This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/customdata.c
2013-09-10 15:24:31 +00:00

3364 lines
90 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2006 Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Ben Batt <benbatt@gmail.com>
*
* ***** END GPL LICENSE BLOCK *****
*
* Implementation of CustomData.
*
* BKE_customdata.h contains the function prototypes for this file.
*
*/
/** \file blender/blenkernel/intern/customdata.c
* \ingroup bke
*/
#include <math.h>
#include <string.h>
#include <assert.h>
#include "MEM_guardedalloc.h"
#include "DNA_meshdata_types.h"
#include "DNA_ID.h"
#include "BLI_utildefines.h"
#include "BLI_blenlib.h"
#include "BLI_linklist.h"
#include "BLI_math.h"
#include "BLI_mempool.h"
#include "BLI_utildefines.h"
#include "BLF_translation.h"
#include "BKE_customdata.h"
#include "BKE_customdata_file.h"
#include "BKE_global.h"
#include "BKE_main.h"
#include "BKE_multires.h"
#include "bmesh.h"
#include <math.h>
#include <string.h>
/* number of layers to add when growing a CustomData object */
#define CUSTOMDATA_GROW 5
/* ensure typemap size is ok */
BLI_STATIC_ASSERT(sizeof(((CustomData *)NULL)->typemap) /
sizeof(((CustomData *)NULL)->typemap[0]) == CD_NUMTYPES,
"size mismatch");
/********************* Layer type information **********************/
typedef struct LayerTypeInfo {
int size; /* the memory size of one element of this layer's data */
/** name of the struct used, for file writing */
const char *structname;
/** number of structs per element, for file writing */
int structnum;
/**
* default layer name.
* note! when NULL this is a way to ensure there is only ever one item
* see: CustomData_layertype_is_singleton() */
const char *defaultname;
/**
* a function to copy count elements of this layer's data
* (deep copy if appropriate)
* if NULL, memcpy is used
*/
void (*copy)(const void *source, void *dest, int count);
/**
* a function to free any dynamically allocated components of this
* layer's data (note the data pointer itself should not be freed)
* size should be the size of one element of this layer's data (e.g.
* LayerTypeInfo.size)
*/
void (*free)(void *data, int count, int size);
/**
* a function to interpolate between count source elements of this
* layer's data and store the result in dest
* if weights == NULL or sub_weights == NULL, they should default to 1
*
* weights gives the weight for each element in sources
* sub_weights gives the sub-element weights for each element in sources
* (there should be (sub element count)^2 weights per element)
* count gives the number of elements in sources
*
* \note in some cases \a dest pointer is in \a sources
* so all functions have to take this into account and delay
* applying changes while reading from sources.
* See bug [#32395] - Campbell.
*/
void (*interp)(void **sources, const float *weights, const float *sub_weights,
int count, void *dest);
/** a function to swap the data in corners of the element */
void (*swap)(void *data, const int *corner_indices);
