This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/freestyle/intern/stroke/Operators.cpp
Tamito Kajiyama efd774ce5a Fix T44231: Freestyle causes crash on render.
The reported crash was confirmed as a segmentation fault in std::sort().
The cause of the crash was traced down to a binary comparison function
that was not satisfying the so-called strict weak ordering requirements of
the C++ standard sorting function.  Specifically, the comparison operator
has to return false when two objects are equivalent (i.e., comp(a, a) must
be false), but that requirement was not met.

Since the binary comparison operator in question could be a user-defined
Python function, here a safety measure is implemented in the C++ layer to
make sure the aforementioned requirement is always satisfied.
2015-10-28 23:22:58 +09:00

1272 lines
32 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/freestyle/intern/stroke/Operators.cpp
* \ingroup freestyle
* \brief Class gathering stroke creation algorithms
* \author Stephane Grabli
* \author Emmanuel Turquin
* \date 01/07/2003
*/
#include <algorithm>
#include <stdexcept>
#include "Operators.h"
#include "Canvas.h"
#include "Stroke.h"
#include "StrokeIterators.h"
#include "CurveIterators.h"
#include "BKE_global.h"
namespace Freestyle {
Operators::I1DContainer Operators::_current_view_edges_set;
Operators::I1DContainer Operators::_current_chains_set;
Operators::I1DContainer *Operators::_current_set = NULL;
Operators::StrokesContainer Operators::_current_strokes_set;
int Operators::select(UnaryPredicate1D& pred)
{
if (!_current_set)
return 0;
if (_current_set->empty())
return 0;
I1DContainer new_set;
I1DContainer rejected;
Functions1D::ChainingTimeStampF1D cts;
Functions1D::TimeStampF1D ts;
I1DContainer::iterator it = _current_set->begin();
I1DContainer::iterator itbegin = it;
while (it != _current_set->end()) {
Interface1D *i1d = *it;
cts(*i1d); // mark everyone's chaining time stamp anyway
if (pred(*i1d) < 0) {
new_set.clear();
rejected.clear();
return -1;
}
if (pred.result) {
new_set.push_back(i1d);
ts(*i1d);
}
else {
rejected.push_back(i1d);
}
++it;
}
if ((*itbegin)->getExactTypeName() != "ViewEdge") {
for (it = rejected.begin(); it != rejected.end(); ++it)
delete *it;
}
rejected.clear();
_current_set->clear();
*_current_set = new_set;
return 0;
}
int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier)
{
if (_current_view_edges_set.empty())
return 0;
unsigned id = 0;
ViewEdge *edge;
I1DContainer new_chains_set;
for (I1DContainer::iterator it_edge = _current_view_edges_set.begin();
it_edge != _current_view_edges_set.end();
++it_edge)
{
if (pred(**it_edge) < 0)
goto error;
if (pred.result)
continue;
edge = dynamic_cast<ViewEdge*>(*it_edge);
it.setBegin(edge);
it.setCurrentEdge(edge);
Chain *new_chain = new Chain(id);
++id;
while (true) {
new_chain->push_viewedge_back(*it, it.getOrientation());
if (modifier(**it) < 0) {
delete new_chain;
goto error;
}
++it;
if (it.isEnd())
break;
if (pred(**it) < 0) {
delete new_chain;
goto error;
}
if (pred.result)
break;
}
new_chains_set.push_back(new_chain);
}
if (!new_chains_set.empty()) {
for (I1DContainer::iterator it = new_chains_set.begin(); it != new_chains_set.end(); ++it) {
_current_chains_set.push_back(*it);
}
new_chains_set.clear();
_current_set = &_current_chains_set;
}
return 0;
error:
for (I1DContainer::iterator it = new_chains_set.begin(); it != new_chains_set.end(); ++it) {
delete (*it);
}
new_chains_set.clear();
return -1;
}
int Operators::chain(ViewEdgeInternal::ViewEdgeIterator& it, UnaryPredicate1D& pred)
{
if (_current_view_edges_set.empty())
