This commit removes all EEVEE specific code from the `gpu_shader_material*.glsl` files. It defines a clear interface to evaluate the closure nodes leaving more flexibility to the render engine. Some of the long standing workaround are fixed: - bump mapping support is no longer duplicating a lot of node and is instead compiled into a function call. - bump rewiring to Normal socket is no longer needed as we now use a global `g_data.N` for that. Closure sampling with upstread weight eval is now supported if the engine needs it. This also makes all the material GLSL sources use `GPUSource` for better debugging experience. The `GPUFunction` parsing now happens in `GPUSource` creation. The whole `GPUCodegen` now uses the `ShaderCreateInfo` and is object type agnostic. Is has also been rewritten in C++. This patch changes a view behavior for EEVEE: - Mix shader node factor imput is now clamped. - Tangent Vector displacement behavior is now matching cycles. - The chosen BSDF used for SSR might change. - Hair shading may have very small changes on very large hairs when using hair polygon stripes. - ShaderToRGB node will remove any SSR and SSS form a shader. - SSS radius input now is no longer a scaling factor but defines an average radius. The SSS kernel "shape" (radii) are still defined by the socket default values. Appart from the listed changes no other regressions are expected.
274 lines
9.1 KiB
GLSL
274 lines
9.1 KiB
GLSL
|
|
#pragma BLENDER_REQUIRE(common_view_lib.glsl)
|
|
#pragma BLENDER_REQUIRE(common_math_geom_lib.glsl)
|
|
#pragma BLENDER_REQUIRE(common_utiltex_lib.glsl)
|
|
#pragma BLENDER_REQUIRE(lights_lib.glsl)
|
|
|
|
in vec4 uvcoordsvar;
|
|
|
|
out vec4 FragColor;
|
|
|
|
uniform depth2D depthBuffer;
|
|
uniform sampler1D sssTexProfile;
|
|
uniform sampler2D sssRadius;
|
|
uniform sampler2DArray sssShadowCubes;
|
|
uniform sampler2DArray sssShadowCascades;
|
|
|
|
#define MAX_SSS_SAMPLES 65
|
|
#define SSS_LUT_SIZE 64.0
|
|
#define SSS_LUT_SCALE ((SSS_LUT_SIZE - 1.0) / float(SSS_LUT_SIZE))
|
|
#define SSS_LUT_BIAS (0.5 / float(SSS_LUT_SIZE))
|
|
|
|
layout(std140) uniform sssProfile
|
|
{
|
|
vec4 sss_kernel[MAX_SSS_SAMPLES];
|
|
vec4 radii_max_radius;
|
|
float avg_inv_radius;
|
|
int sss_samples;
|
|
};
|
|
|
|
vec3 sss_profile(float s)
|
|
{
|
|
s /= radii_max_radius.w * avg_inv_radius;
|
|
return texture(sssTexProfile, saturate(s) * SSS_LUT_SCALE + SSS_LUT_BIAS).rgb;
|
|
}
|
|
|
|
float light_translucent_power_with_falloff(LightData ld, vec3 N, vec4 l_vector)
|
|
{
|
|
float power, falloff;
|
|
/* XXX: Removing Area Power. */
|
|
/* TODO: put this out of the shader. */
|
|
if (ld.l_type >= AREA_RECT) {
|
|
power = (ld.l_sizex * ld.l_sizey * 4.0 * M_PI) * (1.0 / 80.0);
|
|
if (ld.l_type == AREA_ELLIPSE) {
|
|
power *= M_PI_4;
|
|
}
|
|
power *= 0.3 * 20.0 *
|
|
max(0.0, dot(-ld.l_forward, l_vector.xyz / l_vector.w)); /* XXX ad hoc, empirical */
|
|
power /= (l_vector.w * l_vector.w);
|
|
falloff = dot(N, l_vector.xyz / l_vector.w);
|
|
}
|
|
else if (ld.l_type == SUN) {
|
|
power = 1.0 / (1.0 + (ld.l_radius * ld.l_radius * 0.5));
|
|
power *= ld.l_radius * ld.l_radius * M_PI; /* Removing area light power. */
