265 lines
8.1 KiB
C++
265 lines
8.1 KiB
C++
/* SPDX-License-Identifier: GPL-2.0-or-later
|
|
* Copyright 2021 Blender Foundation.
|
|
*/
|
|
|
|
/** \file
|
|
* \ingroup eevee
|
|
*
|
|
* Random number generator, contains persistent state and sample count logic.
|
|
*/
|
|
|
|
#include "BLI_rand.h"
|
|
|
|
#include "eevee_instance.hh"
|
|
#include "eevee_sampling.hh"
|
|
|
|
namespace blender::eevee {
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Sampling
|
|
* \{ */
|
|
|
|
void Sampling::init(const Scene *scene)
|
|
{
|
|
sample_count_ = inst_.is_viewport() ? scene->eevee.taa_samples : scene->eevee.taa_render_samples;
|
|
|
|
if (sample_count_ == 0) {
|
|
BLI_assert(inst_.is_viewport());
|
|
sample_count_ = infinite_sample_count_;
|
|
}
|
|
|
|
motion_blur_steps_ = !inst_.is_viewport() ? scene->eevee.motion_blur_steps : 1;
|
|
sample_count_ = divide_ceil_u(sample_count_, motion_blur_steps_);
|
|
|
|
if (scene->eevee.flag & SCE_EEVEE_DOF_JITTER) {
|
|
if (sample_count_ == infinite_sample_count_) {
|
|
/* Special case for viewport continuous rendering. We clamp to a max sample
|
|
* to avoid the jittered dof never converging. */
|
|
dof_ring_count_ = 6;
|
|
}
|
|
else {
|
|
dof_ring_count_ = sampling_web_ring_count_get(dof_web_density_, sample_count_);
|
|
}
|
|
dof_sample_count_ = sampling_web_sample_count_get(dof_web_density_, dof_ring_count_);
|
|
/* Change total sample count to fill the web pattern entirely. */
|
|
sample_count_ = divide_ceil_u(sample_count_, dof_sample_count_) * dof_sample_count_;
|
|
}
|
|
else {
|
|
dof_ring_count_ = 0;
|
|
dof_sample_count_ = 1;
|
|
}
|
|
|
|
/* Only multiply after to have full the full DoF web pattern for each time steps. */
|
|
sample_count_ *= motion_blur_steps_;
|
|
}
|
|
|
|
void Sampling::end_sync()
|
|
{
|
|
if (reset_) {
|
|
viewport_sample_ = 0;
|
|
if (inst_.is_viewport()) {
|
|
interactive_mode_ = true;
|
|
}
|
|
}
|
|
|
|
if (interactive_mode_) {
|
|
int interactive_sample_count = min_ii(interactive_sample_max_, sample_count_);
|
|
|
|
if (viewport_sample_ < interactive_sample_count) {
|
|
/* Loop over the same starting samples. */
|
|
sample_ = sample_ % interactive_sample_count;
|
|
}
|
|
else {
|
|
/* Break out of the loop and resume normal pattern. */
|
|
sample_ = interactive_sample_count;
|
|
interactive_mode_ = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Sampling::step()
|
|
{
|
|
{
|
|
/* TODO(fclem) we could use some persistent states to speedup the computation. */
|
|
double2 r, offset = {0, 0};
|
|
/* Using 2,3 primes as per UE4 Temporal AA presentation.