return 0;
unsigned id = 0;
Functions1D::IncrementChainingTimeStampF1D ts;
Predicates1D::EqualToChainingTimeStampUP1D pred_ts(TimeStamp::instance()->getTimeStamp() + 1);
ViewEdge *edge;
I1DContainer new_chains_set;
for (I1DContainer::iterator it_edge = _current_view_edges_set.begin();
it_edge != _current_view_edges_set.end();
++it_edge)
{
if (pred(**it_edge) < 0)
goto error;
if (pred.result)
continue;
if (pred_ts(**it_edge) < 0)
goto error;
if (pred_ts.result)
continue;
edge = dynamic_cast<ViewEdge*>(*it_edge);
it.setBegin(edge);
it.setCurrentEdge(edge);
Chain *new_chain = new Chain(id);
++id;
while (true) {
new_chain->push_viewedge_back(*it, it.getOrientation());
ts(**it);
++it;
if (it.isEnd())
break;
if (pred(**it) < 0) {
delete new_chain;
goto error;
}
if (pred.result)
break;
if (pred_ts(**it) < 0) {
delete new_chain;
goto error;
}
if (pred_ts.result)
break;
}
new_chains_set.push_back(new_chain);
}
if (!new_chains_set.empty()) {
for (I1DContainer::iterator it = new_chains_set.begin(); it != new_chains_set.end(); ++it) {
_current_chains_set.push_back(*it);
}
new_chains_set.clear();
_current_set = &_current_chains_set;
}
return 0;
error:
for (I1DContainer::iterator it = new_chains_set.begin(); it != new_chains_set.end(); ++it) {
delete (*it);
}
new_chains_set.clear();
return -1;
}
#if 0
void Operators::bidirectionalChain(ViewEdgeIterator& it, UnaryPredicate1D& pred, UnaryFunction1D_void& modifier)
{
if (_current_view_edges_set.empty())
return;
unsigned id = 0;
ViewEdge *edge;
Chain *new_chain;
for (I1DContainer::iterator it_edge = _current_view_edges_set.begin();
it_edge != _current_view_edges_set.end();
++it_edge)
{
if (pred(**it_edge))
continue;
edge = dynamic_cast<ViewEdge*>(*it_edge);
it.setBegin(edge);
it.setCurrentEdge(edge);
Chain *new_chain = new Chain(id);
++id;
#if 0 // FIXME
ViewEdgeIterator it_back(it);
--it_back;
#endif
do {
new_chain->push_viewedge_back(*it, it.getOrientation());
modifier(**it);
++it;
} while (!it.isEnd() && !pred(**it));
it.setBegin(edge);
it.setCurrentEdge(edge);
--it;
while (!it.isEnd() && !pred(**it)) {
new_chain->push_viewedge_front(*it, it.getOrientation());
modifier(**it);
--it;
}
_current_chains_set.push_back(new_chain);
}
if (!_current_chains_set.empty())
_current_set = &_current_chains_set;
}
void Operators::bidirectionalChain(ViewEdgeIterator& it, UnaryPredicate1D& pred)
{
if (_current_view_edges_set.empty())
return;
unsigned id = 0;
Functions1D::IncrementChainingTimeStampF1D ts;
Predicates1D::EqualToChainingTimeStampUP1D pred_ts(TimeStamp::instance()->getTimeStamp() + 1);
ViewEdge *edge;
Chain *new_chain;
for (I1DContainer::iterator it_edge = _current_view_edges_set.begin();
it_edge != _current_view_edges_set.end();
++it_edge)
{
if (pred(**it_edge) || pred_ts(**it_edge))
continue;
edge = dynamic_cast<ViewEdge*>(*it_edge);
it.setBegin(edge);
it.setCurrentEdge(edge);
Chain *new_chain = new Chain(id);
++id;
#if 0 //FIXME
ViewEdgeIterator it_back(it);
--it_back;
#endif
do {
new_chain->push_viewedge_back(*it, it.getOrientation());
ts(**it);
++it;
} while (!it.isEnd() && !pred(**it) && !pred_ts(**it));
it.setBegin(edge);
it.setCurrentEdge(edge);
--it;
while (!it.isEnd() && !pred(**it) && !pred_ts(**it)) {
new_chain->push_viewedge_front(*it, it.getOrientation());
ts(**it);
--it;
}
_current_chains_set.push_back(new_chain);
}
if (!_current_chains_set.empty())
_current_set = &_current_chains_set;
}
#endif
int Operators::bidirectionalChain(ChainingIterator& it, UnaryPredicate1D& pred)
{
if (_current_view_edges_set.empty())
return 0;
unsigned id = 0;
