frustum-planes-from-the-projection-matrix/
 | 
						|
	 * http://www8.cs.umu.se/kurser/5DV051/HT12/lab/plane_extraction.pdf
 | 
						|
	 */
 | 
						|
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (left) {
 | 
						|
		for (i = 4; i--; ) {
 | 
						|
			left[i] = mat[i][3] + mat[i][0];
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (right) {
 | 
						|
		for (i = 4; i--; ) {
 | 
						|
			right[i] = mat[i][3] - mat[i][0];
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (bottom) {
 | 
						|
		for (i = 4; i--; ) {
 | 
						|
			bottom[i] = mat[i][3] + mat[i][1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (top) {
 | 
						|
		for (i = 4; i--; ) {
 | 
						|
			top[i] = mat[i][3] - mat[i][1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (near) {
 | 
						|
		for (i = 4; i--; ) {
 | 
						|
			near[i] = mat[i][3] + mat[i][2];
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (far) {
 | 
						|
		for (i = 4; i--; ) {
 | 
						|
			far[i] = mat[i][3] - mat[i][2];
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void i_multmatrix(float icand[4][4], float Vm[4][4])
 | 
						|
{
 | 
						|
	int row, col;
 | 
						|
	float temp[4][4];
 | 
						|
 | 
						|
	for (row = 0; row < 4; row++)
 | 
						|
		for (col = 0; col < 4; col++)
 | 
						|
			temp[row][col] = (icand[row][0] * Vm[0][col] +
 | 
						|
			                  icand[row][1] * Vm[1][col] +
 | 
						|
			                  icand[row][2] * Vm[2][col] +
 | 
						|
			                  icand[row][3] * Vm[3][col]);
 | 
						|
	copy_m4_m4(Vm, temp);
 | 
						|
}
 | 
						|
 | 
						|
void polarview_m4(float Vm[4][4], float dist, float azimuth, float incidence, float twist)
 | 
						|
{
 | 
						|
	unit_m4(Vm);
 | 
						|
 | 
						|
	translate_m4(Vm, 0.0, 0.0, -dist);
 | 
						|
	rotate_m4(Vm, 'Z', -twist);
 | 
						|
	rotate_m4(Vm, 'X', -incidence);
 | 
						|
	rotate_m4(Vm, 'Z', -azimuth);
 | 
						|
}
 | 
						|
 | 
						|
void lookat_m4(float mat[4][4], float vx, float vy, float vz, float px, float py, float pz, float twist)
 | 
						|
{
 | 
						|
	float sine, cosine, hyp, hyp1, dx, dy, dz;
 | 
						|
	float mat1[4][4];
 | 
						|
 | 
						|
	unit_m4(mat);
 | 
						|
	unit_m4(mat1);
 | 
						|
 | 
						|
	rotate_m4(mat, 'Z', -twist);
 | 
						|
 | 
						|
	dx = px - vx;
 | 
						|
	dy = py - vy;
 | 
						|
	dz = pz - vz;
 | 
						|
	hyp = dx * dx + dz * dz; /* hyp squared */
 | 
						|
	hyp1 = sqrtf(dy * dy + hyp);
 | 
						|
	hyp = sqrtf(hyp); /* the real hyp */
 | 
						|
 | 
						|
	if (hyp1 != 0.0f) { /* rotate X */
 | 
						|
		sine = -dy / hyp1;
 | 
						|
		cosine = hyp / hyp1;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		sine = 0.0f;
 | 
						|
		cosine = 1.0f;
 | 
						|
	}
 | 
						|
	mat1[1][1] = cosine;
 | 
						|
	mat1[1][2] = sine;
 | 
						|
	mat1[2][1] = -sine;
 | 
						|
	mat1[2][2] = cosine;
 | 
						|
 | 
						|
	i_multmatrix(mat1, mat);
 | 
						|
 | 
						|
	mat1[1][1] = mat1[2][2] = 1.0f; /* be careful here to reinit */
 | 
						|
	mat1[1][2] = mat1[2][1] = 0.0f; /* those modified by the last */
 | 
						|
 | 
						|
	/* paragraph */
 | 
						|
	if (hyp != 0.0f) { /* rotate Y */
 | 
						|
		sine = dx / hyp;
 | 
						|
		cosine = -dz / hyp;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		sine = 0.0f;
 | 
						|
		cosine = 1.0f;
 | 
						|
	}
 | 
						|
	mat1[0][0] = cosine;
 | 
						|
	mat1[0][2] = -sine;
 | 
						|
	mat1[2][0] = sine;
 | 
						|
	mat1[2][2] = cosine;
 | 
						|
 | 
						|
	i_multmatrix(mat1, mat);
 | 
						|
	translate_m4(mat, -vx, -vy, -vz); /* translate viewpoint to origin */
 | 
						|
}
 | 
						|
 | 
						|
int box_clip_bounds_m4(float boundbox[2][3], const float bounds[4], float winmat[4][4])
 | 
						|
{
 | 
						|
	float mat[4][4], vec[4];
 | 
						|
	int a, fl, flag = -1;
 | 
						|
 | 
						|
	copy_m4_m4(mat, winmat);
 | 
						|
 | 
						|
	for (a = 0; a < 8; a++) {
 | 
						|
		vec[0] = (a & 1) ? boundbox[0][0] : boundbox[1][0];
 | 
						|
		vec[1] = (a & 2) ? boundbox[0][1] : boundbox[1][1];
 | 
						|
		vec[2] = (a & 4) ? boundbox[0][2] : boundbox[1][2];
 | 
						|
		vec[3] = 1.0;
 | 
						|
		mul_m4_v4(mat, vec);
 | 
						|
 | 
						|
		fl = 0;
 | 
						|
		if (bounds) {
 | 
						|
			if (vec[0] > bounds[1] * vec[3]) fl |= 1;
 | 
						|
			if (vec[0] < bounds[0] * vec[3]) fl |= 2;
 | 
						|
			if (vec[1] > bounds[3] * vec[3]) fl |= 4;
 | 
						|
			if (vec[1] < bounds[2] * vec[3]) fl |= 8;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			if (vec[0] < -vec[3]) fl |= 1;
 | 
						|
			if (vec[0] > vec[3]) fl |= 2;
 | 
						|
			if (vec[1] < -vec[3]) fl |= 4;
 | 
						|
			if (vec[1] > vec[3]) fl |= 8;
 | 
						|
		}
 | 
						|
		if (vec[2] < -vec[3]) fl |= 16;
 | 
						|
		if (vec[2] > vec[3]) fl |= 32;
 | 
						|
 | 
						|
		flag &= fl;
 | 
						|
		if (flag == 0) return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return flag;