/**
* a function to set a layer's data to default values. if NULL, the
* default is assumed to be all zeros */
void (*set_default)(void *data, int count);
/** functions necessary for geometry collapse */
bool (*equal)(void *data1, void *data2);
void (*multiply)(void *data, float fac);
void (*initminmax)(void *min, void *max);
void (*add)(void *data1, void *data2);
void (*dominmax)(void *data1, void *min, void *max);
void (*copyvalue)(void *source, void *dest);
/** a function to read data from a cdf file */
int (*read)(CDataFile *cdf, void *data, int count);
/** a function to write data to a cdf file */
int (*write)(CDataFile *cdf, void *data, int count);
/** a function to determine file size */
size_t (*filesize)(CDataFile *cdf, void *data, int count);
} LayerTypeInfo;
static void layerCopy_mdeformvert(const void *source, void *dest,
int count)
{
int i, size = sizeof(MDeformVert);
memcpy(dest, source, count * size);
for (i = 0; i < count; ++i) {
MDeformVert *dvert = (MDeformVert *)((char *)dest + i * size);
if (dvert->totweight) {
MDeformWeight *dw = MEM_mallocN(dvert->totweight * sizeof(*dw),
"layerCopy_mdeformvert dw");
memcpy(dw, dvert->dw, dvert->totweight * sizeof(*dw));
dvert->dw = dw;
}
else
dvert->dw = NULL;
}
}
static void layerFree_mdeformvert(void *data, int count, int size)
{
int i;
for (i = 0; i < count; ++i) {
MDeformVert *dvert = (MDeformVert *)((char *)data + i * size);
if (dvert->dw) {
MEM_freeN(dvert->dw);
dvert->dw = NULL;
dvert->totweight = 0;
}
}
}
/* copy just zeros in this case */
static void layerCopy_bmesh_elem_py_ptr(const void *UNUSED(source), void *dest,
int count)
{
int i, size = sizeof(void *);
for (i = 0; i < count; ++i) {
void **ptr = (void **)((char *)dest + i * size);
*ptr = NULL;
}
}
#ifndef WITH_PYTHON
void bpy_bm_generic_invalidate(struct BPy_BMGeneric *UNUSED(self))
{
/* dummy */
}
#endif
static void layerFree_bmesh_elem_py_ptr(void *data, int count, int size)
{
int i;
for (i = 0; i < count; ++i) {
void **ptr = (void *)((char *)data + i * size);
if (*ptr) {
bpy_bm_generic_invalidate(*ptr);
}
}
}
static void layerInterp_mdeformvert(void **sources, const float *weights,
const float *UNUSED(sub_weights), int count, void *dest)
{
/* a single linked list of MDeformWeight's
* use this to avoid double allocs (which LinkNode would do) */
struct MDeformWeight_Link {
struct MDeformWeight_Link *next;
MDeformWeight dw;
};
MDeformVert *dvert = dest;
struct MDeformWeight_Link *dest_dwlink = NULL;
struct MDeformWeight_Link *node;
int i, j, totweight;
if (count <= 0) return;
/* build a list of unique def_nrs for dest */
totweight = 0;
for (i = 0; i < count; ++i) {
MDeformVert *source = sources[i];
float interp_weight = weights ? weights[i] : 1.0f;
for (j = 0; j < source->totweight; ++j) {
MDeformWeight *dw = &source->dw[j];
float weight = dw->weight * interp_weight;
if (weight == 0.0f)
continue;
for (node = dest_dwlink; node; node = node->next) {
MDeformWeight *tmp_dw = &node->dw;
if (tmp_dw->def_nr == dw->def_nr) {