Functions1D::IncrementChainingTimeStampF1D ts;
Predicates1D::EqualToChainingTimeStampUP1D pred_ts(TimeStamp::instance()->getTimeStamp() + 1);
ViewEdge *edge;
I1DContainer new_chains_set;
for (I1DContainer::iterator it_edge = _current_view_edges_set.begin();
it_edge != _current_view_edges_set.end();
++it_edge)
{
if (pred(**it_edge) < 0)
goto error;
if (pred.result)
continue;
if (pred_ts(**it_edge) < 0)
goto error;
if (pred_ts.result)
continue;
edge = dynamic_cast<ViewEdge*>(*it_edge);
// re-init iterator
it.setBegin(edge);
it.setCurrentEdge(edge);
it.setOrientation(true);
if (it.init() < 0)
goto error;
Chain *new_chain = new Chain(id);
++id;
#if 0 // FIXME
ViewEdgeIterator it_back(it);
--it_back;
#endif
while (true) {
new_chain->push_viewedge_back(*it, it.getOrientation());
ts(**it);
if (it.increment() < 0) {
delete new_chain;
goto error;
}
if (it.isEnd())
break;
if (pred(**it) < 0) {
delete new_chain;
goto error;
}
if (pred.result)
break;
}
it.setBegin(edge);
it.setCurrentEdge(edge);
it.setOrientation(true);
if (it.decrement() < 0) {
delete new_chain;
goto error;
}
while (!it.isEnd()) {
if (pred(**it) < 0) {
delete new_chain;
goto error;
}
if (pred.result)
break;
new_chain->push_viewedge_front(*it, it.getOrientation());
ts(**it);
if (it.decrement() < 0) {
delete new_chain;
goto error;
}
}
new_chains_set.push_back(new_chain);
}
if (!new_chains_set.empty()) {
for (I1DContainer::iterator it = new_chains_set.begin(); it != new_chains_set.end(); ++it) {
_current_chains_set.push_back(*it);
}
new_chains_set.clear();
_current_set = &_current_chains_set;
}
return 0;
error:
for (I1DContainer::iterator it = new_chains_set.begin(); it != new_chains_set.end(); ++it) {
delete (*it);
}
new_chains_set.clear();
return -1;
}
int Operators::bidirectionalChain(ChainingIterator& it)
{
if (_current_view_edges_set.empty())
return 0;
unsigned id = 0;
Functions1D::IncrementChainingTimeStampF1D ts;
Predicates1D::EqualToChainingTimeStampUP1D pred_ts(TimeStamp::instance()->getTimeStamp() + 1);
ViewEdge *edge;
I1DContainer new_chains_set;
for (I1DContainer::iterator it_edge = _current_view_edges_set.begin();
it_edge != _current_view_edges_set.end();
++it_edge)
{
if (pred_ts(**it_edge) < 0)
goto error;
if (pred_ts.result)
continue;
edge = dynamic_cast<ViewEdge*>(*it_edge);
// re-init iterator
it.setBegin(edge);
it.setCurrentEdge(edge);
it.setOrientation(true);
if (it.init() < 0)
goto error;
Chain *new_chain = new Chain(id);
++id;
#if 0 // FIXME
ViewEdgeIterator it_back(it);
--it_back;
#endif
do {
new_chain->push_viewedge_back(*it, it.getOrientation());
ts(**it);
if (it.increment() < 0) { // FIXME
delete new_chain;
goto error;
}
} while (!it.isEnd());
it.setBegin(edge);
it.setCurrentEdge(edge);
it.setOrientation(true);
if (it.decrement() < 0) { // FIXME
delete new_chain;
goto error;
}
while (!it.isEnd()) {
new_chain->push_viewedge_front(*it, it.getOrientation());
ts(**it);
if (it.decrement() < 0) { // FIXME
delete new_chain;
goto error;
}
}
new_chains_set.push_back(new_chain);
}
if (!new_chains_set.empty()) {
for (I1DContainer::iterator it = new_chains_set.begin(); it != new_chains_set.end(); ++it) {
_current_chains_set.push_back(*it);
}
new_chains_set.clear();
_current_set = &_current_chains_set;
}
return 0;
error:
for (I1DContainer::iterator it = new_chains_set.begin(); it != new_chains_set.end(); ++it) {
delete (*it);
}
new_chains_set.clear();
return -1;
}
int Operators::sequentialSplit(UnaryPredicate0D& pred, float sampling)
{
if (_current_chains_set.empty()) {
cerr << "Warning: current set empty" << endl;
return 0;
}
CurvePoint *point;
Chain *new_curve;
