This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/physics/intern/BPH_mass_spring.cpp
Lukas Tönne 42fc88de43 Fallback method for defining density in the hair grid using discrete
samples.

This is just an intermediate method to make sure the density is valid.
Eventually the closest-point method should be used, but for testing
the poisson solver this is easier to debug.

Conflicts:
	source/blender/physics/intern/BPH_mass_spring.cpp
2015-01-20 09:30:07 +01:00

1020 lines
33 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) Blender Foundation
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Lukas Toenne
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/BPH_mass_spring.c
* \ingroup bph
*/
extern "C" {
#include "MEM_guardedalloc.h"
#include "DNA_cloth_types.h"
#include "DNA_scene_types.h"
#include "DNA_object_force.h"
#include "DNA_object_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "BLI_math.h"
#include "BLI_linklist.h"
#include "BLI_utildefines.h"
#include "BKE_cloth.h"
#include "BKE_collision.h"
#include "BKE_effect.h"
}
#include "BPH_mass_spring.h"
#include "implicit.h"
/* Number of off-diagonal non-zero matrix blocks.
* Basically there is one of these for each vertex-vertex interaction.
*/
static int cloth_count_nondiag_blocks(Cloth *cloth)
{
LinkNode *link;
int nondiag = 0;
for (link = cloth->springs; link; link = link->next) {
ClothSpring *spring = (ClothSpring *)link->link;
switch (spring->type) {
case CLOTH_SPRING_TYPE_BENDING_ANG:
/* angular bending combines 3 vertices */
nondiag += 3;
break;
default:
/* all other springs depend on 2 vertices only */
nondiag += 1;
break;
}
}
return nondiag;
}
int BPH_cloth_solver_init(Object *UNUSED(ob), ClothModifierData *clmd)
{
Cloth *cloth = clmd->clothObject;
ClothVertex *verts = cloth->verts;
const float ZERO[3] = {0.0f, 0.0f, 0.0f};
Implicit_Data *id;
unsigned int i, nondiag;
nondiag = cloth_count_nondiag_blocks(cloth);
cloth->implicit = id = BPH_mass_spring_solver_create(cloth->numverts, nondiag);
for (i = 0; i < cloth->numverts; i++) {
BPH_mass_spring_set_vertex_mass(id, i, verts[i].mass);
}
for (i = 0; i < cloth->numverts; i++) {
BPH_mass_spring_set_motion_state(id, i, verts[i].x, ZERO);
}
return 1;
}
void BPH_cloth_solver_free(ClothModifierData *clmd)
{
Cloth *cloth = clmd->clothObject;
if (cloth->implicit) {
BPH_mass_spring_solver_free(cloth->implicit);
cloth->implicit = NULL;
}
}
void BKE_cloth_solver_set_positions(ClothModifierData *clmd)
{
Cloth *cloth = clmd->clothObject;
ClothVertex *verts = cloth->verts;
unsigned int numverts = cloth->numverts, i;
ClothHairRoot *cloth_roots = clmd->roots;
Implicit_Data *id = cloth->implicit;
for (i = 0; i < numverts; i++) {
ClothHairRoot *root = &cloth_roots[i];
BPH_mass_spring_set_rest_transform(id, i, root->rot);
BPH_mass_spring_set_motion_state(id, i, verts[i].x, verts[i].v);
}
}
static bool collision_response(ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, float dt, float restitution, float r_impulse[3])
{
Cloth *cloth = clmd->clothObject;
int index = collpair->ap1;
bool result = false;
float v1[3], v2_old[3], v2_new[3], v_rel_old[3], v_rel_new[3];
float epsilon2 = BLI_bvhtree_getepsilon(collmd->bvhtree);
float margin_distance = collpair->distance - epsilon2;
float mag_v_rel;
zero_v3(r_impulse);
if (margin_distance > 0.0f)
return false; /* XXX tested before already? */
/* only handle static collisions here */
if ( collpair->flag & COLLISION_IN_FUTURE )
return false;
/* velocity */
copy_v3_v3(v1, cloth->verts[index].v);
collision_get_collider_velocity(v2_old, v2_new, collmd, collpair);
/* relative velocity = velocity of the cloth point relative to the collider */
sub_v3_v3v3(v_rel_old, v1, v2_old);
sub_v3_v3v3(v_rel_new, v1, v2_new);
/* normal component of the relative velocity */
mag_v_rel = dot_v3v3(v_rel_old, collpair->normal);
/* only valid when moving toward the collider */
if (mag_v_rel < -ALMOST_ZERO) {
float v_nor_old, v_nor_new;
float v_tan_old[3], v_tan_new[3];
float bounce, repulse;
/* Collision response based on
* "Simulating Complex Hair with Robust Collision Handling" (Choe, Choi, Ko, ACM SIGGRAPH 2005)
* http://graphics.snu.ac.kr/publications/2005-choe-HairSim/Choe_2005_SCA.pdf
*/
v_nor_old = mag_v_rel;
v_nor_new = dot_v3v3(v_rel_new, collpair->normal);
madd_v3_v3v3fl(v_tan_old, v_rel_old, collpair->normal, -v_nor_old);
madd_v3_v3v3fl(v_tan_new, v_rel_new, collpair->normal, -v_nor_new);
bounce = -v_nor_old * restitution;
repulse = -margin_distance / dt; /* base repulsion velocity in normal direction */
/* XXX this clamping factor is quite arbitrary ...