tmp_dw->weight += weight;
break;
}
}
/* if this def_nr is not in the list, add it */
if (!node) {
struct MDeformWeight_Link *tmp_dwlink = MEM_mallocN(sizeof(*tmp_dwlink), __func__);
tmp_dwlink->dw.def_nr = dw->def_nr;
tmp_dwlink->dw.weight = weight;
/* inline linklist */
tmp_dwlink->next = dest_dwlink;
dest_dwlink = tmp_dwlink;
totweight++;
}
}
}
/* delay writing to the destination incase dest is in sources */
/* now we know how many unique deform weights there are, so realloc */
if (dvert->dw && (dvert->totweight == totweight)) {
/* pass (fastpath if we don't need to realloc) */
}
else {
if (dvert->dw) {
MEM_freeN(dvert->dw);
}
if (totweight) {
dvert->dw = MEM_mallocN(sizeof(*dvert->dw) * totweight, __func__);
}
}
if (totweight) {
struct MDeformWeight_Link *node_next;
dvert->totweight = totweight;
for (i = 0, node = dest_dwlink; node; node = node_next, i++) {
node_next = node->next;
dvert->dw[i] = node->dw;
MEM_freeN(node);
}
}
else {
memset(dvert, 0, sizeof(*dvert));
}
}
static void layerCopy_tface(const void *source, void *dest, int count)
{
const MTFace *source_tf = (const MTFace *)source;
MTFace *dest_tf = (MTFace *)dest;
int i;
for (i = 0; i < count; ++i)
dest_tf[i] = source_tf[i];
}
static void layerInterp_tface(void **sources, const float *weights,
const float *sub_weights, int count, void *dest)
{
MTFace *tf = dest;
int i, j, k;
float uv[4][2] = {{0.0f}};
const float *sub_weight;
if (count <= 0) return;
sub_weight = sub_weights;
for (i = 0; i < count; ++i) {
float weight = weights ? weights[i] : 1;
MTFace *src = sources[i];
for (j = 0; j < 4; ++j) {
if (sub_weights) {
for (k = 0; k < 4; ++k, ++sub_weight) {
madd_v2_v2fl(uv[j], src->uv[k], (*sub_weight) * weight);
}
}
else {
madd_v2_v2fl(uv[j], src->uv[j], weight);
}
}
}
/* delay writing to the destination incase dest is in sources */
*tf = *(MTFace *)(*sources);
memcpy(tf->uv, uv, sizeof(tf->uv));
}
static void layerSwap_tface(void *data, const int *corner_indices)
{
MTFace *tf = data;
float uv[4][2];
static const short pin_flags[4] = { TF_PIN1, TF_PIN2, TF_PIN3, TF_PIN4 };
static const char sel_flags[4] = { TF_SEL1, TF_SEL2, TF_SEL3, TF_SEL4 };
short unwrap = tf->unwrap & ~(TF_PIN1 | TF_PIN2 | TF_PIN3 | TF_PIN4);
char flag = tf->flag & ~(TF_SEL1 | TF_SEL2 | TF_SEL3 | TF_SEL4);
int j;
for (j = 0; j < 4; ++j) {
const int source_index = corner_indices[j];
copy_v2_v2(uv[j], tf->uv[source_index]);
/* swap pinning flags around */
if (tf->unwrap & pin_flags[source_index]) {
unwrap |= pin_flags[j];
}
/* swap selection flags around */
if (tf->flag & sel_flags[source_index]) {
flag |= sel_flags[j];
}
}
memcpy(tf->uv, uv, sizeof(tf->uv));
tf->unwrap = unwrap;
tf->flag = flag;
}
static void layerDefault_tface(void *data, int count)
{
static MTFace default_tf = {{{0, 0}, {1, 0}, {1, 1}, {0, 1}}, NULL,
0, 0, TF_DYNAMIC | TF_CONVERTED, 0, 0};
MTFace *tf = (MTFace *)data;
int i;
for (i = 0; i < count; i++)
tf[i] = default_tf;
}
static void layerCopy_propFloat(const void *source, void *dest,
int count)
{