I1DContainer splitted_chains;
Interface0DIterator first;
Interface0DIterator end;
Interface0DIterator last;
Interface0DIterator it;
I1DContainer::iterator cit = _current_chains_set.begin(), citend = _current_chains_set.end();
for (; cit != citend; ++cit) {
Id currentId = (*cit)->getId();
new_curve = new Chain(currentId);
first = (*cit)->pointsBegin(sampling);
end = (*cit)->pointsEnd(sampling);
last = end;
--last;
it = first;
point = dynamic_cast<CurvePoint*>(&(*it));
new_curve->push_vertex_back(point);
++it;
for (; it != end; ++it) {
point = dynamic_cast<CurvePoint*>(&(*it));
new_curve->push_vertex_back(point);
if (pred(it) < 0) {
delete new_curve;
goto error;
}
if (pred.result && (it != last)) {
splitted_chains.push_back(new_curve);
currentId.setSecond(currentId.getSecond() + 1);
new_curve = new Chain(currentId);
new_curve->push_vertex_back(point);
}
}
if (new_curve->nSegments() == 0) {
delete new_curve;
return 0;
}
splitted_chains.push_back(new_curve);
}
// Update the current set of chains:
cit = _current_chains_set.begin();
for (; cit != citend; ++cit) {
delete (*cit);
}
_current_chains_set.clear();
#if 0
_current_chains_set = splitted_chains;
#else
for (cit = splitted_chains.begin(), citend = splitted_chains.end(); cit != citend; ++cit) {
if ((*cit)->getLength2D() < M_EPSILON) {
delete (*cit);
continue;
}
_current_chains_set.push_back(*cit);
}
#endif
splitted_chains.clear();
if (!_current_chains_set.empty())
_current_set = &_current_chains_set;
return 0;
error:
cit = splitted_chains.begin();
citend = splitted_chains.end();
for (; cit != citend; ++cit) {
delete (*cit);
}
splitted_chains.clear();
return -1;
}
int Operators::sequentialSplit(UnaryPredicate0D& startingPred, UnaryPredicate0D& stoppingPred, float sampling)
{
if (_current_chains_set.empty()) {
cerr << "Warning: current set empty" << endl;
return 0;
}
CurvePoint *point;
Chain *new_curve;
I1DContainer splitted_chains;
Interface0DIterator first;
Interface0DIterator end;
Interface0DIterator last;
Interface0DIterator itStart;
Interface0DIterator itStop;
I1DContainer::iterator cit = _current_chains_set.begin(), citend = _current_chains_set.end();
for (; cit != citend; ++cit) {
Id currentId = (*cit)->getId();
first = (*cit)->pointsBegin(sampling);
end = (*cit)->pointsEnd(sampling);
last = end;
--last;
itStart = first;
do {
itStop = itStart;
++itStop;
new_curve = new Chain(currentId);
currentId.setSecond(currentId.getSecond() + 1);
point = dynamic_cast<CurvePoint*>(&(*itStart));
new_curve->push_vertex_back(point);
do {
point = dynamic_cast<CurvePoint*>(&(*itStop));
new_curve->push_vertex_back(point);
++itStop;
if (itStop == end)
break;
if (stoppingPred(itStop) < 0) {
delete new_curve;
goto error;
}
} while (!stoppingPred.result);
if (itStop != end) {
point = dynamic_cast<CurvePoint*>(&(*itStop));
new_curve->push_vertex_back(point);
}
if (new_curve->nSegments() == 0) {
delete new_curve;
}
else {
splitted_chains.push_back(new_curve);
}
// find next start
do {
++itStart;
if (itStart == end)
break;
if (startingPred(itStart) < 0)
goto error;
} while (!startingPred.result);
} while ((itStart != end) && (itStart != last));
}
// Update the current set of chains:
cit = _current_chains_set.begin();
for (; cit != citend; ++cit) {
delete (*cit);
}
_current_chains_set.clear();
#if 0
_current_chains_set = splitted_chains;
#else
for (cit = splitted_chains.begin(), citend = splitted_chains.end(); cit != citend; ++cit) {
if ((*cit)->getLength2D() < M_EPSILON) {
delete (*cit);
continue;
}
_current_chains_set.push_back(*cit);
}
#endif
splitted_chains.clear();