|
|
power *= M_2PI * 0.78; /* Matching cycles with point light. */
|
|
power *= 0.082; /* XXX ad hoc, empirical */
|
|
falloff = dot(N, -ld.l_forward);
|
|
}
|
|
else {
|
|
power = (4.0 * ld.l_radius * ld.l_radius) * (1.0 / 10.0);
|
|
power *= 1.5; /* XXX ad hoc, empirical */
|
|
power /= (l_vector.w * l_vector.w);
|
|
falloff = dot(N, l_vector.xyz / l_vector.w);
|
|
}
|
|
/* No transmittance at grazing angle (hide artifacts) */
|
|
return power * saturate(falloff * 2.0);
|
|
}
|
|
|
|
/* Some driver poorly optimize this code. Use direct reference to matrices. */
|
|
#define sd(x) shadows_data[x]
|
|
#define scube(x) shadows_cube_data[x]
|
|
#define scascade(x) shadows_cascade_data[x]
|
|
|
|
float shadow_cube_radial_depth(vec3 cubevec, float tex_id, int shadow_id)
|
|
{
|
|
float depth = sample_cube(sssShadowCubes, cubevec, tex_id).r;
|
|
/* To reverting the constant bias from shadow rendering. (Tweaked for 16bit shadowmaps) */
|
|
const float depth_bias = 3.1e-5;
|
|
depth = saturate(depth - depth_bias);
|
|
|
|
depth = linear_depth(true, depth, sd(shadow_id).sh_far, sd(shadow_id).sh_near);
|
|
depth *= length(cubevec / max_v3(abs(cubevec)));
|
|
return depth;
|
|
}
|
|
|
|
vec3 light_translucent(LightData ld, vec3 P, vec3 N, vec4 l_vector, vec2 rand, float sss_scale)
|
|
{
|
|
int shadow_id = int(ld.l_shadowid);
|
|
|
|
vec4 L = (ld.l_type != SUN) ? l_vector : vec4(-ld.l_forward, 1.0);
|
|
|
|
/* We use the full l_vector.xyz so that the spread is minimize
|
|
* if the shading point is further away from the light source */
|
|
/* TODO(fclem): do something better than this. */
|
|
vec3 T, B;
|
|
make_orthonormal_basis(L.xyz / L.w, T, B);
|
|
|
|
vec3 n;
|
|
vec4 depths;
|
|
float d, dist;
|
|
int data_id = int(sd(shadow_id).sh_data_index);
|
|
if (ld.l_type == SUN) {
|
|
vec4 view_z = vec4(dot(P - cameraPos, cameraForward));
|
|
|
|
vec4 weights = step(scascade(data_id).split_end_distances, view_z);
|
|
float id = abs(4.0 - dot(weights, weights));
|
|
if (id > 3.0) {
|
|
return vec3(0.0);
|
|
}
|
|
|
|
/* Same factor as in get_cascade_world_distance(). */
|
|
float range = abs(sd(shadow_id).sh_far - sd(shadow_id).sh_near);
|
|
|
|
vec4 shpos = scascade(data_id).shadowmat[int(id)] * vec4(P, 1.0);
|
|
dist = shpos.z * range;
|
|
|
|
if (shpos.z > 1.0 || shpos.z < 0.0) {
|
|
return vec3(0.0);
|
|
}
|
|
|
|
float tex_id = scascade(data_id).sh_tex_index + id;
|
|
|
|
/* Assume cascades have same height and width. */
|
|
vec2 ofs = vec2(1.0, 0.0) / float(textureSize(sssShadowCascades, 0).x);
|
|
d = sample_cascade(sssShadowCascades, shpos.xy, tex_id).r;
|
|
depths.x = sample_cascade(sssShadowCascades, shpos.xy + ofs.xy, tex_id).r;
|
|
depths.y = sample_cascade(sssShadowCascades, shpos.xy + ofs.yx, tex_id).r;
|
|
depths.z = sample_cascade(sssShadowCascades, shpos.xy - ofs.xy, tex_id).r;
|
|
depths.w = sample_cascade(sssShadowCascades, shpos.xy - ofs.yx, tex_id).r;
|
|
|
|
/* To reverting the constant bias from shadow rendering. (Tweaked for 16bit shadowmaps) */
|
|
float depth_bias = 3.1e-5;
|
|
depths = saturate(depths - depth_bias);
|
|
d = saturate(d - depth_bias);
|
|
|
|
/* Size of a texel in world space.