 | 
						|
}
 | 
						|
 | 
						|
void box_minmax_bounds_m4(float min[3], float max[3], float boundbox[2][3], float mat[4][4])
 | 
						|
{
 | 
						|
	float mn[3], mx[3], vec[3];
 | 
						|
	int a;
 | 
						|
 | 
						|
	copy_v3_v3(mn, min);
 | 
						|
	copy_v3_v3(mx, max);
 | 
						|
 | 
						|
	for (a = 0; a < 8; a++) {
 | 
						|
		vec[0] = (a & 1) ? boundbox[0][0] : boundbox[1][0];
 | 
						|
		vec[1] = (a & 2) ? boundbox[0][1] : boundbox[1][1];
 | 
						|
		vec[2] = (a & 4) ? boundbox[0][2] : boundbox[1][2];
 | 
						|
 | 
						|
		mul_m4_v3(mat, vec);
 | 
						|
		minmax_v3v3_v3(mn, mx, vec);
 | 
						|
	}
 | 
						|
 | 
						|
	copy_v3_v3(min, mn);
 | 
						|
	copy_v3_v3(max, mx);
 | 
						|
}
 | 
						|
 | 
						|
/********************************** Mapping **********************************/
 | 
						|
 | 
						|
void map_to_tube(float *r_u, float *r_v, const float x, const float y, const float z)
 | 
						|
{
 | 
						|
	float len;
 | 
						|
 | 
						|
	*r_v = (z + 1.0f) / 2.0f;
 | 
						|
 | 
						|
	len = sqrtf(x * x + y * y);
 | 
						|
	if (len > 0.0f) {
 | 
						|
		*r_u = (1.0f - (atan2f(x / len, y / len) / (float)M_PI)) / 2.0f;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		*r_v = *r_u = 0.0f; /* to avoid un-initialized variables */
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void map_to_sphere(float *r_u, float *r_v, const float x, const float y, const float z)
 | 
						|
{
 | 
						|
	float len;
 | 
						|
 | 
						|
	len = sqrtf(x * x + y * y + z * z);
 | 
						|
	if (len > 0.0f) {
 | 
						|
		if (UNLIKELY(x == 0.0f && y == 0.0f)) {
 | 
						|
			*r_u = 0.0f;  /* othwise domain error */
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			*r_u = (1.0f - atan2f(x, y) / (float)M_PI) / 2.0f;
 | 
						|
		}
 | 
						|
 | 
						|
		*r_v = 1.0f - saacos(z / len) / (float)M_PI;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		*r_v = *r_u = 0.0f; /* to avoid un-initialized variables */
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/********************************* Normals **********************************/
 | 
						|
 | 
						|
void accumulate_vertex_normals_tri(
 | 
						|
        float n1[3], float n2[3], float n3[3],
 | 
						|
        const float f_no[3],
 | 
						|
        const float co1[3], const float co2[3], const float co3[3])
 | 
						|
{
 | 
						|
	float vdiffs[3][3];
 | 
						|
	const int nverts = 3;
 | 
						|
 | 
						|
	/* compute normalized edge vectors */
 | 
						|
	sub_v3_v3v3(vdiffs[0], co2, co1);
 | 
						|
	sub_v3_v3v3(vdiffs[1], co3, co2);
 | 
						|
	sub_v3_v3v3(vdiffs[2], co1, co3);
 | 
						|
 | 
						|
	normalize_v3(vdiffs[0]);
 | 
						|
	normalize_v3(vdiffs[1]);
 | 
						|
	normalize_v3(vdiffs[2]);
 | 
						|
 | 
						|
	/* accumulate angle weighted face normal */
 | 
						|
	{
 | 
						|
		float *vn[] = {n1, n2, n3};
 | 
						|
		const float *prev_edge = vdiffs[nverts - 1];
 | 
						|
		int i;
 | 
						|
 | 
						|
		for (i = 0; i < nverts; i++) {
 | 
						|
			const float *cur_edge = vdiffs[i];
 | 
						|
			const float fac = saacos(-dot_v3v3(cur_edge, prev_edge));
 | 
						|
 | 
						|
			/* accumulate */
 | 
						|
			madd_v3_v3fl(vn[i], f_no, fac);
 | 
						|
			prev_edge = cur_edge;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void accumulate_vertex_normals(
 | 
						|
        float n1[3], float n2[3], float n3[3], float n4[3],
 | 
						|
        const float f_no[3],
 | 
						|
        const float co1[3], const float co2[3], const float co3[3], const float co4[3])
 | 
						|
{
 | 
						|
	float vdiffs[4][3];
 | 
						|
	const int nverts = (n4 != NULL && co4 != NULL) ? 4 : 3;
 | 
						|
 | 
						|
	/* compute normalized edge vectors */
 | 
						|
	sub_v3_v3v3(vdiffs[0], co2, co1);
 | 
						|
	sub_v3_v3v3(vdiffs[1], co3, co2);
 | 
						|
 | 
						|
	if (nverts == 3) {
 | 
						|
		sub_v3_v3v3(vdiffs[2], co1, co3);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		sub_v3_v3v3(vdiffs[2], co4, co3);
 | 
						|
		sub_v3_v3v3(vdiffs[3], co1, co4);
 | 
						|
		normalize_v3(vdiffs[3]);
 | 
						|
	}
 | 
						|
 | 
						|
	normalize_v3(vdiffs[0]);
 | 
						|
	normalize_v3(vdiffs[1]);
 | 
						|
	normalize_v3(vdiffs[2]);
 | 
						|
 | 
						|
	/* accumulate angle weighted face normal */
 | 
						|
	{
 | 
						|
		float *vn[] = {n1, n2, n3, n4};
 | 
						|
		const float *prev_edge = vdiffs[nverts - 1];
 | 
						|
		int i;
 | 
						|
 | 
						|
		for (i = 0; i < nverts; i++) {
 | 
						|
			const float *cur_edge = vdiffs[i];
 | 
						|
			const float fac = saacos(-dot_v3v3(cur_edge, prev_edge));
 | 
						|
 | 
						|
			/* accumulate */
 | 
						|
			madd_v3_v3fl(vn[i], f_no, fac);
 | 
						|
			prev_edge = cur_edge;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Add weighted face normal component into normals of the face vertices.