if (!_current_chains_set.empty())
_current_set = &_current_chains_set;
return 0;
error:
cit = splitted_chains.begin();
citend = splitted_chains.end();
for (; cit != citend; ++cit) {
delete (*cit);
}
splitted_chains.clear();
return -1;
}
// Internal function
static int __recursiveSplit(Chain *_curve, UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling,
Operators::I1DContainer& newChains, Operators::I1DContainer& splitted_chains)
{
if (((_curve->nSegments() == 1) && (sampling == 0)) || (_curve->getLength2D() <= sampling)) {
newChains.push_back(_curve);
return 0;
}
CurveInternal::CurvePointIterator first = _curve->curvePointsBegin(sampling);
CurveInternal::CurvePointIterator second = first;
++second;
CurveInternal::CurvePointIterator end = _curve->curvePointsEnd(sampling);
CurveInternal::CurvePointIterator it = second;
CurveInternal::CurvePointIterator split = second;
Interface0DIterator it0d = it.castToInterface0DIterator();
real _min = FLT_MAX; // func(it0d);
++it;
CurveInternal::CurvePointIterator next = it;
++next;
bool bsplit = false;
for (; ((it != end) && (next != end)); ++it, ++next) {
it0d = it.castToInterface0DIterator();
if (func(it0d) < 0)
return -1;
if (func.result < _min) {
_min = func.result;
split = it;
bsplit = true;
}
}
if (!bsplit) { // we didn't find any minimum
newChains.push_back(_curve);
return 0;
}
// retrieves the current splitting id
Id *newId = _curve->getSplittingId();
if (newId == 0) {
newId = new Id(_curve->getId());
_curve->setSplittingId(newId);
}
Chain *new_curve_a = new Chain(*newId);
newId->setSecond(newId->getSecond() + 1);
new_curve_a->setSplittingId(newId);
Chain *new_curve_b = new Chain(*newId);
newId->setSecond(newId->getSecond() + 1);
new_curve_b->setSplittingId(newId);
CurveInternal::CurvePointIterator vit = _curve->curveVerticesBegin(), vitend = _curve->curveVerticesEnd();
CurveInternal::CurvePointIterator vnext = vit;
++vnext;
for (; (vit != vitend) && (vnext != vitend) && (vnext._CurvilinearLength < split._CurvilinearLength);
++vit, ++vnext)
{
new_curve_a->push_vertex_back(&(*vit));
}
if ((vit == vitend) || (vnext == vitend)) {
if (G.debug & G_DEBUG_FREESTYLE) {
cout << "The split takes place in bad location" << endl;
}
newChains.push_back(_curve);
delete new_curve_a;
delete new_curve_b;
return 0;
}
// build the two resulting chains
new_curve_a->push_vertex_back(&(*vit));
new_curve_a->push_vertex_back(&(*split));
new_curve_b->push_vertex_back(&(*split));
for (vit = vnext; vit != vitend; ++vit)
new_curve_b->push_vertex_back(&(*vit));
// let's check whether one or two of the two new curves satisfy the stopping condition or not.
// (if one of them satisfies it, we don't split)
if (pred(*new_curve_a) < 0 || (!pred.result && pred(*new_curve_b) < 0)) {
delete new_curve_a;
delete new_curve_b;
return -1;
}
if (pred.result) {
// we don't actually create these two chains
newChains.push_back(_curve);
delete new_curve_a;
delete new_curve_b;
return 0;
}
// here we know we'll split _curve:
splitted_chains.push_back(_curve);
__recursiveSplit(new_curve_a, func, pred, sampling, newChains, splitted_chains);
__recursiveSplit(new_curve_b, func, pred, sampling, newChains, splitted_chains);
return 0;
}
int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate1D& pred, float sampling)
{
if (_current_chains_set.empty()) {
cerr << "Warning: current set empty" << endl;
return 0;
}
Chain *currentChain = 0;
I1DContainer splitted_chains;
I1DContainer newChains;
I1DContainer::iterator cit = _current_chains_set.begin(), citend = _current_chains_set.end();
for (; cit != citend; ++cit) {