* not sure if there is a more scientific approach, but seems to give good results
*/
CLAMP(repulse, 0.0f, 4.0f * bounce);
if (margin_distance < -epsilon2) {
mul_v3_v3fl(r_impulse, collpair->normal, max_ff(repulse, bounce) - v_nor_new);
}
else {
bounce = 0.0f;
mul_v3_v3fl(r_impulse, collpair->normal, repulse - v_nor_new);
}
result = true;
}
return result;
}
/* Init constraint matrix
* This is part of the modified CG method suggested by Baraff/Witkin in
* "Large Steps in Cloth Simulation" (Siggraph 1998)
*/
static void cloth_setup_constraints(ClothModifierData *clmd, ColliderContacts *contacts, int totcolliders, float dt)
{
Cloth *cloth = clmd->clothObject;
Implicit_Data *data = cloth->implicit;
ClothVertex *verts = cloth->verts;
int numverts = cloth->numverts;
int i, j, v;
const float ZERO[3] = {0.0f, 0.0f, 0.0f};
for (v = 0; v < numverts; v++) {
if (verts[v].flags & CLOTH_VERT_FLAG_PINNED) {
/* pinned vertex constraints */
BPH_mass_spring_add_constraint_ndof0(data, v, ZERO); /* velocity is defined externally */
}
verts[v].impulse_count = 0;
}
for (i = 0; i < totcolliders; ++i) {
ColliderContacts *ct = &contacts[i];
for (j = 0; j < ct->totcollisions; ++j) {
CollPair *collpair = &ct->collisions[j];
// float restitution = (1.0f - clmd->coll_parms->damping) * (1.0f - ct->ob->pd->pdef_sbdamp);
float restitution = 0.0f;
int v = collpair->face1;
float impulse[3];
/* pinned verts handled separately */
if (verts[v].flags & CLOTH_VERT_FLAG_PINNED)
continue;
/* XXX cheap way of avoiding instability from multiple collisions in the same step
* this should eventually be supported ...
*/
if (verts[v].impulse_count > 0)
continue;
/* calculate collision response */
if (!collision_response(clmd, ct->collmd, collpair, dt, restitution, impulse))
continue;
BPH_mass_spring_add_constraint_ndof2(data, v, collpair->normal, impulse);
++verts[v].impulse_count;
BKE_sim_debug_data_add_dot(clmd->debug_data, collpair->pa, 0, 1, 0, "collision", hash_collpair(936, collpair));
// BKE_sim_debug_data_add_dot(clmd->debug_data, collpair->pb, 1, 0, 0, "collision", hash_collpair(937, collpair));
// BKE_sim_debug_data_add_line(clmd->debug_data, collpair->pa, collpair->pb, 0.7, 0.7, 0.7, "collision", hash_collpair(938, collpair));
#if 0
{ /* DEBUG */
float nor[3];
mul_v3_v3fl(nor, collpair->normal, -collpair->distance);
BKE_sim_debug_data_add_vector(clmd->debug_data, collpair->pa, nor, 1, 1, 0, "collision", hash_collpair(939, collpair));
// BKE_sim_debug_data_add_vector(clmd->debug_data, collpair->pb, impulse, 1, 1, 0, "collision", hash_collpair(940, collpair));
// BKE_sim_debug_data_add_vector(clmd->debug_data, collpair->pb, collpair->normal, 1, 1, 0, "collision", hash_collpair(941, collpair));
}
#endif
}
}
}
/* computes where the cloth would be if it were subject to perfectly stiff edges
* (edge distance constraints) in a lagrangian solver. then add forces to help
* guide the implicit solver to that state. this function is called after
* collisions*/
static int UNUSED_FUNCTION(cloth_calc_helper_forces)(Object *UNUSED(ob), ClothModifierData *clmd, float (*initial_cos)[3], float UNUSED(step), float dt)
{
Cloth *cloth= clmd->clothObject;
float (*cos)[3] = (float (*)[3])MEM_callocN(sizeof(float)*3*cloth->numverts, "cos cloth_calc_helper_forces");
float *masses = (float *)MEM_callocN(sizeof(float)*cloth->numverts, "cos cloth_calc_helper_forces");
LinkNode *node;
ClothSpring *spring;
ClothVertex *cv;
int i, steps;
cv = cloth->verts;
for (i=0; i<cloth->numverts; i++, cv++) {
copy_v3_v3(cos[i], cv->tx);
if (cv->goal == 1.0f || len_squared_v3v3(initial_cos[i], cv->tx) != 0.0f) {
masses[i] = 1e+10;
}
else {
masses[i] = cv->mass;
}