memcpy(dest, source, sizeof(MFloatProperty) * count);
}
static void layerCopy_propInt(const void *source, void *dest,
int count)
{
memcpy(dest, source, sizeof(MIntProperty) * count);
}
static void layerCopy_propString(const void *source, void *dest,
int count)
{
memcpy(dest, source, sizeof(MStringProperty) * count);
}
static void layerCopy_origspace_face(const void *source, void *dest, int count)
{
const OrigSpaceFace *source_tf = (const OrigSpaceFace *)source;
OrigSpaceFace *dest_tf = (OrigSpaceFace *)dest;
int i;
for (i = 0; i < count; ++i)
dest_tf[i] = source_tf[i];
}
static void layerInterp_origspace_face(void **sources, const float *weights,
const float *sub_weights, int count, void *dest)
{
OrigSpaceFace *osf = dest;
int i, j, k;
float uv[4][2] = {{0.0f}};
const float *sub_weight;
if (count <= 0) return;
sub_weight = sub_weights;
for (i = 0; i < count; ++i) {
float weight = weights ? weights[i] : 1;
OrigSpaceFace *src = sources[i];
for (j = 0; j < 4; ++j) {
if (sub_weights) {
for (k = 0; k < 4; ++k, ++sub_weight) {
madd_v2_v2fl(uv[j], src->uv[k], (*sub_weight) * weight);
}
}
else {
madd_v2_v2fl(uv[j], src->uv[j], weight);
}
}
}
/* delay writing to the destination incase dest is in sources */
#if 0 /* no need, this ONLY contains UV's */
*osf = *(OrigSpaceFace *)(*sources);
#endif
memcpy(osf->uv, uv, sizeof(osf->uv));
}
static void layerSwap_origspace_face(void *data, const int *corner_indices)
{
OrigSpaceFace *osf = data;
float uv[4][2];
int j;
for (j = 0; j < 4; ++j) {
copy_v2_v2(uv[j], osf->uv[corner_indices[j]]);
}
memcpy(osf->uv, uv, sizeof(osf->uv));
}
static void layerDefault_origspace_face(void *data, int count)
{
static OrigSpaceFace default_osf = {{{0, 0}, {1, 0}, {1, 1}, {0, 1}}};
OrigSpaceFace *osf = (OrigSpaceFace *)data;
int i;
for (i = 0; i < count; i++)
osf[i] = default_osf;
}
static void layerSwap_mdisps(void *data, const int *ci)
{
MDisps *s = data;
float (*d)[3] = NULL;
int corners, cornersize, S;
if (s->disps) {
int nverts = (ci[1] == 3) ? 4 : 3; /* silly way to know vertex count of face */
corners = multires_mdisp_corners(s);
cornersize = s->totdisp / corners;
if (corners != nverts) {
/* happens when face changed vertex count in edit mode
* if it happened, just forgot displacement */
MEM_freeN(s->disps);
s->totdisp = (s->totdisp / corners) * nverts;
s->disps = MEM_callocN(s->totdisp * sizeof(float) * 3, "mdisp swap");
return;
}
d = MEM_callocN(sizeof(float) * 3 * s->totdisp, "mdisps swap");
for (S = 0; S < corners; S++)
memcpy(d + cornersize * S, s->disps + cornersize * ci[S], cornersize * 3 * sizeof(float));
MEM_freeN(s->disps);
s->disps = d;
}
}
static void layerCopy_mdisps(const void *source, void *dest, int count)
{
int i;
const MDisps *s = source;
MDisps *d = dest;
for (i = 0; i < count; ++i) {
if (s[i].disps) {
d[i].disps = MEM_dupallocN(s[i].disps);
d[i].hidden = MEM_dupallocN(s[i].hidden);
d[i].totdisp = s[i].totdisp;
d[i].level = s[i].level;
}
else {
d[i].disps = NULL;
d[i].hidden = NULL;
d[i].totdisp = 0;
d[i].level = 0;