currentChain = dynamic_cast<Chain*>(*cit);
if (!currentChain)
continue;
// let's check the first one:
if (pred(*currentChain) < 0)
return -1;
if (!pred.result) {
__recursiveSplit(currentChain, func, pred, sampling, newChains, splitted_chains);
}
else {
newChains.push_back(currentChain);
}
}
// Update the current set of chains:
if (!splitted_chains.empty()) {
for (cit = splitted_chains.begin(), citend = splitted_chains.end(); cit != citend; ++cit) {
delete (*cit);
}
splitted_chains.clear();
}
_current_chains_set.clear();
#if 0
_current_chains_set = newChains;
#else
for (cit = newChains.begin(), citend = newChains.end(); cit != citend; ++cit) {
if ((*cit)->getLength2D() < M_EPSILON) {
delete (*cit);
continue;
}
_current_chains_set.push_back(*cit);
}
#endif
newChains.clear();
if (!_current_chains_set.empty())
_current_set = &_current_chains_set;
return 0;
}
// recursive split with pred 0D
static int __recursiveSplit(Chain *_curve, UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d,
UnaryPredicate1D& pred, float sampling,
Operators::I1DContainer& newChains, Operators::I1DContainer& splitted_chains)
{
if (((_curve->nSegments() == 1) && (sampling == 0)) || (_curve->getLength2D() <= sampling)) {
newChains.push_back(_curve);
return 0;
}
CurveInternal::CurvePointIterator first = _curve->curvePointsBegin(sampling);
CurveInternal::CurvePointIterator second = first;
++second;
CurveInternal::CurvePointIterator end = _curve->curvePointsEnd(sampling);
CurveInternal::CurvePointIterator it = second;
CurveInternal::CurvePointIterator split = second;
Interface0DIterator it0d = it.castToInterface0DIterator();
#if 0
real _min = func(it0d);
++it;
#endif
real _min = FLT_MAX;
++it;
real mean = 0.f;
//soc unused - real variance = 0.0f;
unsigned count = 0;
CurveInternal::CurvePointIterator next = it;
++next;
bool bsplit = false;
for (; ((it != end) && (next != end)); ++it, ++next) {
++count;
it0d = it.castToInterface0DIterator();
if (pred0d(it0d) < 0)
return -1;
if (!pred0d.result)
continue;
if (func(it0d) < 0)
return -1;
mean += func.result;
if (func.result < _min) {
_min = func.result;
split = it;
bsplit = true;
}
}
mean /= (float)count;
//if ((!bsplit) || (mean - _min > mean)) { // we didn't find any minimum
if (!bsplit) { // we didn't find any minimum
newChains.push_back(_curve);
return 0;
}
// retrieves the current splitting id
Id *newId = _curve->getSplittingId();
if (newId == NULL) {
newId = new Id(_curve->getId());
_curve->setSplittingId(newId);
}
Chain *new_curve_a = new Chain(*newId);
newId->setSecond(newId->getSecond() + 1);
new_curve_a->setSplittingId(newId);
Chain *new_curve_b = new Chain(*newId);
newId->setSecond(newId->getSecond() + 1);
new_curve_b->setSplittingId(newId);
CurveInternal::CurvePointIterator vit = _curve->curveVerticesBegin(), vitend = _curve->curveVerticesEnd();
CurveInternal::CurvePointIterator vnext = vit;
++vnext;
for (;
(vit != vitend) && (vnext != vitend) && (vnext._CurvilinearLength < split._CurvilinearLength);
++vit, ++vnext)
{
new_curve_a->push_vertex_back(&(*vit));
}
if ((vit == vitend) || (vnext == vitend)) {
if (G.debug & G_DEBUG_FREESTYLE) {
cout << "The split takes place in bad location" << endl;
}
newChains.push_back(_curve);
delete new_curve_a;
delete new_curve_b;
return 0;
}
// build the two resulting chains
new_curve_a->push_vertex_back(&(*vit));
new_curve_a->push_vertex_back(&(*split));
new_curve_b->push_vertex_back(&(*split));
for (vit = vnext; vit != vitend; ++vit)
new_curve_b->push_vertex_back(&(*vit));
// let's check whether one or two of the two new curves satisfy the stopping condition or not.