}
steps = 55;
for (i=0; i<steps; i++) {
for (node=cloth->springs; node; node=node->next) {
/* ClothVertex *cv1, *cv2; */ /* UNUSED */
int v1, v2;
float len, c, l, vec[3];
spring = (ClothSpring *)node->link;
if (spring->type != CLOTH_SPRING_TYPE_STRUCTURAL && spring->type != CLOTH_SPRING_TYPE_SHEAR)
continue;
v1 = spring->ij; v2 = spring->kl;
/* cv1 = cloth->verts + v1; */ /* UNUSED */
/* cv2 = cloth->verts + v2; */ /* UNUSED */
len = len_v3v3(cos[v1], cos[v2]);
sub_v3_v3v3(vec, cos[v1], cos[v2]);
normalize_v3(vec);
c = (len - spring->restlen);
if (c == 0.0f)
continue;
l = c / ((1.0f / masses[v1]) + (1.0f / masses[v2]));
mul_v3_fl(vec, -(1.0f / masses[v1]) * l);
add_v3_v3(cos[v1], vec);
sub_v3_v3v3(vec, cos[v2], cos[v1]);
normalize_v3(vec);
mul_v3_fl(vec, -(1.0f / masses[v2]) * l);
add_v3_v3(cos[v2], vec);
}
}
cv = cloth->verts;
for (i=0; i<cloth->numverts; i++, cv++) {
float vec[3];
/*compute forces*/
sub_v3_v3v3(vec, cos[i], cv->tx);
mul_v3_fl(vec, cv->mass*dt*20.0f);
add_v3_v3(cv->tv, vec);
//copy_v3_v3(cv->tx, cos[i]);
}
MEM_freeN(cos);
MEM_freeN(masses);
return 1;
}
BLI_INLINE void cloth_calc_spring_force(ClothModifierData *clmd, ClothSpring *s, float time)
{
Cloth *cloth = clmd->clothObject;
ClothSimSettings *parms = clmd->sim_parms;
Implicit_Data *data = cloth->implicit;
ClothVertex *verts = cloth->verts;
bool no_compress = parms->flags & CLOTH_SIMSETTINGS_FLAG_NO_SPRING_COMPRESS;
zero_v3(s->f);
zero_m3(s->dfdx);
zero_m3(s->dfdv);
s->flags &= ~CLOTH_SPRING_FLAG_NEEDED;
// calculate force of structural + shear springs
if ((s->type & CLOTH_SPRING_TYPE_STRUCTURAL) || (s->type & CLOTH_SPRING_TYPE_SHEAR) || (s->type & CLOTH_SPRING_TYPE_SEWING) ) {
#ifdef CLOTH_FORCE_SPRING_STRUCTURAL
float k, scaling;
s->flags |= CLOTH_SPRING_FLAG_NEEDED;
scaling = parms->structural + s->stiffness * fabsf(parms->max_struct - parms->structural);
k = scaling / (parms->avg_spring_len + FLT_EPSILON);
if (s->type & CLOTH_SPRING_TYPE_SEWING) {
// TODO: verify, half verified (couldn't see error)
// sewing springs usually have a large distance at first so clamp the force so we don't get tunnelling through colission objects
BPH_mass_spring_force_spring_linear(data, s->ij, s->kl, s->restlen, k, parms->Cdis, no_compress, parms->max_sewing, s->f, s->dfdx, s->dfdv);
}
else {
BPH_mass_spring_force_spring_linear(data, s->ij, s->kl, s->restlen, k, parms->Cdis, no_compress, 0.0f, s->f, s->dfdx, s->dfdv);
}
#endif
}
else if (s->type & CLOTH_SPRING_TYPE_GOAL) {
#ifdef CLOTH_FORCE_SPRING_GOAL
float goal_x[3], goal_v[3];
float k, scaling;
s->flags |= CLOTH_SPRING_FLAG_NEEDED;
// current_position = xold + t * (newposition - xold)
interp_v3_v3v3(goal_x, verts[s->ij].xold, verts[s->ij].xconst, time);
sub_v3_v3v3(goal_v, verts[s->ij].xconst, verts[s->ij].xold); // distance covered over dt==1
scaling = parms->goalspring + s->stiffness * fabsf(parms->max_struct - parms->goalspring);
k = verts[s->ij].goal * scaling / (parms->avg_spring_len + FLT_EPSILON);
BPH_mass_spring_force_spring_goal(data, s->ij, goal_x, goal_v, k, parms->goalfrict * 0.01f, s->f, s->dfdx, s->dfdv);
#endif
}
else if (s->type & CLOTH_SPRING_TYPE_BENDING) { /* calculate force of bending springs */
#ifdef CLOTH_FORCE_SPRING_BEND
float kb, cb, scaling;
s->flags |= CLOTH_SPRING_FLAG_NEEDED;
scaling = parms->bending + s->stiffness * fabsf(parms->max_bend - parms->bending);
kb = scaling / (20.0f * (parms->avg_spring_len + FLT_EPSILON));
scaling = parms->bending_damping;
cb = scaling / (20.0f * (parms->avg_spring_len + FLT_EPSILON));
BPH_mass_spring_force_spring_bending(data, s->ij, s->kl, s->restlen, kb, cb, s->f, s->dfdx, s->dfdv);
#endif
}