}
}
}
static void layerFree_mdisps(void *data, int count, int UNUSED(size))
{
int i;
MDisps *d = data;
for (i = 0; i < count; ++i) {
if (d[i].disps)
MEM_freeN(d[i].disps);
if (d[i].hidden)
MEM_freeN(d[i].hidden);
d[i].disps = NULL;
d[i].hidden = NULL;
d[i].totdisp = 0;
d[i].level = 0;
}
}
static int layerRead_mdisps(CDataFile *cdf, void *data, int count)
{
MDisps *d = data;
int i;
for (i = 0; i < count; ++i) {
if (!d[i].disps)
d[i].disps = MEM_callocN(sizeof(float) * 3 * d[i].totdisp, "mdisps read");
if (!cdf_read_data(cdf, d[i].totdisp * 3 * sizeof(float), d[i].disps)) {
printf("failed to read multires displacement %d/%d %d\n", i, count, d[i].totdisp);
return 0;
}
}
return 1;
}
static int layerWrite_mdisps(CDataFile *cdf, void *data, int count)
{
MDisps *d = data;
int i;
for (i = 0; i < count; ++i) {
if (!cdf_write_data(cdf, d[i].totdisp * 3 * sizeof(float), d[i].disps)) {
printf("failed to write multires displacement %d/%d %d\n", i, count, d[i].totdisp);
return 0;
}
}
return 1;
}
static size_t layerFilesize_mdisps(CDataFile *UNUSED(cdf), void *data, int count)
{
MDisps *d = data;
size_t size = 0;
int i;
for (i = 0; i < count; ++i)
size += d[i].totdisp * 3 * sizeof(float);
return size;
}
static void layerCopy_grid_paint_mask(const void *source, void *dest, int count)
{
int i;
const GridPaintMask *s = source;
GridPaintMask *d = dest;
for (i = 0; i < count; ++i) {
if (s[i].data) {
d[i].data = MEM_dupallocN(s[i].data);
d[i].level = s[i].level;
}
else {
d[i].data = NULL;
d[i].level = 0;
}
}
}
static void layerFree_grid_paint_mask(void *data, int count, int UNUSED(size))
{
int i;
GridPaintMask *gpm = data;
for (i = 0; i < count; ++i) {
if (gpm[i].data)
MEM_freeN(gpm[i].data);
gpm[i].data = NULL;
gpm[i].level = 0;
}
}
/* --------- */
static void layerCopyValue_mloopcol(void *source, void *dest)
{
MLoopCol *m1 = source, *m2 = dest;
m2->r = m1->r;
m2->g = m1->g;
m2->b = m1->b;
m2->a = m1->a;
}
static bool layerEqual_mloopcol(void *data1, void *data2)
{
MLoopCol *m1 = data1, *m2 = data2;
float r, g, b, a;
r = m1->r - m2->r;
g = m1->g - m2->g;
b = m1->b - m2->b;
a = m1->a - m2->a;
return r * r + g * g + b * b + a * a < 0.001f;
}
static void layerMultiply_mloopcol(void *data, float fac)
{
MLoopCol *m = data;
m->r = (float)m->r * fac;
m->g = (float)m->g * fac;
m->b = (float)m->b * fac;
m->a = (float)m->a * fac;
}
static void layerAdd_mloopcol(void *data1, void *data2)
{
MLoopCol *m = data1, *m2 = data2;
m->r += m2->r;
m->g += m2->g;
m->b += m2->b;
m->a += m2->a;
}
static void layerDoMinMax_mloopcol(void *data, void *vmin, void *vmax)
{
MLoopCol *m = data;
MLoopCol *min = vmin, *max = vmax;
if (m->r < min->r) min->r = m->r;
if (m->g < min->g) min->g = m->g;
if (m->b < min->b) min->b = m->b;
if (m->a < min->a) min->a = m->a;
if (m->r > max->r) max->r = m->r;
if (m->g > max->g) max->g = m->g;
if (m->b > max->b) max->b = m->b;
if (m->a > max->a) max->a = m->a;
}
static void layerInitMinMax_mloopcol(void *vmin, void *vmax)
{
MLoopCol *min = vmin, *max = vmax;