// (if one of them satisfies it, we don't split)
if (pred(*new_curve_a) < 0 || (!pred.result && pred(*new_curve_b) < 0)) {
delete new_curve_a;
delete new_curve_b;
return -1;
}
if (pred.result) {
// we don't actually create these two chains
newChains.push_back(_curve);
delete new_curve_a;
delete new_curve_b;
return 0;
}
// here we know we'll split _curve:
splitted_chains.push_back(_curve);
__recursiveSplit(new_curve_a, func, pred0d, pred, sampling, newChains, splitted_chains);
__recursiveSplit(new_curve_b, func, pred0d, pred, sampling, newChains, splitted_chains);
return 0;
}
int Operators::recursiveSplit(UnaryFunction0D<double>& func, UnaryPredicate0D& pred0d, UnaryPredicate1D& pred,
float sampling)
{
if (_current_chains_set.empty()) {
cerr << "Warning: current set empty" << endl;
return 0;
}
Chain *currentChain = 0;
I1DContainer splitted_chains;
I1DContainer newChains;
I1DContainer::iterator cit = _current_chains_set.begin(), citend = _current_chains_set.end();
for (; cit != citend; ++cit) {
currentChain = dynamic_cast<Chain*>(*cit);
if (!currentChain)
continue;
// let's check the first one:
if (pred(*currentChain) < 0)
return -1;
if (!pred.result) {
__recursiveSplit(currentChain, func, pred0d, pred, sampling, newChains, splitted_chains);
}
else {
newChains.push_back(currentChain);
}
}
// Update the current set of chains:
if (!splitted_chains.empty()) {
for (cit = splitted_chains.begin(), citend = splitted_chains.end(); cit != citend; ++cit) {
delete (*cit);
}
splitted_chains.clear();
}
_current_chains_set.clear();
#if 0
_current_chains_set = newChains;
#else
for (cit = newChains.begin(), citend = newChains.end(); cit != citend; ++cit) {
if ((*cit)->getLength2D() < M_EPSILON) {
delete (*cit);
continue;
}
_current_chains_set.push_back(*cit);
}
#endif
newChains.clear();
if (!_current_chains_set.empty())
_current_set = &_current_chains_set;
return 0;
}
// Internal class
class PredicateWrapper
{
public:
inline PredicateWrapper(BinaryPredicate1D& pred)
{
_pred = &pred;
}
inline bool operator()(Interface1D *i1, Interface1D *i2)
{
if (i1 == i2)
return false;
if ((*_pred)(*i1, *i2) < 0)
throw std::runtime_error("comparison failed");
return _pred->result;
}
private:
BinaryPredicate1D *_pred;
};
int Operators::sort(BinaryPredicate1D& pred)
{
if (!_current_set)
return 0;
PredicateWrapper wrapper(pred);
try {
std::sort(_current_set->begin(), _current_set->end(), wrapper);
}
catch (std::runtime_error &e) {
cerr << "Warning: Operator.sort(): " << e.what() << endl;
return -1;
}
return 0;
}
static Stroke *createStroke(Interface1D& inter)
{
Stroke *stroke = new Stroke;
stroke->setId(inter.getId());
float currentCurvilignAbscissa = 0.0f;
Interface0DIterator it = inter.verticesBegin(), itend = inter.verticesEnd();
Interface0DIterator itfirst = it;
Vec2r current(it->getPoint2D());
Vec2r previous = current;
SVertex *sv;
CurvePoint *cp;
StrokeVertex *stroke_vertex = NULL;
bool hasSingularity = false;
do {
cp = dynamic_cast<CurvePoint*>(&(*it));
if (!cp) {
sv = dynamic_cast<SVertex*>(&(*it));
if (!sv) {
cerr << "Warning: unexpected Vertex type" << endl;
continue;
}
stroke_vertex = new StrokeVertex(sv);
}
else {
stroke_vertex = new StrokeVertex(cp);
}
current = stroke_vertex->getPoint2D();
Vec2r vec_tmp(current - previous);
real dist = vec_tmp.norm();
if (dist < 1.0e-6)
hasSingularity = true;
currentCurvilignAbscissa += dist;
stroke_vertex->setCurvilinearAbscissa(currentCurvilignAbscissa);
stroke->push_back(stroke_vertex);
previous = current;
++it;
} while ((it != itend) && (it != itfirst));
if (it == itfirst) {
// Add last vertex:
cp = dynamic_cast<CurvePoint*>(&(*it));
if (!cp) {
sv = dynamic_cast<SVertex*>(&(*it));
if (!sv)
cerr << "Warning: unexpected Vertex type" << endl;
else
stroke_vertex = new StrokeVertex(sv);
}
else {
stroke_vertex = new StrokeVertex(cp);
}
current = stroke_vertex->getPoint2D();
Vec2r vec_tmp(current - previous);
real dist = vec_tmp.norm();
if (dist < 1.0e-6)
hasSingularity = true;
currentCurvilignAbscissa += dist;
stroke_vertex->setCurvilinearAbscissa(currentCurvilignAbscissa);
stroke->push_back(stroke_vertex);
}
// Discard the stroke if the number of stroke vertices is less than two
if (stroke->strokeVerticesSize() < 2) {
delete stroke;
return NULL;
}
stroke->setLength(currentCurvilignAbscissa);
if (hasSingularity) {
// Try to address singular points such that the distance between two subsequent vertices
// are smaller than epsilon.