else if (s->type & CLOTH_SPRING_TYPE_BENDING_ANG) {
#ifdef CLOTH_FORCE_SPRING_BEND
float kb, cb, scaling;
s->flags |= CLOTH_SPRING_FLAG_NEEDED;
scaling = parms->bending + s->stiffness * fabsf(parms->max_bend - parms->bending);
kb = scaling / (20.0f * (parms->avg_spring_len + FLT_EPSILON));
scaling = parms->bending_damping;
cb = scaling / (20.0f * (parms->avg_spring_len + FLT_EPSILON));
/* XXX assuming same restlen for ij and jk segments here, this can be done correctly for hair later */
BPH_mass_spring_force_spring_bending_angular(data, s->ij, s->kl, s->mn, s->target, kb, cb);
#if 0
{
float x_kl[3], x_mn[3], v[3], d[3];
BPH_mass_spring_get_motion_state(data, s->kl, x_kl, v);
BPH_mass_spring_get_motion_state(data, s->mn, x_mn, v);
BKE_sim_debug_data_add_dot(clmd->debug_data, x_kl, 0.9, 0.9, 0.9, "target", hash_vertex(7980, s->kl));
BKE_sim_debug_data_add_line(clmd->debug_data, x_kl, x_mn, 0.8, 0.8, 0.8, "target", hash_vertex(7981, s->kl));
copy_v3_v3(d, s->target);
BKE_sim_debug_data_add_vector(clmd->debug_data, x_kl, d, 0.8, 0.8, 0.2, "target", hash_vertex(7982, s->kl));
// copy_v3_v3(d, s->target_ij);
// BKE_sim_debug_data_add_vector(clmd->debug_data, x, d, 1, 0.4, 0.4, "target", hash_vertex(7983, s->kl));
}
#endif
#endif
}
}
static void hair_get_boundbox(ClothModifierData *clmd, float gmin[3], float gmax[3])
{
Cloth *cloth = clmd->clothObject;
Implicit_Data *data = cloth->implicit;
unsigned int numverts = cloth->numverts;
int i;
INIT_MINMAX(gmin, gmax);
for (i = 0; i < numverts; i++) {
float x[3];
BPH_mass_spring_get_motion_state(data, i, x, NULL);
DO_MINMAX(x, gmin, gmax);
}
}
static void cloth_calc_force(ClothModifierData *clmd, float UNUSED(frame), ListBase *effectors, float time)
{
/* Collect forces and derivatives: F, dFdX, dFdV */
Cloth *cloth = clmd->clothObject;
Implicit_Data *data = cloth->implicit;
unsigned int i = 0;
float drag = clmd->sim_parms->Cvi * 0.01f; /* viscosity of air scaled in percent */
float gravity[3] = {0.0f, 0.0f, 0.0f};
MFace *mfaces = cloth->mfaces;
unsigned int numverts = cloth->numverts;
ClothVertex *vert;
#ifdef CLOTH_FORCE_GRAVITY
/* global acceleration (gravitation) */
if (clmd->scene->physics_settings.flag & PHYS_GLOBAL_GRAVITY) {
/* scale gravity force */
mul_v3_v3fl(gravity, clmd->scene->physics_settings.gravity, 0.001f * clmd->sim_parms->effector_weights->global_gravity);
}
vert = cloth->verts;
for (i = 0; i < cloth->numverts; i++, vert++) {
BPH_mass_spring_force_gravity(data, i, vert->mass, gravity);
}
#endif
/* cloth_calc_volume_force(clmd); */
#ifdef CLOTH_FORCE_DRAG
BPH_mass_spring_force_drag(data, drag);
#endif
/* handle external forces like wind */
if (effectors) {
/* cache per-vertex forces to avoid redundant calculation */
float (*winvec)[3] = (float (*)[3])MEM_callocN(sizeof(float) * 3 * numverts, "effector forces");
for (i = 0; i < cloth->numverts; i++) {
float x[3], v[3];
EffectedPoint epoint;
BPH_mass_spring_get_motion_state(data, i, x, v);
pd_point_from_loc(clmd->scene, x, v, i, &epoint);
pdDoEffectors(effectors, NULL, clmd->sim_parms->effector_weights, &epoint, winvec[i], NULL);
}
for (i = 0; i < cloth->numfaces; i++) {
MFace *mf = &mfaces[i];
BPH_mass_spring_force_face_wind(data, mf->v1, mf->v2, mf->v3, mf->v4, winvec);
}
/* Hair has only edges */
if (cloth->numfaces == 0) {
for (LinkNode *link = cloth->springs; link; link = link->next) {
ClothSpring *spring = (ClothSpring *)link->link;
if (spring->type == CLOTH_SPRING_TYPE_STRUCTURAL)
BPH_mass_spring_force_edge_wind(data, spring->ij, spring->kl, winvec);
}
}
MEM_freeN(winvec);
}
// calculate spring forces
for (LinkNode *link = cloth->springs; link; link = link->next) {
ClothSpring *spring = (ClothSpring *)link->link;