|
|
* http://advances.realtimerendering.com/s2014/epic/TemporalAA.pptx (slide 14) */
|
|
uint2 primes = {2, 3};
|
|
BLI_halton_2d(primes, offset, sample_ + 1, r);
|
|
/* WORKAROUND: We offset the distribution to make the first sample (0,0). This way, we are
|
|
* assured that at least one of the samples inside the TAA rotation will match the one from the
|
|
* draw manager. This makes sure overlays are correctly composited in static scene. */
|
|
data_.dimensions[SAMPLING_FILTER_U] = fractf(r[0] + (1.0 / 2.0));
|
|
data_.dimensions[SAMPLING_FILTER_V] = fractf(r[1] + (2.0 / 3.0));
|
|
/* TODO de-correlate. */
|
|
data_.dimensions[SAMPLING_TIME] = r[0];
|
|
data_.dimensions[SAMPLING_CLOSURE] = r[1];
|
|
data_.dimensions[SAMPLING_RAYTRACE_X] = r[0];
|
|
}
|
|
{
|
|
double2 r, offset = {0, 0};
|
|
uint2 primes = {5, 7};
|
|
BLI_halton_2d(primes, offset, sample_ + 1, r);
|
|
data_.dimensions[SAMPLING_LENS_U] = r[0];
|
|
data_.dimensions[SAMPLING_LENS_V] = r[1];
|
|
/* TODO de-correlate. */
|
|
data_.dimensions[SAMPLING_LIGHTPROBE] = r[0];
|
|
data_.dimensions[SAMPLING_TRANSPARENCY] = r[1];
|
|
}
|
|
{
|
|
/* Using leaped Halton sequence so we can reused the same primes as lens. */
|
|
double3 r, offset = {0, 0, 0};
|
|
uint64_t leap = 11;
|
|
uint3 primes = {5, 4, 7};
|
|
BLI_halton_3d(primes, offset, sample_ * leap, r);
|
|
data_.dimensions[SAMPLING_SHADOW_U] = r[0];
|
|
data_.dimensions[SAMPLING_SHADOW_V] = r[1];
|
|
data_.dimensions[SAMPLING_SHADOW_W] = r[2];
|
|
/* TODO de-correlate. */
|
|
data_.dimensions[SAMPLING_RAYTRACE_U] = r[0];
|
|
data_.dimensions[SAMPLING_RAYTRACE_V] = r[1];
|
|
data_.dimensions[SAMPLING_RAYTRACE_W] = r[2];
|
|
}
|
|
{
|
|
/* Using leaped Halton sequence so we can reused the same primes. */
|
|
double2 r, offset = {0, 0};
|
|
uint64_t leap = 5;
|
|
uint2 primes = {2, 3};
|
|
BLI_halton_2d(primes, offset, sample_ * leap, r);
|
|
data_.dimensions[SAMPLING_SHADOW_X] = r[0];
|
|
data_.dimensions[SAMPLING_SHADOW_Y] = r[1];
|
|
/* TODO de-correlate. */
|
|
data_.dimensions[SAMPLING_SSS_U] = r[0];
|
|
data_.dimensions[SAMPLING_SSS_V] = r[1];
|
|
}
|
|
|
|
data_.push_update();
|
|
|
|
viewport_sample_++;
|
|
sample_++;
|
|
|
|
std::cout << sample_ << " " << viewport_sample_ << std::endl;
|
|
|
|
reset_ = false;
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Sampling patterns
|
|
* \{ */
|
|
|
|
float3 Sampling::sample_ball(const float3 &rand)
|
|
{
|
|
float3 sample;
|
|
sample.z = rand.x * 2.0f - 1.0f; /* cos theta */
|
|
|
|
float r = sqrtf(fmaxf(0.0f, 1.0f - square_f(sample.z))); /* sin theta */
|
|
|
|
float omega = rand.y * 2.0f * M_PI;
|
|
sample.x = r * cosf(omega);
|
|
sample.y = r * sinf(omega);
|
|
|
|
sample *= sqrtf(sqrtf(rand.z));
|
|
return sample;
|
|
}
|
|
|
|
float2 Sampling::sample_disk(const float2 &rand)
|
|
{
|
|
float omega = rand.y * 2.0f * M_PI;
|
|
return sqrtf(rand.x) * float2(cosf(omega), sinf(omega));
|
|
}
|
|
|
|
float2 Sampling::sample_spiral(const float2 &rand)
|
|
{
|
|
/* Fibonacci spiral. */
|
|
float omega = M_PI * (1.0f + sqrtf(5.0f)) * rand.x;
|
|
float r = sqrtf(rand.x);
|
|
/* Random rotation. */
|
|
omega += rand.y * 2.0f * M_PI;
|
|
return r * float2(cosf(omega), sinf(omega));
|
|
}
|
|
|
|
void Sampling::dof_disk_sample_get(float *r_radius, float *r_theta) const
|
|
{
|
|
if (dof_ring_count_ == 0) {
|
|
*r_radius = *r_theta = 0.0f;
|
|
return;
|
|
}
|
|
|
|
int s = sample_ - 1;
|
|
int ring = 0;
|
|
int ring_sample_count = 1;
|
|
int ring_sample = 1;
|
|
|
|
s = s * (dof_web_density_ - 1);
|
|
s = s % dof_sample_count_;
|
|
|
|
/* Choosing sample to we get faster convergence.