min->r = 255;
min->g = 255;
min->b = 255;
min->a = 255;
max->r = 0;
max->g = 0;
max->b = 0;
max->a = 0;
}
static void layerDefault_mloopcol(void *data, int count)
{
MLoopCol default_mloopcol = {255, 255, 255, 255};
MLoopCol *mlcol = (MLoopCol *)data;
int i;
for (i = 0; i < count; i++)
mlcol[i] = default_mloopcol;
}
static void layerInterp_mloopcol(void **sources, const float *weights,
const float *sub_weights, int count, void *dest)
{
MLoopCol *mc = dest;
int i;
const float *sub_weight;
struct {
float a;
float r;
float g;
float b;
} col;
col.a = col.r = col.g = col.b = 0;
sub_weight = sub_weights;
for (i = 0; i < count; ++i) {
float weight = weights ? weights[i] : 1;
MLoopCol *src = sources[i];
if (sub_weights) {
col.r += src->r * (*sub_weight) * weight;
col.g += src->g * (*sub_weight) * weight;
col.b += src->b * (*sub_weight) * weight;
col.a += src->a * (*sub_weight) * weight;
sub_weight++;
}
else {
col.r += src->r * weight;
col.g += src->g * weight;
col.b += src->b * weight;
col.a += src->a * weight;
}
}
/* Subdivide smooth or fractal can cause problems without clamping
* although weights should also not cause this situation */
CLAMP(col.a, 0.0f, 255.0f);
CLAMP(col.r, 0.0f, 255.0f);
CLAMP(col.g, 0.0f, 255.0f);
CLAMP(col.b, 0.0f, 255.0f);
/* delay writing to the destination incase dest is in sources */
mc->r = (int)col.r;
mc->g = (int)col.g;
mc->b = (int)col.b;
mc->a = (int)col.a;
}
static void layerCopyValue_mloopuv(void *source, void *dest)
{
MLoopUV *luv1 = source, *luv2 = dest;
copy_v2_v2(luv2->uv, luv1->uv);
}
static bool layerEqual_mloopuv(void *data1, void *data2)
{
MLoopUV *luv1 = data1, *luv2 = data2;
return len_squared_v2v2(luv1->uv, luv2->uv) < 0.00001f;
}
static void layerMultiply_mloopuv(void *data, float fac)
{
MLoopUV *luv = data;
mul_v2_fl(luv->uv, fac);
}
static void layerInitMinMax_mloopuv(void *vmin, void *vmax)
{
MLoopUV *min = vmin, *max = vmax;
INIT_MINMAX2(min->uv, max->uv);
}
static void layerDoMinMax_mloopuv(void *data, void *vmin, void *vmax)
{
MLoopUV *min = vmin, *max = vmax, *luv = data;
minmax_v2v2_v2(min->uv, max->uv, luv->uv);
}
static void layerAdd_mloopuv(void *data1, void *data2)
{
MLoopUV *l1 = data1, *l2 = data2;
add_v2_v2(l1->uv, l2->uv);
}
static void layerInterp_mloopuv(void **sources, const float *weights,
const float *sub_weights, int count, void *dest)
{
float uv[2];
int i;
zero_v2(uv);
if (sub_weights) {
const float *sub_weight = sub_weights;
for (i = 0; i < count; i++) {
float weight = weights ? weights[i] : 1.0f;
MLoopUV *src = sources[i];
madd_v2_v2fl(uv, src->uv, (*sub_weight) * weight);
sub_weight++;
}
}
else {
for (i = 0; i < count; i++) {
float weight = weights ? weights[i] : 1;
MLoopUV *src = sources[i];
madd_v2_v2fl(uv, src->uv, weight);
}
}
/* delay writing to the destination incase dest is in sources */
copy_v2_v2(((MLoopUV *)dest)->uv, uv);
}
/* origspace is almost exact copy of mloopuv's, keep in sync */
static void layerCopyValue_mloop_origspace(void *source, void *dest)
{