// only handle active springs
if (!(spring->flags & CLOTH_SPRING_FLAG_DEACTIVATE))
cloth_calc_spring_force(clmd, spring, time);
}
}
/* returns vertexes' motion state */
BLI_INLINE void cloth_get_grid_location(Implicit_Data *data, float cell_scale, const float cell_offset[3],
int index, float x[3], float v[3])
{
BPH_mass_spring_get_position(data, index, x);
BPH_mass_spring_get_new_velocity(data, index, v);
mul_v3_fl(x, cell_scale);
add_v3_v3(x, cell_offset);
}
/* returns next spring forming a continous hair sequence */
BLI_INLINE LinkNode *hair_spring_next(LinkNode *spring_link)
{
ClothSpring *spring = (ClothSpring *)spring_link->link;
LinkNode *next = spring_link->next;
if (next) {
ClothSpring *next_spring = (ClothSpring *)next->link;
if (next_spring->type == CLOTH_SPRING_TYPE_STRUCTURAL && next_spring->kl == spring->ij)
return next;
}
return NULL;
}
/* XXX this is nasty: cloth meshes do not explicitly store
* the order of hair segments!
* We have to rely on the spring build function for now,
* which adds structural springs in reverse order:
* (3,4), (2,3), (1,2)
* This is currently the only way to figure out hair geometry inside this code ...
*/
static LinkNode *cloth_continuum_add_hair_segments(HairGrid *grid, const float cell_scale, const float cell_offset[3], Cloth *cloth, LinkNode *spring_link)
{
Implicit_Data *data = cloth->implicit;
LinkNode *next_spring_link = NULL; /* return value */
ClothSpring *spring1, *spring2, *spring3;
ClothVertex *verts = cloth->verts;
ClothVertex *vert3, *vert4;
float x1[3], v1[3], x2[3], v2[3], x3[3], v3[3], x4[3], v4[3];
float dir1[3], dir2[3], dir3[3];
spring1 = NULL;
spring2 = NULL;
spring3 = (ClothSpring *)spring_link->link;
zero_v3(x1); zero_v3(v1);
zero_v3(dir1);
zero_v3(x2); zero_v3(v2);
zero_v3(dir2);
vert3 = &verts[spring3->kl];
cloth_get_grid_location(data, cell_scale, cell_offset, spring3->kl, x3, v3);
vert4 = &verts[spring3->ij];
cloth_get_grid_location(data, cell_scale, cell_offset, spring3->ij, x4, v4);
sub_v3_v3v3(dir3, x4, x3);
normalize_v3(dir3);
while (spring_link) {
/* move on */
spring1 = spring2;
spring2 = spring3;
vert3 = vert4;
copy_v3_v3(x1, x2); copy_v3_v3(v1, v2);
copy_v3_v3(x2, x3); copy_v3_v3(v2, v3);
copy_v3_v3(x3, x4); copy_v3_v3(v3, v4);
copy_v3_v3(dir1, dir2);
copy_v3_v3(dir2, dir3);
/* read next segment */
next_spring_link = spring_link->next;
spring_link = hair_spring_next(spring_link);
if (spring_link) {
spring3 = (ClothSpring *)spring_link->link;
vert4 = &verts[spring3->ij];
cloth_get_grid_location(data, cell_scale, cell_offset, spring3->ij, x4, v4);
sub_v3_v3v3(dir3, x4, x3);
normalize_v3(dir3);
}
else {
spring3 = NULL;
vert4 = NULL;
zero_v3(x4); zero_v3(v4);
zero_v3(dir3);
}
BPH_hair_volume_add_segment(grid, x1, v1, x2, v2, x3, v3, x4, v4,
spring1 ? dir1 : NULL,
dir2,
spring3 ? dir3 : NULL);
}
/* last segment */
spring1 = spring2;
spring2 = spring3;
spring3 = NULL;
vert3 = vert4;
vert4 = NULL;
copy_v3_v3(x1, x2); copy_v3_v3(v1, v2);
copy_v3_v3(x2, x3); copy_v3_v3(v2, v3);
copy_v3_v3(x3, x4); copy_v3_v3(v3, v4);
zero_v3(x4); zero_v3(v4);
copy_v3_v3(dir1, dir2);
copy_v3_v3(dir2, dir3);
zero_v3(dir3);
BPH_hair_volume_add_segment(grid, x1, v1, x2, v2, x3, v3, x4, v4,
spring1 ? dir1 : NULL,
dir2,
NULL);
return next_spring_link;
}
static void cloth_continuum_fill_grid(HairGrid *grid, Cloth *cloth)
{
#if 0
Implicit_Data *data = cloth->implicit;
int numverts = cloth->numverts;
ClothVertex *vert;
int i;
for (i = 0, vert = cloth->verts; i < numverts; i++, vert++) {
float x[3], v[3];
cloth_get_vertex_motion_state(data, vert, x, v);
BPH_hair_volume_add_vertex(grid, x, v);
}
#else
LinkNode *link;