|
|
* The issue here is that we cannot map a low discrepancy sequence to this sampling pattern
|
|
* because the same sample could be chosen twice in relatively short intervals. */
|
|
/* For now just use an ascending sequence with an offset. This gives us relatively quick
|
|
* initial coverage and relatively high distance between samples. */
|
|
/* TODO(@fclem) We can try to order samples based on a LDS into a table to avoid duplicates.
|
|
* The drawback would be some memory consumption and initialize time. */
|
|
int samples_passed = 1;
|
|
while (s >= samples_passed) {
|
|
ring++;
|
|
ring_sample_count = ring * dof_web_density_;
|
|
ring_sample = s - samples_passed;
|
|
ring_sample = (ring_sample + 1) % ring_sample_count;
|
|
samples_passed += ring_sample_count;
|
|
}
|
|
|
|
*r_radius = ring / (float)dof_ring_count_;
|
|
*r_theta = 2.0f * M_PI * ring_sample / (float)ring_sample_count;
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Sampling patterns
|
|
* \{ */
|
|
|
|
/* Creates a discrete cumulative distribution function table from a given curvemapping.
|
|
* Output cdf vector is expected to already be sized according to the wanted resolution. */
|
|
void Sampling::cdf_from_curvemapping(const CurveMapping &curve, Vector<float> &cdf)
|
|
{
|
|
BLI_assert(cdf.size() > 1);
|
|
cdf[0] = 0.0f;
|
|
/* Actual CDF evaluation. */
|
|
for (int u : cdf.index_range()) {
|
|
float x = (float)(u + 1) / (float)(cdf.size() - 1);
|
|
cdf[u + 1] = cdf[u] + BKE_curvemapping_evaluateF(&curve, 0, x);
|
|
}
|
|
/* Normalize the CDF. */
|
|
for (int u : cdf.index_range()) {
|
|
cdf[u] /= cdf.last();
|
|
}
|
|
/* Just to make sure. */
|
|
cdf.last() = 1.0f;
|
|
}
|
|
|
|
/* Inverts a cumulative distribution function.
|
|
* Output vector is expected to already be sized according to the wanted resolution. */
|
|
void Sampling::cdf_invert(Vector<float> &cdf, Vector<float> &inverted_cdf)
|
|
{
|
|
for (int u : inverted_cdf.index_range()) {
|
|
float x = (float)u / (float)(inverted_cdf.size() - 1);
|
|
for (int i : cdf.index_range()) {
|
|
if (i == cdf.size() - 1) {
|
|
inverted_cdf[u] = 1.0f;
|
|
}
|
|
else if (cdf[i] >= x) {
|
|
float t = (x - cdf[i]) / (cdf[i + 1] - cdf[i]);
|
|
inverted_cdf[u] = ((float)i + t) / (float)(cdf.size() - 1);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/** \} */
|
|
|
|
} // namespace blender::eevee
|