 | 
						|
 * Caller must pass pre-allocated vdiffs of nverts length. */
 | 
						|
void accumulate_vertex_normals_poly(float **vertnos, const float polyno[3],
 | 
						|
                                    const float **vertcos, float vdiffs[][3], const int nverts)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	/* calculate normalized edge directions for each edge in the poly */
 | 
						|
	for (i = 0; i < nverts; i++) {
 | 
						|
		sub_v3_v3v3(vdiffs[i], vertcos[(i + 1) % nverts], vertcos[i]);
 | 
						|
		normalize_v3(vdiffs[i]);
 | 
						|
	}
 | 
						|
 | 
						|
	/* accumulate angle weighted face normal */
 | 
						|
	{
 | 
						|
		const float *prev_edge = vdiffs[nverts - 1];
 | 
						|
 | 
						|
		for (i = 0; i < nverts; i++) {
 | 
						|
			const float *cur_edge = vdiffs[i];
 | 
						|
 | 
						|
			/* calculate angle between the two poly edges incident on
 | 
						|
			 * this vertex */
 | 
						|
			const float fac = saacos(-dot_v3v3(cur_edge, prev_edge));
 | 
						|
 | 
						|
			/* accumulate */
 | 
						|
			madd_v3_v3fl(vertnos[i], polyno, fac);
 | 
						|
			prev_edge = cur_edge;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/********************************* Tangents **********************************/
 | 
						|
 | 
						|
void tangent_from_uv(
 | 
						|
        const float uv1[2], const float uv2[2], const float uv3[3],
 | 
						|
        const float co1[3], const float co2[3], const float co3[3],
 | 
						|
        const float n[3],
 | 
						|
        float r_tang[3])
 | 
						|
{
 | 
						|
	const float s1 = uv2[0] - uv1[0];
 | 
						|
	const float s2 = uv3[0] - uv1[0];
 | 
						|
	const float t1 = uv2[1] - uv1[1];
 | 
						|
	const float t2 = uv3[1] - uv1[1];
 | 
						|
	float det = (s1 * t2 - s2 * t1);
 | 
						|
 | 
						|
	/* otherwise 'r_tang' becomes nan */
 | 
						|
	if (det != 0.0f) {
 | 
						|
		float tangv[3], ct[3], e1[3], e2[3];
 | 
						|
 | 
						|
		det = 1.0f / det;
 | 
						|
 | 
						|
		/* normals in render are inversed... */
 | 
						|
		sub_v3_v3v3(e1, co1, co2);
 | 
						|
		sub_v3_v3v3(e2, co1, co3);
 | 
						|
		r_tang[0] = (t2 * e1[0] - t1 * e2[0]) * det;
 | 
						|
		r_tang[1] = (t2 * e1[1] - t1 * e2[1]) * det;
 | 
						|
		r_tang[2] = (t2 * e1[2] - t1 * e2[2]) * det;
 | 
						|
		tangv[0] = (s1 * e2[0] - s2 * e1[0]) * det;
 | 
						|
		tangv[1] = (s1 * e2[1] - s2 * e1[1]) * det;
 | 
						|
		tangv[2] = (s1 * e2[2] - s2 * e1[2]) * det;
 | 
						|
		cross_v3_v3v3(ct, r_tang, tangv);
 | 
						|
 | 
						|
		/* check flip */
 | 
						|
		if (dot_v3v3(ct, n) < 0.0f) {
 | 
						|
			negate_v3(r_tang);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		zero_v3(r_tang);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/****************************** Vector Clouds ********************************/
 | 
						|
 | 
						|
/* vector clouds */
 | 
						|
/* void vcloud_estimate_transform(int list_size, float (*pos)[3], float *weight, float (*rpos)[3], float *rweight,
 | 
						|
 *                                float lloc[3], float rloc[3], float lrot[3][3], float lscale[3][3])
 | 
						|
 *
 | 
						|
 * input
 | 
						|
 * (
 | 
						|
 * int list_size
 | 
						|
 * 4 lists as pointer to array[list_size]
 | 
						|
 * 1. current pos array of 'new' positions
 | 
						|
 * 2. current weight array of 'new'weights (may be NULL pointer if you have no weights )
 | 
						|
 * 3. reference rpos array of 'old' positions
 | 
						|
 * 4. reference rweight array of 'old'weights (may be NULL pointer if you have no weights )
 | 
						|
 * )
 | 
						|
 * output
 | 
						|
 * (
 | 
						|
 * float lloc[3] center of mass pos
 | 
						|
 * float rloc[3] center of mass rpos
 | 
						|
 * float lrot[3][3] rotation matrix
 | 
						|
 * float lscale[3][3] scale matrix
 | 
						|
 * pointers may be NULL if not needed
 | 
						|
 * )
 | 
						|
 */
 | 
						|
 | 
						|
void vcloud_estimate_transform(int list_size, float (*pos)[3], float *weight, float (*rpos)[3], float *rweight,
 | 
						|
                               float lloc[3], float rloc[3], float lrot[3][3], float lscale[3][3])
 | 
						|
{
 | 
						|
	float accu_com[3] = {0.0f, 0.0f, 0.0f}, accu_rcom[3] = {0.0f, 0.0f, 0.0f};
 | 
						|
	float accu_weight = 0.0f, accu_rweight = 0.0f;
 | 
						|
	const float eps = 1e-6f;
 | 
						|
 | 
						|
	int a;
 | 
						|
	/* first set up a nice default response */
 | 
						|
	if (lloc) zero_v3(lloc);
 | 
						|
	if (rloc) zero_v3(rloc);
 | 
						|
	if (lrot) unit_m3(lrot);
 | 
						|
	if (lscale) unit_m3(lscale);
 | 
						|
	/* do com for both clouds */
 | 
						|
	if (pos && rpos && (list_size > 0)) { /* paranoya check */
 | 
						|
		/* do com for both clouds */
 | 
						|
		for (a = 0; a < list_size; a++) {
 | 
						|
			if (weight) {
 | 
						|
				float v[3];