float cellsize, gmin[3], cell_scale, cell_offset[3];
/* scale and offset for transforming vertex locations into grid space
* (cell size is 0..1, gmin becomes origin)
*/
BPH_hair_volume_grid_geometry(grid, &cellsize, NULL, gmin, NULL);
cell_scale = cellsize > 0.0f ? 1.0f / cellsize : 0.0f;
mul_v3_v3fl(cell_offset, gmin, cell_scale);
negate_v3(cell_offset);
link = cloth->springs;
while (link) {
ClothSpring *spring = (ClothSpring *)link->link;
if (spring->type == CLOTH_SPRING_TYPE_STRUCTURAL)
link = cloth_continuum_add_hair_segments(grid, cell_scale, cell_offset, cloth, link);
else
link = link->next;
}
#endif
BPH_hair_volume_normalize_vertex_grid(grid);
}
static void cloth_continuum_step(ClothModifierData *clmd, float dt)
{
ClothSimSettings *parms = clmd->sim_parms;
Cloth *cloth = clmd->clothObject;
Implicit_Data *data = cloth->implicit;
int numverts = cloth->numverts;
ClothVertex *vert;
const float fluid_factor = 0.95f; /* blend between PIC and FLIP methods */
float smoothfac = parms->velocity_smooth;
float density_target = parms->density_target;
float density_strength = parms->density_strength;
float gmin[3], gmax[3];
int i;
/* clear grid info */
zero_v3_int(clmd->hair_grid_res);
zero_v3(clmd->hair_grid_min);
zero_v3(clmd->hair_grid_max);
hair_get_boundbox(clmd, gmin, gmax);
/* gather velocities & density */
if (smoothfac > 0.0f || density_strength > 0.0f) {
HairGrid *grid = BPH_hair_volume_create_vertex_grid(clmd->sim_parms->voxel_cell_size, gmin, gmax);
BPH_hair_volume_set_debug_data(grid, clmd->debug_data);
cloth_continuum_fill_grid(grid, cloth);
/* main hair continuum solver */
BPH_hair_volume_solve_divergence(grid, dt, density_target, density_strength);
for (i = 0, vert = cloth->verts; i < numverts; i++, vert++) {
float x[3], v[3], nv[3];
/* calculate volumetric velocity influence */
BPH_mass_spring_get_position(data, i, x);
BPH_mass_spring_get_new_velocity(data, i, v);
BPH_hair_volume_grid_velocity(grid, x, v, fluid_factor, nv);
interp_v3_v3v3(nv, v, nv, smoothfac);
/* apply on hair data */
BPH_mass_spring_set_new_velocity(data, i, nv);
}
/* store basic grid info in the modifier data */
BPH_hair_volume_grid_geometry(grid, NULL, clmd->hair_grid_res, clmd->hair_grid_min, clmd->hair_grid_max);
#if 0 /* DEBUG hair velocity vector field */
{
const int size = 64;
int i, j;
float offset[3], a[3], b[3];
const int axis = 0;
const float shift = 0.45f;
copy_v3_v3(offset, clmd->hair_grid_min);
zero_v3(a);
zero_v3(b);
offset[axis] = interpf(clmd->hair_grid_max[axis], clmd->hair_grid_min[axis], shift);
a[(axis+1) % 3] = clmd->hair_grid_max[(axis+1) % 3] - clmd->hair_grid_min[(axis+1) % 3];
b[(axis+2) % 3] = clmd->hair_grid_max[(axis+2) % 3] - clmd->hair_grid_min[(axis+2) % 3];
BKE_sim_debug_data_clear_category(clmd->debug_data, "grid velocity");
for (j = 0; j < size; ++j) {
for (i = 0; i < size; ++i) {
float x[3], v[3], gvel[3], gvel_smooth[3], gdensity;
madd_v3_v3v3fl(x, offset, a, (float)i / (float)(size-1));
madd_v3_v3fl(x, b, (float)j / (float)(size-1));
zero_v3(v);
BPH_hair_volume_grid_interpolate(grid, x, &gdensity, gvel, gvel_smooth, NULL, NULL);
// BKE_sim_debug_data_add_circle(clmd->debug_data, x, gdensity, 0.7, 0.3, 1, "grid density", hash_int_2d(hash_int_2d(i, j), 3111));
if (!is_zero_v3(gvel) || !is_zero_v3(gvel_smooth)) {
BKE_sim_debug_data_add_vector(clmd->debug_data, x, gvel, 0.4, 0, 1, "grid velocity", hash_int_2d(hash_int_2d(i, j), 3112));
BKE_sim_debug_data_add_vector(clmd->debug_data, x, gvel_smooth, 0.6, 4, 1, "grid velocity", hash_int_2d(hash_int_2d(i, j), 3113));
if (gdensity > 0.0f)
BKE_sim_debug_data_add_circle(clmd->debug_data, x, gdensity * clmd->sim_parms->density_strength, 0, 1, 0.4, "grid velocity", hash_int_2d(354, hash_int_2d(i, j)));