OrigSpaceLoop *luv1 = source, *luv2 = dest;
copy_v2_v2(luv2->uv, luv1->uv);
}
static bool layerEqual_mloop_origspace(void *data1, void *data2)
{
OrigSpaceLoop *luv1 = data1, *luv2 = data2;
return len_squared_v2v2(luv1->uv, luv2->uv) < 0.00001f;
}
static void layerMultiply_mloop_origspace(void *data, float fac)
{
OrigSpaceLoop *luv = data;
mul_v2_fl(luv->uv, fac);
}
static void layerInitMinMax_mloop_origspace(void *vmin, void *vmax)
{
OrigSpaceLoop *min = vmin, *max = vmax;
INIT_MINMAX2(min->uv, max->uv);
}
static void layerDoMinMax_mloop_origspace(void *data, void *vmin, void *vmax)
{
OrigSpaceLoop *min = vmin, *max = vmax, *luv = data;
minmax_v2v2_v2(min->uv, max->uv, luv->uv);
}
static void layerAdd_mloop_origspace(void *data1, void *data2)
{
OrigSpaceLoop *l1 = data1, *l2 = data2;
add_v2_v2(l1->uv, l2->uv);
}
static void layerInterp_mloop_origspace(void **sources, const float *weights,
const float *sub_weights, int count, void *dest)
{
float uv[2];
int i;
zero_v2(uv);
if (sub_weights) {
const float *sub_weight = sub_weights;
for (i = 0; i < count; i++) {
float weight = weights ? weights[i] : 1.0f;
OrigSpaceLoop *src = sources[i];
madd_v2_v2fl(uv, src->uv, (*sub_weight) * weight);
sub_weight++;
}
}
else {
for (i = 0; i < count; i++) {
float weight = weights ? weights[i] : 1.0f;
OrigSpaceLoop *src = sources[i];
madd_v2_v2fl(uv, src->uv, weight);
}
}
/* delay writing to the destination incase dest is in sources */
copy_v2_v2(((OrigSpaceLoop *)dest)->uv, uv);
}
/* --- end copy */
static void layerInterp_mcol(void **sources, const float *weights,
const float *sub_weights, int count, void *dest)
{
MCol *mc = dest;
int i, j, k;
struct {
float a;
float r;
float g;
float b;
} col[4] = {{0.0f}};
const float *sub_weight;
if (count <= 0) return;
sub_weight = sub_weights;
for (i = 0; i < count; ++i) {
float weight = weights ? weights[i] : 1;
for (j = 0; j < 4; ++j) {
if (sub_weights) {
MCol *src = sources[i];
for (k = 0; k < 4; ++k, ++sub_weight, ++src) {
const float w = (*sub_weight) * weight;
col[j].a += src->a * w;
col[j].r += src->r * w;
col[j].g += src->g * w;
col[j].b += src->b * w;
}
}
else {
MCol *src = sources[i];
col[j].a += src[j].a * weight;
col[j].r += src[j].r * weight;
col[j].g += src[j].g * weight;
col[j].b += src[j].b * weight;
}
}
}
/* delay writing to the destination incase dest is in sources */
for (j = 0; j < 4; ++j) {
/* Subdivide smooth or fractal can cause problems without clamping
* although weights should also not cause this situation */
CLAMP(col[j].a, 0.0f, 255.0f);
CLAMP(col[j].r, 0.0f, 255.0f);
CLAMP(col[j].g, 0.0f, 255.0f);
CLAMP(col[j].b, 0.0f, 255.0f);
mc[j].a = (int)col[j].a;
mc[j].r = (int)col[j].r;
mc[j].g = (int)col[j].g;
mc[j].b = (int)col[j].b;
}
}
static void layerSwap_mcol(void *data, const int *corner_indices)
{
MCol *mcol = data;
MCol col[4];
int j;
for (j = 0; j < 4; ++j)
col[j] = mcol[corner_indices[j]];
memcpy(mcol, col, sizeof(col));
}
static void layerDefault_mcol(void *data, int count)
{
static MCol default_mcol = {255, 255, 255, 255};