 | 
						|
				copy_v3_v3(v, pos[a]);
 | 
						|
				mul_v3_fl(v, weight[a]);
 | 
						|
				add_v3_v3(accu_com, v);
 | 
						|
				accu_weight += weight[a];
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				add_v3_v3(accu_com, pos[a]);
 | 
						|
			}
 | 
						|
 | 
						|
			if (rweight) {
 | 
						|
				float v[3];
 | 
						|
				copy_v3_v3(v, rpos[a]);
 | 
						|
				mul_v3_fl(v, rweight[a]);
 | 
						|
				add_v3_v3(accu_rcom, v);
 | 
						|
				accu_rweight += rweight[a];
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				add_v3_v3(accu_rcom, rpos[a]);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (!weight || !rweight) {
 | 
						|
			accu_weight = accu_rweight = (float)list_size;
 | 
						|
		}
 | 
						|
 | 
						|
		mul_v3_fl(accu_com, 1.0f / accu_weight);
 | 
						|
		mul_v3_fl(accu_rcom, 1.0f / accu_rweight);
 | 
						|
		if (lloc) copy_v3_v3(lloc, accu_com);
 | 
						|
		if (rloc) copy_v3_v3(rloc, accu_rcom);
 | 
						|
		if (lrot || lscale) { /* caller does not want rot nor scale, strange but legal */
 | 
						|
			/*so now do some reverse engineering and see if we can split rotation from scale ->Polardecompose*/
 | 
						|
			/* build 'projection' matrix */
 | 
						|
			float m[3][3], mr[3][3], q[3][3], qi[3][3];
 | 
						|
			float va[3], vb[3], stunt[3];
 | 
						|
			float odet, ndet;
 | 
						|
			int i = 0, imax = 15;
 | 
						|
			zero_m3(m);
 | 
						|
			zero_m3(mr);
 | 
						|
 | 
						|
			/* build 'projection' matrix */
 | 
						|
			for (a = 0; a < list_size; a++) {
 | 
						|
				sub_v3_v3v3(va, rpos[a], accu_rcom);
 | 
						|
				/* mul_v3_fl(va, bp->mass);  mass needs renormalzation here ?? */
 | 
						|
				sub_v3_v3v3(vb, pos[a], accu_com);
 | 
						|
				/* mul_v3_fl(va, rp->mass); */
 | 
						|
				m[0][0] += va[0] * vb[0];
 | 
						|
				m[0][1] += va[0] * vb[1];
 | 
						|
				m[0][2] += va[0] * vb[2];
 | 
						|
 | 
						|
				m[1][0] += va[1] * vb[0];
 | 
						|
				m[1][1] += va[1] * vb[1];
 | 
						|
				m[1][2] += va[1] * vb[2];
 | 
						|
 | 
						|
				m[2][0] += va[2] * vb[0];
 | 
						|
				m[2][1] += va[2] * vb[1];
 | 
						|
				m[2][2] += va[2] * vb[2];
 | 
						|
 | 
						|
				/* building the reference matrix on the fly
 | 
						|
				 * needed to scale properly later */
 | 
						|
 | 
						|
				mr[0][0] += va[0] * va[0];
 | 
						|
				mr[0][1] += va[0] * va[1];
 | 
						|
				mr[0][2] += va[0] * va[2];
 | 
						|
 | 
						|
				mr[1][0] += va[1] * va[0];
 | 
						|
				mr[1][1] += va[1] * va[1];
 | 
						|
				mr[1][2] += va[1] * va[2];
 | 
						|
 | 
						|
				mr[2][0] += va[2] * va[0];
 | 
						|
				mr[2][1] += va[2] * va[1];
 | 
						|
				mr[2][2] += va[2] * va[2];
 | 
						|
			}
 | 
						|
			copy_m3_m3(q, m);
 | 
						|
			stunt[0] = q[0][0];
 | 
						|
			stunt[1] = q[1][1];
 | 
						|
			stunt[2] = q[2][2];
 | 
						|
			/* renormalizing for numeric stability */
 | 
						|
			mul_m3_fl(q, 1.f / len_v3(stunt));
 | 
						|
 | 
						|
			/* this is pretty much Polardecompose 'inline' the algo based on Higham's thesis */
 | 
						|
			/* without the far case ... but seems to work here pretty neat                   */
 | 
						|
			odet = 0.0f;
 | 
						|
			ndet = determinant_m3_array(q);
 | 
						|
			while ((odet - ndet) * (odet - ndet) > eps && i < imax) {
 | 
						|
				invert_m3_m3(qi, q);
 | 
						|
				transpose_m3(qi);
 | 
						|
				add_m3_m3m3(q, q, qi);
 | 
						|
				mul_m3_fl(q, 0.5f);
 | 
						|
				odet = ndet;
 | 
						|
				ndet = determinant_m3_array(q);
 | 
						|
				i++;
 | 
						|
			}
 | 
						|
 | 
						|
			if (i) {
 | 
						|
				float scale[3][3];
 | 
						|
				float irot[3][3];
 | 
						|
				if (lrot) copy_m3_m3(lrot, q);
 | 
						|
				invert_m3_m3(irot, q);
 | 
						|
				invert_m3_m3(qi, mr);
 | 
						|
				mul_m3_m3m3(q, m, qi);
 | 
						|
				mul_m3_m3m3(scale, irot, q);
 | 
						|
				if (lscale) copy_m3_m3(lscale, scale);
 | 
						|
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/******************************* Form Factor *********************************/
 | 
						|
 | 
						|
static void vec_add_dir(float r[3], const float v1[3], const float v2[3], const float fac)
 | 
						|
{
 | 
						|
	r[0] = v1[0] + fac * (v2[0] - v1[0]);
 | 
						|
	r[1] = v1[1] + fac * (v2[1] - v1[1]);
 | 
						|
	r[2] = v1[2] + fac * (v2[2] - v1[2]);
 | 
						|
}
 | 
						|
 | 
						|
bool form_factor_visible_quad(const float p[3], const float n[3],
 | 
						|
                              const float v0[3], const float v1[3], const float v2[3],
 | 
						|
                              float q0[3], float q1[3], float q2[3], float q3[3])
 | 
						|
{
 | 
						|
	static const float epsilon = 1e-6f;
 | 
						|
	float sd[3];
 | 
						|
	const float c = dot_v3v3(n, p);
 | 
						|
 | 
						|