}
}
}
}
#endif
BPH_hair_volume_free_vertex_grid(grid);
}
}
#if 0
static void cloth_calc_volume_force(ClothModifierData *clmd)
{
ClothSimSettings *parms = clmd->sim_parms;
Cloth *cloth = clmd->clothObject;
Implicit_Data *data = cloth->implicit;
int numverts = cloth->numverts;
ClothVertex *vert;
/* 2.0f is an experimental value that seems to give good results */
float smoothfac = 2.0f * parms->velocity_smooth;
float collfac = 2.0f * parms->collider_friction;
float pressfac = parms->pressure;
float minpress = parms->pressure_threshold;
float gmin[3], gmax[3];
int i;
hair_get_boundbox(clmd, gmin, gmax);
/* gather velocities & density */
if (smoothfac > 0.0f || pressfac > 0.0f) {
HairVertexGrid *vertex_grid = BPH_hair_volume_create_vertex_grid(clmd->sim_parms->voxel_res, gmin, gmax);
vert = cloth->verts;
for (i = 0; i < numverts; i++, vert++) {
float x[3], v[3];
if (vert->solver_index < 0) {
copy_v3_v3(x, vert->x);
copy_v3_v3(v, vert->v);
}
else {
BPH_mass_spring_get_motion_state(data, vert->solver_index, x, v);
}
BPH_hair_volume_add_vertex(vertex_grid, x, v);
}
BPH_hair_volume_normalize_vertex_grid(vertex_grid);
vert = cloth->verts;
for (i = 0; i < numverts; i++, vert++) {
float x[3], v[3], f[3], dfdx[3][3], dfdv[3][3];
if (vert->solver_index < 0)
continue;
/* calculate volumetric forces */
BPH_mass_spring_get_motion_state(data, vert->solver_index, x, v);
BPH_hair_volume_vertex_grid_forces(vertex_grid, x, v, smoothfac, pressfac, minpress, f, dfdx, dfdv);
/* apply on hair data */
BPH_mass_spring_force_extern(data, vert->solver_index, f, dfdx, dfdv);
}
BPH_hair_volume_free_vertex_grid(vertex_grid);
}
}
#endif
static void cloth_clear_result(ClothModifierData *clmd)
{
ClothSolverResult *sres = clmd->solver_result;
sres->status = 0;
sres->max_error = sres->min_error = sres->avg_error = 0.0f;
sres->max_iterations = sres->min_iterations = 0;
sres->avg_iterations = 0.0f;
}
static void cloth_record_result(ClothModifierData *clmd, ImplicitSolverResult *result, int steps)
{
ClothSolverResult *sres = clmd->solver_result;
if (sres->status) { /* already initialized ? */
/* error only makes sense for successful iterations */
if (result->status == BPH_SOLVER_SUCCESS) {
sres->min_error = min_ff(sres->min_error, result->error);
sres->max_error = max_ff(sres->max_error, result->error);
sres->avg_error += result->error / (float)steps;
}
sres->min_iterations = min_ii(sres->min_iterations, result->iterations);
sres->max_iterations = max_ii(sres->max_iterations, result->iterations);
sres->avg_iterations += (float)result->iterations / (float)steps;
}
else {
/* error only makes sense for successful iterations */
if (result->status == BPH_SOLVER_SUCCESS) {
sres->min_error = sres->max_error = result->error;
sres->avg_error += result->error / (float)steps;
}
sres->min_iterations = sres->max_iterations = result->iterations;
sres->avg_iterations += (float)result->iterations / (float)steps;
}
sres->status |= result->status;
}
int BPH_cloth_solve(Object *ob, float frame, ClothModifierData *clmd, ListBase *effectors)
{
unsigned int i=0;
float step=0.0f, tf=clmd->sim_parms->timescale;
Cloth *cloth = clmd->clothObject;
ClothVertex *verts = cloth->verts/*, *cv*/;
unsigned int numverts = cloth->numverts;
float dt = clmd->sim_parms->timescale / clmd->sim_parms->stepsPerFrame;
Implicit_Data *id = cloth->implicit;
ColliderContacts *contacts = NULL;
int totcolliders = 0;
BPH_mass_spring_solver_debug_data(id, clmd->debug_data);
BKE_sim_debug_data_clear_category(clmd->debug_data, "collision");
if (!clmd->solver_result)