|
|
* FIXME This is only correct if l_right is the same right vector used for shadowmap creation.
|
|
* This won't work if the shadow matrix is rotated (soft shadows).
|
|
* TODO: precompute. */
|
|
float unit_world_in_uv_space = length(mat3(scascade(data_id).shadowmat[int(id)]) * ld.l_right);
|
|
float dx_scale = 2.0 * ofs.x / unit_world_in_uv_space;
|
|
|
|
d *= range;
|
|
depths *= range;
|
|
|
|
/* This is the normal of the occluder in world space. */
|
|
// vec3 T = ld.l_forward * dx + ld.l_right * dx_scale;
|
|
// vec3 B = ld.l_forward * dy + ld.l_up * dx_scale;
|
|
// n = normalize(cross(T, B));
|
|
}
|
|
else {
|
|
float ofs = 1.0 / float(textureSize(sssShadowCubes, 0).x);
|
|
|
|
vec3 cubevec = transform_point(scube(data_id).shadowmat, P);
|
|
dist = length(cubevec);
|
|
cubevec /= dist;
|
|
/* tex_id == data_id for cube shadowmap */
|
|
float tex_id = float(data_id);
|
|
d = shadow_cube_radial_depth(cubevec, tex_id, shadow_id);
|
|
/* NOTE: The offset is irregular in respect to cubeface uvs. But it has
|
|
* a much more uniform behavior than biasing based on face derivatives. */
|
|
depths.x = shadow_cube_radial_depth(cubevec + T * ofs, tex_id, shadow_id);
|
|
depths.y = shadow_cube_radial_depth(cubevec + B * ofs, tex_id, shadow_id);
|
|
depths.z = shadow_cube_radial_depth(cubevec - T * ofs, tex_id, shadow_id);
|
|
depths.w = shadow_cube_radial_depth(cubevec - B * ofs, tex_id, shadow_id);
|
|
}
|
|
|
|
float dx = depths.x - depths.z;
|
|
float dy = depths.y - depths.w;
|
|
|
|
float s = min(d, min_v4(depths));
|
|
|
|
/* To avoid light leak from depth discontinuity and shadowmap aliasing. */
|
|
float slope_bias = (abs(dx) + abs(dy)) * 0.5;
|
|
s -= slope_bias;
|
|
|
|
float delta = dist - s;
|
|
|
|
float power = light_translucent_power_with_falloff(ld, N, l_vector);
|
|
|
|
return power * sss_profile(abs(delta) / sss_scale);
|
|
}
|
|
|
|
#undef sd
|
|
#undef scube
|
|
#undef scsmd
|
|
|
|
/* Similar to https://atyuwen.github.io/posts/normal-reconstruction/.