	/* signed distances from the vertices to the plane. */
 | 
						|
	sd[0] = dot_v3v3(n, v0) - c;
 | 
						|
	sd[1] = dot_v3v3(n, v1) - c;
 | 
						|
	sd[2] = dot_v3v3(n, v2) - c;
 | 
						|
 | 
						|
	if (fabsf(sd[0]) < epsilon) sd[0] = 0.0f;
 | 
						|
	if (fabsf(sd[1]) < epsilon) sd[1] = 0.0f;
 | 
						|
	if (fabsf(sd[2]) < epsilon) sd[2] = 0.0f;
 | 
						|
 | 
						|
	if (sd[0] > 0.0f) {
 | 
						|
		if (sd[1] > 0.0f) {
 | 
						|
			if (sd[2] > 0.0f) {
 | 
						|
				/* +++ */
 | 
						|
				copy_v3_v3(q0, v0);
 | 
						|
				copy_v3_v3(q1, v1);
 | 
						|
				copy_v3_v3(q2, v2);
 | 
						|
				copy_v3_v3(q3, q2);
 | 
						|
			}
 | 
						|
			else if (sd[2] < 0.0f) {
 | 
						|
				/* ++- */
 | 
						|
				copy_v3_v3(q0, v0);
 | 
						|
				copy_v3_v3(q1, v1);
 | 
						|
				vec_add_dir(q2, v1, v2, (sd[1] / (sd[1] - sd[2])));
 | 
						|
				vec_add_dir(q3, v0, v2, (sd[0] / (sd[0] - sd[2])));
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				/* ++0 */
 | 
						|
				copy_v3_v3(q0, v0);
 | 
						|
				copy_v3_v3(q1, v1);
 | 
						|
				copy_v3_v3(q2, v2);
 | 
						|
				copy_v3_v3(q3, q2);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else if (sd[1] < 0.0f) {
 | 
						|
			if (sd[2] > 0.0f) {
 | 
						|
				/* +-+ */
 | 
						|
				copy_v3_v3(q0, v0);
 | 
						|
				vec_add_dir(q1, v0, v1, (sd[0] / (sd[0] - sd[1])));
 | 
						|
				vec_add_dir(q2, v1, v2, (sd[1] / (sd[1] - sd[2])));
 | 
						|
				copy_v3_v3(q3, v2);
 | 
						|
			}
 | 
						|
			else if (sd[2] < 0.0f) {
 | 
						|
				/* +-- */
 | 
						|
				copy_v3_v3(q0, v0);
 | 
						|
				vec_add_dir(q1, v0, v1, (sd[0] / (sd[0] - sd[1])));
 | 
						|
				vec_add_dir(q2, v0, v2, (sd[0] / (sd[0] - sd[2])));
 | 
						|
				copy_v3_v3(q3, q2);
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				/* +-0 */
 | 
						|
				copy_v3_v3(q0, v0);
 | 
						|
				vec_add_dir(q1, v0, v1, (sd[0] / (sd[0] - sd[1])));
 | 
						|
				copy_v3_v3(q2, v2);
 | 
						|
				copy_v3_v3(q3, q2);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			if (sd[2] > 0.0f) {
 | 
						|
				/* +0+ */
 | 
						|
				copy_v3_v3(q0, v0);
 | 
						|
				copy_v3_v3(q1, v1);
 | 
						|
				copy_v3_v3(q2, v2);
 | 
						|
				copy_v3_v3(q3, q2);
 | 
						|
			}
 | 
						|
			else if (sd[2] < 0.0f) {
 | 
						|
				/* +0- */
 | 
						|
				copy_v3_v3(q0, v0);
 | 
						|
				copy_v3_v3(q1, v1);
 | 
						|
				vec_add_dir(q2, v0, v2, (sd[0] / (sd[0] - sd[2])));
 | 
						|
				copy_v3_v3(q3, q2);
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				/* +00 */
 | 
						|
				copy_v3_v3(q0, v0);
 | 
						|
				copy_v3_v3(q1, v1);
 | 
						|
				copy_v3_v3(q2, v2);
 | 
						|
				copy_v3_v3(q3, q2);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else if (sd[0] < 0.0f) {
 | 
						|
		if (sd[1] > 0.0f) {
 | 
						|
			if (sd[2] > 0.0f) {
 | 
						|
				/* -++ */
 | 
						|
				vec_add_dir(q0, v0, v1, (sd[0] / (sd[0] - sd[1])));
 | 
						|
				copy_v3_v3(q1, v1);
 | 
						|
				copy_v3_v3(q2, v2);
 | 
						|
				vec_add_dir(q3, v0, v2, (sd[0] / (sd[0] - sd[2])));
 | 
						|
			}
 | 
						|
			else if (sd[2] < 0.0f) {
 | 
						|
				/* -+- */
 | 
						|
				vec_add_dir(q0, v0, v1, (sd[0] / (sd[0] - sd[1])));
 | 
						|
				copy_v3_v3(q1, v1);
 | 
						|
				vec_add_dir(q2, v1, v2, (sd[1] / (sd[1] - sd[2])));
 | 
						|
				copy_v3_v3(q3, q2);
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				/* -+0 */
 | 
						|
				vec_add_dir(q0, v0, v1, (sd[0] / (sd[0] - sd[1])));
 | 
						|
				copy_v3_v3(q1, v1);
 | 
						|
				copy_v3_v3(q2, v2);
 | 
						|
				copy_v3_v3(q3, q2);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else if (sd[1] < 0.0f) {
 | 
						|
			if (sd[2] > 0.0f) {
 | 
						|
				/* --+ */
 | 
						|
				vec_add_dir(q0, v0, v2, (sd[0] / (sd[0] - sd[2])));
 | 
						|
				vec_add_dir(q1, v1, v2, (sd[1] / (sd[1] - sd[2])));
 | 
						|
				copy_v3_v3(q2, v2);
 | 
						|
				copy_v3_v3(q3, q2);
 | 
						|
			}
 | 
						|
			else if (sd[2] < 0.0f) {
 | 
						|
				/* --- */
 | 
						|
				return false;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				/* --0 */
 | 
						|
				return false;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			if (sd[2] > 0.0f) {
 | 
						|
				/* -0+ */
 | 
						|
				vec_add_dir(q0, v0, v2, (sd[0] / (sd[0] - sd[2])));
 | 
						|
				copy_v3_v3(q1, v1);
 | 
						|
				copy_v3_v3(q2, v2);
 | 
						|
				copy_v3_v3(q3, q2);
 | 
						|
			}
 | 
						|
			else if (sd[2] < 0.0f) {
 | 
						|
				/* -0- */
 | 
						|
				return false;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				/* -00 */
 | 
						|
				return false;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		if (sd[1] > 0.0f) {
 | 
						|
			if (sd[2] > 0.0f) {
 | 
						|
				/* 0++ */
 | 
						|
				copy_v3_v3(q0, v0);
 | 
						|
				copy_v3_v3(q1, v1);