clmd->solver_result = (ClothSolverResult *)MEM_callocN(sizeof(ClothSolverResult), "cloth solver result");
cloth_clear_result(clmd);
if (clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL) { /* do goal stuff */
for (i = 0; i < numverts; i++) {
// update velocities with constrained velocities from pinned verts
if (verts [i].flags & CLOTH_VERT_FLAG_PINNED) {
float v[3];
sub_v3_v3v3(v, verts[i].xconst, verts[i].xold);
// mul_v3_fl(v, clmd->sim_parms->stepsPerFrame);
BPH_mass_spring_set_velocity(id, i, v);
}
}
}
if (clmd->debug_data) {
for (i = 0; i < numverts; i++) {
// BKE_sim_debug_data_add_dot(clmd->debug_data, verts[i].x, 1.0f, 0.1f, 1.0f, "points", hash_vertex(583, i));
}
}
while (step < tf) {
ImplicitSolverResult result;
/* initialize forces to zero */
BPH_mass_spring_clear_forces(id);
BPH_mass_spring_clear_constraints(id);
/* copy velocities for collision */
for (i = 0; i < numverts; i++) {
BPH_mass_spring_get_motion_state(id, i, NULL, verts[i].tv);
copy_v3_v3(verts[i].v, verts[i].tv);
}
/* determine contact points */
if (clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_ENABLED) {
if (clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_POINTS) {
cloth_find_point_contacts(ob, clmd, 0.0f, tf, &contacts, &totcolliders);
}
}
/* setup vertex constraints for pinned vertices and contacts */
cloth_setup_constraints(clmd, contacts, totcolliders, dt);
// damping velocity for artistic reasons
// this is a bad way to do it, should be removed imo - lukas_t
if (clmd->sim_parms->vel_damping != 1.0f) {
for (i = 0; i < numverts; i++) {
float v[3];
BPH_mass_spring_get_motion_state(id, i, NULL, v);
mul_v3_fl(v, clmd->sim_parms->vel_damping);
BPH_mass_spring_set_velocity(id, i, v);
}
}
// calculate forces
cloth_calc_force(clmd, frame, effectors, step);
// calculate new velocity and position
BPH_mass_spring_solve_velocities(id, dt, &result);
cloth_record_result(clmd, &result, clmd->sim_parms->stepsPerFrame);
cloth_continuum_step(clmd, dt);
BPH_mass_spring_solve_positions(id, dt);
BPH_mass_spring_apply_result(id);
/* move pinned verts to correct position */
for (i = 0; i < numverts; i++) {
if (clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL) {
if (verts[i].flags & CLOTH_VERT_FLAG_PINNED) {
float x[3];
interp_v3_v3v3(x, verts[i].xold, verts[i].xconst, step + dt);
BPH_mass_spring_set_position(id, i, x);
}
}
BPH_mass_spring_get_motion_state(id, i, verts[i].txold, NULL);
// if (!(verts[i].flags & CLOTH_VERT_FLAG_PINNED) && i > 0) {
// BKE_sim_debug_data_add_line(clmd->debug_data, id->X[i], id->X[i-1], 0.6, 0.3, 0.3, "hair", hash_vertex(4892, i));
// BKE_sim_debug_data_add_line(clmd->debug_data, id->Xnew[i], id->Xnew[i-1], 1, 0.5, 0.5, "hair", hash_vertex(4893, i));
// }
// BKE_sim_debug_data_add_vector(clmd->debug_data, id->X[i], id->V[i], 0, 0, 1, "velocity", hash_vertex(3158, i));
}
/* free contact points */
if (contacts) {
cloth_free_contacts(contacts, totcolliders);
}
step += dt;
}
/* copy results back to cloth data */
for (i = 0; i < numverts; i++) {
BPH_mass_spring_get_motion_state(id, i, verts[i].x, verts[i].v);
copy_v3_v3(verts[i].txold, verts[i].x);
}
BPH_mass_spring_solver_debug_data(id, NULL);
return 1;
}
bool BPH_cloth_solver_get_texture_data(Object *UNUSED(ob), ClothModifierData *clmd, VoxelData *vd)
{
Cloth *cloth = clmd->clothObject;
HairGrid *grid;
float gmin[3], gmax[3];
if (!clmd->clothObject || !clmd->clothObject->implicit)
return false;
hair_get_boundbox(clmd, gmin, gmax);
grid = BPH_hair_volume_create_vertex_grid(clmd->sim_parms->voxel_cell_size, gmin, gmax);
cloth_continuum_fill_grid(grid, cloth);
BPH_hair_volume_get_texture_data(grid, vd);
BPH_hair_volume_free_vertex_grid(grid);
return true;
}