|
|
* This samples the depth buffer 4 time for each direction to get the most correct
|
|
* implicit normal reconstruction out of the depth buffer. */
|
|
vec3 view_position_derivative_from_depth(vec2 uvs, vec2 ofs, vec3 vP, float depth_center)
|
|
{
|
|
vec2 uv1 = uvs - ofs * 2.0;
|
|
vec2 uv2 = uvs - ofs;
|
|
vec2 uv3 = uvs + ofs;
|
|
vec2 uv4 = uvs + ofs * 2.0;
|
|
vec4 H;
|
|
H.x = textureLod(depthBuffer, uv1, 0.0).r;
|
|
H.y = textureLod(depthBuffer, uv2, 0.0).r;
|
|
H.z = textureLod(depthBuffer, uv3, 0.0).r;
|
|
H.w = textureLod(depthBuffer, uv4, 0.0).r;
|
|
/* Fix issue with depth precision. Take even larger diff. */
|
|
vec4 diff = abs(vec4(depth_center, H.yzw) - H.x);
|
|
if (max_v4(diff) < 2.4e-7 && all(lessThan(diff.xyz, diff.www))) {
|
|
return 0.25 * (get_view_space_from_depth(uv3, H.w) - get_view_space_from_depth(uv1, H.x));
|
|
}
|
|
/* Simplified (H.xw + 2.0 * (H.yz - H.xw)) - depth_center */
|
|
vec2 deltas = abs((2.0 * H.yz - H.xw) - depth_center);
|
|
if (deltas.x < deltas.y) {
|
|
return vP - get_view_space_from_depth(uv2, H.y);
|
|
}
|
|
else {
|
|
return get_view_space_from_depth(uv3, H.z) - vP;
|
|
}
|
|
}
|
|
|
|
/* TODO(@fclem): port to a common place for other effects to use. */
|
|
bool reconstruct_view_position_and_normal_from_depth(vec2 uvs, out vec3 vP, out vec3 vNg)
|
|
{
|
|
vec2 texel_size = vec2(abs(dFdx(uvs.x)), abs(dFdy(uvs.y)));
|
|
float depth_center = textureLod(depthBuffer, uvs, 0.0).r;
|
|
|
|
vP = get_view_space_from_depth(uvs, depth_center);
|
|
|
|
vec3 dPdx = view_position_derivative_from_depth(uvs, texel_size * vec2(1, 0), vP, depth_center);
|
|
vec3 dPdy = view_position_derivative_from_depth(uvs, texel_size * vec2(0, 1), vP, depth_center);
|
|
|
|
vNg = safe_normalize(cross(dPdx, dPdy));
|
|
|
|
/* Background case. */
|
|
if (depth_center == 1.0) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void main(void)
|
|
{
|
|
vec2 uvs = uvcoordsvar.xy;
|
|
float sss_scale = texture(sssRadius, uvs).r;
|
|
|
|
vec3 rand = texelfetch_noise_tex(gl_FragCoord.xy).zwy;
|
|
rand.xy *= fast_sqrt(rand.z);
|
|
|
|
vec3 vP, vNg;
|
|
reconstruct_view_position_and_normal_from_depth(uvs, vP, vNg);
|
|
|
|
vec3 P = point_view_to_world(vP);
|
|
vec3 Ng = normal_view_to_world(vNg);
|
|
|
|
vec3 accum = vec3(0.0);
|
|
for (int i = 0; i < MAX_LIGHT && i < laNumLight; i++) {
|
|
LightData ld = lights_data[i];
|
|
|
|
/* Only shadowed light can produce translucency */
|
|
if (ld.l_shadowid < 0.0) {
|
|
continue;
|
|
}
|
|
|
|
vec4 l_vector; /* Non-Normalized Light Vector with length in last component. */
|
|
l_vector.xyz = ld.l_position - P;
|
|
l_vector.w = length(l_vector.xyz);
|
|
|
|
float att = light_attenuation(ld, l_vector);
|
|
if (att < 1e-8) {
|
|
continue;
|
|
}
|
|
|
|
accum += att * ld.l_color * light_translucent(ld, P, -Ng, l_vector, rand.xy, sss_scale);
|
|
}
|
|
|
|
FragColor = vec4(accum, 1.0);
|
|
}
|