 | 
						|
				copy_v3_v3(q2, v2);
 | 
						|
				copy_v3_v3(q3, q2);
 | 
						|
			}
 | 
						|
			else if (sd[2] < 0.0f) {
 | 
						|
				/* 0+- */
 | 
						|
				copy_v3_v3(q0, v0);
 | 
						|
				copy_v3_v3(q1, v1);
 | 
						|
				vec_add_dir(q2, v1, v2, (sd[1] / (sd[1] - sd[2])));
 | 
						|
				copy_v3_v3(q3, q2);
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				/* 0+0 */
 | 
						|
				copy_v3_v3(q0, v0);
 | 
						|
				copy_v3_v3(q1, v1);
 | 
						|
				copy_v3_v3(q2, v2);
 | 
						|
				copy_v3_v3(q3, q2);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else if (sd[1] < 0.0f) {
 | 
						|
			if (sd[2] > 0.0f) {
 | 
						|
				/* 0-+ */
 | 
						|
				copy_v3_v3(q0, v0);
 | 
						|
				vec_add_dir(q1, v1, v2, (sd[1] / (sd[1] - sd[2])));
 | 
						|
				copy_v3_v3(q2, v2);
 | 
						|
				copy_v3_v3(q3, q2);
 | 
						|
			}
 | 
						|
			else if (sd[2] < 0.0f) {
 | 
						|
				/* 0-- */
 | 
						|
				return false;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				/* 0-0 */
 | 
						|
				return false;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			if (sd[2] > 0.0f) {
 | 
						|
				/* 00+ */
 | 
						|
				copy_v3_v3(q0, v0);
 | 
						|
				copy_v3_v3(q1, v1);
 | 
						|
				copy_v3_v3(q2, v2);
 | 
						|
				copy_v3_v3(q3, q2);
 | 
						|
			}
 | 
						|
			else if (sd[2] < 0.0f) {
 | 
						|
				/* 00- */
 | 
						|
				return false;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				/* 000 */
 | 
						|
				return false;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/* altivec optimization, this works, but is unused */
 | 
						|
 | 
						|
#if 0
 | 
						|
#include <Accelerate/Accelerate.h>
 | 
						|
 | 
						|
typedef union {
 | 
						|
	vFloat v;
 | 
						|
	float f[4];
 | 
						|
} vFloatResult;
 | 
						|
 | 
						|
static vFloat vec_splat_float(float val)
 | 
						|
{
 | 
						|
	return (vFloat) {val, val, val, val};
 | 
						|
}
 | 
						|
 | 
						|
static float ff_quad_form_factor(float *p, float *n, float *q0, float *q1, float *q2, float *q3)
 | 
						|
{
 | 
						|
	vFloat vcos, rlen, vrx, vry, vrz, vsrx, vsry, vsrz, gx, gy, gz, vangle;
 | 
						|
	vUInt8 rotate = (vUInt8) {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3};
 | 
						|
	vFloatResult vresult;
 | 
						|
	float result;
 | 
						|
 | 
						|
	/* compute r* */
 | 
						|
	vrx = (vFloat) {q0[0], q1[0], q2[0], q3[0]} -vec_splat_float(p[0]);
 | 
						|
	vry = (vFloat) {q0[1], q1[1], q2[1], q3[1]} -vec_splat_float(p[1]);
 | 
						|
	vrz = (vFloat) {q0[2], q1[2], q2[2], q3[2]} -vec_splat_float(p[2]);
 | 
						|
 | 
						|
	/* normalize r* */
 | 
						|
	rlen = vec_rsqrte(vrx * vrx + vry * vry + vrz * vrz + vec_splat_float(1e-16f));
 | 
						|
	vrx = vrx * rlen;
 | 
						|
	vry = vry * rlen;
 | 
						|
	vrz = vrz * rlen;
 | 
						|
 | 
						|
	/* rotate r* for cross and dot */
 | 
						|
	vsrx = vec_perm(vrx, vrx, rotate);
 | 
						|
	vsry = vec_perm(vry, vry, rotate);
 | 
						|
	vsrz = vec_perm(vrz, vrz, rotate);
 | 
						|
 | 
						|
	/* cross product */
 | 
						|
	gx = vsry * vrz - vsrz * vry;
 | 
						|
	gy = vsrz * vrx - vsrx * vrz;
 | 
						|
	gz = vsrx * vry - vsry * vrx;
 | 
						|
 | 
						|
	/* normalize */
 | 
						|
	rlen = vec_rsqrte(gx * gx + gy * gy + gz * gz + vec_splat_float(1e-16f));
 | 
						|
	gx = gx * rlen;
 | 
						|
	gy = gy * rlen;
 | 
						|
	gz = gz * rlen;
 | 
						|
 | 
						|
	/* angle */
 | 
						|
	vcos = vrx * vsrx + vry * vsry + vrz * vsrz;
 | 
						|
	vcos = vec_max(vec_min(vcos, vec_splat_float(1.0f)), vec_splat_float(-1.0f));
 | 
						|
	vangle = vacosf(vcos);
 | 
						|
 | 
						|
	/* dot */
 | 
						|
	vresult.v = (vec_splat_float(n[0]) * gx +
 | 
						|
	             vec_splat_float(n[1]) * gy +
 | 
						|
	             vec_splat_float(n[2]) * gz) * vangle;
 | 
						|
 | 
						|
	result = (vresult.f[0] + vresult.f[1] + vresult.f[2] + vresult.f[3]) * (0.5f / (float)M_PI);
 | 
						|
	result = MAX2(result, 0.0f);
 | 
						|
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/* SSE optimization, acos code doesn't work */
 | 
						|
 | 
						|
#if 0
 | 
						|
 | 
						|
#include <xmmintrin.h>
 | 
						|
 | 
						|
static __m128 sse_approx_acos(__m128 x)
 | 
						|
{
 | 
						|
	/* needs a better approximation than taylor expansion of acos, since that
 | 
						|
	 * gives big errors for near 1.0 values, sqrt(2 * x) * acos(1 - x) should work
 | 
						|
	 * better, see http://www.tom.womack.net/projects/sse-fast-arctrig.html */
 | 
						|
 | 
						|
	return _mm_set_ps1(1.0f);
 | 
						|
}
 | 
						|
 | 
						|
static float ff_quad_form_factor(float *p, float *n, float *q0, float *q1, float *q2, float *q3)
 | 
						|
{
 | 
						|
	float r0[3], r1[3], r2[3], r3[3], g0[3], g1[3], g2[3], g3[3];
 | 
						|