StrokeInternal::StrokeVertexIterator v = stroke->strokeVerticesBegin();
StrokeInternal::StrokeVertexIterator vnext = v;
++vnext;
Vec2r next((*v).getPoint());
while (!vnext.isEnd()) {
current = next;
next = (*vnext).getPoint();
if ((next - current).norm() < 1.0e-6) {
StrokeInternal::StrokeVertexIterator vprevious = v;
if (!vprevious.isBegin())
--vprevious;
// collect a set of overlapping vertices
std::vector<StrokeVertex *> overlapping_vertices;
overlapping_vertices.push_back(&(*v));
do {
overlapping_vertices.push_back(&(*vnext));
current = next;
++v;
++vnext;
if (vnext.isEnd())
break;
next = (*vnext).getPoint();
} while ((next - current).norm() < 1.0e-6);
Vec2r target;
bool reverse;
if (!vnext.isEnd()) {
target = (*vnext).getPoint();
reverse = false;
}
else if (!vprevious.isBegin()) {
target = (*vprevious).getPoint();
reverse = true;
}
else {
// Discard the stroke because all stroke vertices are overlapping
delete stroke;
return NULL;
}
current = overlapping_vertices.front()->getPoint();
Vec2r dir(target - current);
real dist = dir.norm();
real len = 1.0e-3; // default offset length
int nvert = overlapping_vertices.size();
if (dist < len * nvert) {
len = dist / nvert;
}
dir.normalize();
Vec2r offset(dir * len);
// add the offset to the overlapping vertices
StrokeVertex *sv;
std::vector<StrokeVertex *>::iterator it = overlapping_vertices.begin();
if (!reverse) {
for (int n = 0; n < nvert; n++) {
sv = (*it);
sv->setPoint(sv->getPoint() + offset * (n + 1));
++it;
}
}
else {
for (int n = 0; n < nvert; n++) {
sv = (*it);
sv->setPoint(sv->getPoint() + offset * (nvert - n));
++it;
}
}
if (vnext.isEnd())
break;
}
++v;
++vnext;
}
}
{
// Check if the stroke no longer contains singular points
Interface0DIterator v = stroke->verticesBegin();
Interface0DIterator vnext = v;
++vnext;
Vec2r next((*v).getPoint2D());
bool warning = false;
while (!vnext.isEnd()) {
current = next;
next = (*vnext).getPoint2D();
if ((next - current).norm() < 1.0e-6) {
warning = true;
break;
}
++v;
++vnext;
}
if (warning && G.debug & G_DEBUG_FREESTYLE) {
printf("Warning: stroke contains singular points.\n");
}
}
return stroke;
}
inline int applyShading(Stroke& stroke, vector<StrokeShader*>& shaders)
{
for (vector<StrokeShader*>::iterator it = shaders.begin(); it != shaders.end(); ++it) {
if ((*it)->shade(stroke) < 0) {
return -1;
}
}
return 0;
}
int Operators::create(UnaryPredicate1D& pred, vector<StrokeShader*> shaders)
{
//Canvas* canvas = Canvas::getInstance();
if (!_current_set) {
cerr << "Warning: current set empty" << endl;
return 0;
}
StrokesContainer new_strokes_set;
for (Operators::I1DContainer::iterator it = _current_set->begin(); it != _current_set->end(); ++it) {
if (pred(**it) < 0)
goto error;
if (!pred.result)
continue;
Stroke *stroke = createStroke(**it);
if (stroke) {
if (applyShading(*stroke, shaders) < 0) {
delete stroke;
goto error;
}
//canvas->RenderStroke(stroke);
new_strokes_set.push_back(stroke);
}
}
for (StrokesContainer::iterator it = new_strokes_set.begin(); it != new_strokes_set.end(); ++it) {
_current_strokes_set.push_back(*it);
}
new_strokes_set.clear();
return 0;
error:
for (StrokesContainer::iterator it = new_strokes_set.begin(); it != new_strokes_set.end(); ++it) {
delete (*it);
}
new_strokes_set.clear();
return -1;
}
void Operators::reset(bool removeStrokes)
{
ViewMap *vm = ViewMap::getInstance();
if (!vm) {
cerr << "Error: no ViewMap computed yet" << endl;
return;
}
_current_view_edges_set.clear();
for (I1DContainer::iterator it = _current_chains_set.begin(); it != _current_chains_set.end(); ++it)
delete *it;
_current_chains_set.clear();
ViewMap::viewedges_container& vedges = vm->ViewEdges();
ViewMap::viewedges_container::iterator ve = vedges.begin(), veend = vedges.end();
for (; ve != veend; ++ve) {
if ((*ve)->getLength2D() < M_EPSILON)
continue;
_current_view_edges_set.push_back(*ve);
}
_current_set = &_current_view_edges_set;
if (removeStrokes)
_current_strokes_set.clear();
}
} /* namespace Freestyle */