	float a1, a2, a3, a4, dot1, dot2, dot3, dot4, result;
 | 
						|
	float fresult[4] __attribute__((aligned(16)));
 | 
						|
	__m128 qx, qy, qz, rx, ry, rz, rlen, srx, sry, srz, gx, gy, gz, glen, rcos, angle, aresult;
 | 
						|
 | 
						|
	/* compute r */
 | 
						|
	qx = _mm_set_ps(q3[0], q2[0], q1[0], q0[0]);
 | 
						|
	qy = _mm_set_ps(q3[1], q2[1], q1[1], q0[1]);
 | 
						|
	qz = _mm_set_ps(q3[2], q2[2], q1[2], q0[2]);
 | 
						|
 | 
						|
	rx = qx - _mm_set_ps1(p[0]);
 | 
						|
	ry = qy - _mm_set_ps1(p[1]);
 | 
						|
	rz = qz - _mm_set_ps1(p[2]);
 | 
						|
 | 
						|
	/* normalize r */
 | 
						|
	rlen = _mm_rsqrt_ps(rx * rx + ry * ry + rz * rz + _mm_set_ps1(1e-16f));
 | 
						|
	rx = rx * rlen;
 | 
						|
	ry = ry * rlen;
 | 
						|
	rz = rz * rlen;
 | 
						|
 | 
						|
	/* cross product */
 | 
						|
	srx = _mm_shuffle_ps(rx, rx, _MM_SHUFFLE(0, 3, 2, 1));
 | 
						|
	sry = _mm_shuffle_ps(ry, ry, _MM_SHUFFLE(0, 3, 2, 1));
 | 
						|
	srz = _mm_shuffle_ps(rz, rz, _MM_SHUFFLE(0, 3, 2, 1));
 | 
						|
 | 
						|
	gx = sry * rz - srz * ry;
 | 
						|
	gy = srz * rx - srx * rz;
 | 
						|
	gz = srx * ry - sry * rx;
 | 
						|
 | 
						|
	/* normalize g */
 | 
						|
	glen = _mm_rsqrt_ps(gx * gx + gy * gy + gz * gz + _mm_set_ps1(1e-16f));
 | 
						|
	gx = gx * glen;
 | 
						|
	gy = gy * glen;
 | 
						|
	gz = gz * glen;
 | 
						|
 | 
						|
	/* compute angle */
 | 
						|
	rcos = rx * srx + ry * sry + rz * srz;
 | 
						|
	rcos = _mm_max_ps(_mm_min_ps(rcos, _mm_set_ps1(1.0f)), _mm_set_ps1(-1.0f));
 | 
						|
 | 
						|
	angle = sse_approx_cos(rcos);
 | 
						|
	aresult = (_mm_set_ps1(n[0]) * gx + _mm_set_ps1(n[1]) * gy + _mm_set_ps1(n[2]) * gz) * angle;
 | 
						|
 | 
						|
	/* sum together */
 | 
						|
	result = (fresult[0] + fresult[1] + fresult[2] + fresult[3]) * (0.5f / (float)M_PI);
 | 
						|
	result = MAX2(result, 0.0f);
 | 
						|
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
static void ff_normalize(float n[3])
 | 
						|
{
 | 
						|
	float d;
 | 
						|
 | 
						|
	d = dot_v3v3(n, n);
 | 
						|
 | 
						|
	if (d > 1.0e-35f) {
 | 
						|
		d = 1.0f / sqrtf(d);
 | 
						|
 | 
						|
		n[0] *= d;
 | 
						|
		n[1] *= d;
 | 
						|
		n[2] *= d;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
float form_factor_quad(const float p[3], const float n[3],
 | 
						|
                       const float q0[3], const float q1[3], const float q2[3], const float q3[3])
 | 
						|
{
 | 
						|
	float r0[3], r1[3], r2[3], r3[3], g0[3], g1[3], g2[3], g3[3];
 | 
						|
	float a1, a2, a3, a4, dot1, dot2, dot3, dot4, result;
 | 
						|
 | 
						|
	sub_v3_v3v3(r0, q0, p);
 | 
						|
	sub_v3_v3v3(r1, q1, p);
 | 
						|
	sub_v3_v3v3(r2, q2, p);
 | 
						|
	sub_v3_v3v3(r3, q3, p);
 | 
						|
 | 
						|
	ff_normalize(r0);
 | 
						|
	ff_normalize(r1);
 | 
						|
	ff_normalize(r2);
 | 
						|
	ff_normalize(r3);
 | 
						|
 | 
						|
	cross_v3_v3v3(g0, r1, r0);
 | 
						|
	ff_normalize(g0);
 | 
						|
	cross_v3_v3v3(g1, r2, r1);
 | 
						|
	ff_normalize(g1);
 | 
						|
	cross_v3_v3v3(g2, r3, r2);
 | 
						|
	ff_normalize(g2);
 | 
						|
	cross_v3_v3v3(g3, r0, r3);
 | 
						|
	ff_normalize(g3);
 | 
						|
 | 
						|
	a1 = saacosf(dot_v3v3(r0, r1));
 | 
						|
	a2 = saacosf(dot_v3v3(r1, r2));
 | 
						|
	a3 = saacosf(dot_v3v3(r2, r3));
 | 
						|
	a4 = saacosf(dot_v3v3(r3, r0));
 | 
						|
 | 
						|
	dot1 = dot_v3v3(n, g0);
 | 
						|
	dot2 = dot_v3v3(n, g1);
 | 
						|
	dot3 = dot_v3v3(n, g2);
 | 
						|
	dot4 = dot_v3v3(n, g3);
 | 
						|
 | 
						|
	result = (a1 * dot1 + a2 * dot2 + a3 * dot3 + a4 * dot4) * 0.5f / (float)M_PI;
 | 
						|
	result = MAX2(result, 0.0f);
 | 
						|
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
float form_factor_hemi_poly(float p[3], float n[3], float v1[3], float v2[3], float v3[3], float v4[3])
 | 
						|
{
 | 
						|
	/* computes how much hemisphere defined by point and normal is
 | 
						|
	 * covered by a quad or triangle, cosine weighted */
 | 
						|
	float q0[3], q1[3], q2[3], q3[3], contrib = 0.0f;
 | 
						|
 | 
						|
	if (form_factor_visible_quad(p, n, v1, v2, v3, q0, q1, q2, q3))
 | 
						|
		contrib += form_factor_quad(p, n, q0, q1, q2, q3);
 | 
						|
 | 
						|
	if (v4 && form_factor_visible_quad(p, n, v1, v3, v4, q0, q1, q2, q3))
 | 
						|
		contrib += form_factor_quad(p, n, q0, q1, q2, q3);
 | 
						|
 | 
						|
	return contrib;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Evaluate if entire quad is a proper convex quad
 | 
						|
 */
 | 
						|
bool is_quad_convex_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3])
 | 
						|
{
 | 
						|
	/**
 | 
						|
	 * Method projects points onto a plane and checks its convex using following method:
 | 
						|
	 *
 | 
						|
	 * - Create a plane from the cross-product of both diagonal vectors.
 | 
						|
	 * - Project all points onto the plane.
 | 
						|
	 * - Subtract for direction vectors.
 | 
						|
	 * - Return true if all corners cross-products point the direction of the plane.
 | 
						|
	 */
 | 
						|
 | 
						|
	/* non-unit length normal, used as a projection plane */
 | 
						|
	float plane[3];
 | 
						|
 | 
						|
	{
 | 
						|
		float v13[3], v24[3];
 | 
						|
 | 
						|
		sub_v3_v3v3(v13, v1, v3);
 | 
						|
		sub_v3_v3v3(v24, v2, v4);
 | 
						|
 | 
						|
		cross_v3_v3v3(plane, v13, v24);
 | 
						|
 | 
						|
		if (len_squared_v3(plane) < FLT_EPSILON) {
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	const float *quad_coords[4] = {v1, v2, v3, v4};
 | 
						|
	float        quad_proj[4][3];
 | 
						|
 | 
						|
	for (int i = 0; i < 4; i++) {
 | 
						|
		project_plane_v3_v3v3(quad_proj[i], quad_coords[i], plane);
 | 
						|
	}
 | 
						|
 | 
						|
	float        quad_dirs[4][3];
 | 
						|
	for (int i = 0, j = 3; i < 4; j = i++) {
 | 
						|
		sub_v3_v3v3(quad_dirs[i], quad_proj[i], quad_proj[j]);
 | 
						|
	}
 | 
						|
 | 
						|
	float test_dir[3];
 | 
						|
 | 
						|
#define CROSS_SIGN(dir_a, dir_b) \
 | 
						|
	((void)cross_v3_v3v3(test_dir, dir_a, dir_b), (dot_v3v3(plane, test_dir) > 0.0f))
 | 
						|
 | 
						|
	return (CROSS_SIGN(quad_dirs[0], quad_dirs[1]) &&
 | 
						|
	        CROSS_SIGN(quad_dirs[1], quad_dirs[2]) &&
 | 
						|
	        CROSS_SIGN(quad_dirs[2], quad_dirs[3]) &&
 | 
						|
	        CROSS_SIGN(quad_dirs[3], quad_dirs[0]));
 | 
						|
 | 
						|
#undef CROSS_SIGN
 | 
						|
}
 | 
						|
 | 
						|
bool is_quad_convex_v2(const float v1[2], const float v2[2], const float v3[2], const float v4[2])
 | 
						|
{
 | 
						|
	/* linetests, the 2 diagonals have to instersect to be convex */
 | 
						|
	return (isect_seg_seg_v2(v1, v3, v2, v4) > 0);
 | 
						|
}
 | 
						|
 | 
						|
bool is_poly_convex_v2(const float verts[][2], unsigned int nr)
 | 
						|
{
 | 
						|
	unsigned int sign_flag = 0;
 | 
						|
	unsigned int a;
 | 
						|
	const float *co_curr, *co_prev;
 | 
						|
	float dir_curr[2], dir_prev[2];
 | 
						|
 | 
						|
	co_prev = verts[nr - 1];
 | 
						|
	co_curr = verts[0];
 | 
						|
 | 
						|
	sub_v2_v2v2(dir_prev, verts[nr - 2], co_prev);
 | 
						|
 | 
						|
	for (a = 0; a < nr; a++) {
 | 
						|
		float cross;
 | 
						|
 | 
						|
		sub_v2_v2v2(dir_curr, co_prev, co_curr);
 | 
						|
 | 
						|
		cross = cross_v2v2(dir_prev, dir_curr);
 | 
						|
 | 
						|
		if (cross < 0.0f) {
 | 
						|
			sign_flag |= 1;
 | 
						|
		}
 | 
						|
		else if (cross > 0.0f) {
 | 
						|
			sign_flag |= 2;
 | 
						|
		}
 | 
						|
 | 
						|
		if (sign_flag == (1 | 2)) {
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
 | 
						|
		copy_v2_v2(dir_prev, dir_curr);
 | 
						|
 | 
						|
		co_prev = co_curr;
 | 
						|
		co_curr += 2;
 | 
						|
	}
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Check if either of the diagonals along this quad create flipped triangles
 | 
						|
 * (normals pointing away from eachother).
 | 
						|
 * - (1 << 0): (v1-v3) is flipped.
 | 
						|
 * - (1 << 1): (v2-v4) is flipped.
 | 
						|
 */
 | 
						|
int is_quad_flip_v3(const float v1[3], const float v2[3], const float v3[3], const float v4[3])
 | 
						|
{
 | 
						|
	float d_12[3], d_23[3], d_34[3], d_41[3];
 | 
						|
	float cross_a[3], cross_b[3];
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	sub_v3_v3v3(d_12, v1, v2);
 | 
						|
	sub_v3_v3v3(d_23, v2, v3);
 | 
						|
	sub_v3_v3v3(d_34, v3, v4);
 | 
						|
	sub_v3_v3v3(d_41, v4, v1);
 | 
						|
 | 
						|
	cross_v3_v3v3(cross_a, d_12, d_23);
 | 
						|
	cross_v3_v3v3(cross_b, d_34, d_41);
 | 
						|
	ret |= ((dot_v3v3(cross_a, cross_b) < 0.0f) << 0);
 | 
						|
 | 
						|
	cross_v3_v3v3(cross_a, d_23, d_34);
 | 
						|
	cross_v3_v3v3(cross_b, d_41, d_12);
 | 
						|
	ret |= ((dot_v3v3(cross_a, cross_b) < 0.0f) << 1);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 |