MCol *mcol = (MCol *)data;
int i;
for (i = 0; i < 4 * count; i++) {
mcol[i] = default_mcol;
}
}
static void layerInterp_bweight(void **sources, const float *weights,
const float *UNUSED(sub_weights), int count, void *dest)
{
float f;
float **in = (float **)sources;
int i;
if (count <= 0) return;
f = 0.0f;
if (weights) {
for (i = 0; i < count; ++i) {
f += *in[i] * weights[i];
}
}
else {
for (i = 0; i < count; ++i) {
f += *in[i];
}
}
/* delay writing to the destination incase dest is in sources */
*((float *)dest) = f;
}
static void layerInterp_shapekey(void **sources, const float *weights,
const float *UNUSED(sub_weights), int count, void *dest)
{
float co[3];
float **in = (float **)sources;
int i;
if (count <= 0) return;
zero_v3(co);
if (weights) {
for (i = 0; i < count; ++i) {
madd_v3_v3fl(co, in[i], weights[i]);
}
}
else {
for (i = 0; i < count; ++i) {
add_v3_v3(co, in[i]);
}
}
/* delay writing to the destination incase dest is in sources */
copy_v3_v3((float *)dest, co);
}
static void layerDefault_mvert_skin(void *data, int count)
{
MVertSkin *vs = data;
int i;
for (i = 0; i < count; i++) {
copy_v3_fl(vs[i].radius, 0.25f);
vs[i].flag = 0;
}
}
static void layerInterp_mvert_skin(void **sources, const float *weights,
const float *UNUSED(sub_weights),
int count, void *dest)
{
float radius[3], w;
MVertSkin *vs;
int i;
zero_v3(radius);
for (i = 0; i < count; i++) {
w = weights ? weights[i] : 1.0f;
vs = sources[i];
madd_v3_v3fl(radius, vs->radius, w);
}
/* delay writing to the destination incase dest is in sources */
vs = dest;
copy_v3_v3(vs->radius, radius);
vs->flag &= ~MVERT_SKIN_ROOT;
}
static const LayerTypeInfo LAYERTYPEINFO[CD_NUMTYPES] = {
/* 0: CD_MVERT */
{sizeof(MVert), "MVert", 1, NULL, NULL, NULL, NULL, NULL, NULL},
/* 1: CD_MSTICKY */ /* DEPRECATED */
{sizeof(float) * 2, "", 1, NULL, NULL, NULL, NULL, NULL,
NULL},
/* 2: CD_MDEFORMVERT */
{sizeof(MDeformVert), "MDeformVert", 1, NULL, layerCopy_mdeformvert,
layerFree_mdeformvert, layerInterp_mdeformvert, NULL, NULL},
/* 3: CD_MEDGE */
{sizeof(MEdge), "MEdge", 1, NULL, NULL, NULL, NULL, NULL, NULL},
/* 4: CD_MFACE */
{sizeof(MFace), "MFace", 1, NULL, NULL, NULL, NULL, NULL, NULL},
/* 5: CD_MTFACE */
{sizeof(MTFace), "MTFace", 1, N_("UVMap"), layerCopy_tface, NULL,
layerInterp_tface, layerSwap_tface, layerDefault_tface},
/* 6: CD_MCOL */
/* 4 MCol structs per face */
{sizeof(MCol) * 4, "MCol", 4, N_("Col"), NULL, NULL, layerInterp_mcol,
layerSwap_mcol, layerDefault_mcol},
/* 7: CD_ORIGINDEX */
{sizeof(int), "", 0, NULL, NULL, NULL, NULL, NULL, NULL},
/* 8: CD_NORMAL */
/* 3 floats per normal vector */
{sizeof(float) * 3, "vec3f", 1, NULL, NULL, NULL, NULL, NULL, NULL},
/* 9: CD_POLYINDEX (deprecated) */
{sizeof(int), "", 0, NULL, NULL, NULL, NULL, NULL, NULL},
/* 10: CD_PROP_FLT */
{sizeof(MFloatProperty), "MFloatProperty", 1, N_("Float"), layerCopy_propFloat, NULL, NULL, NULL},
/* 11: CD_PROP_INT */
{sizeof(MIntProperty), "MIntProperty", 1, N_("Int"), layerCopy_propInt, NULL, NULL, NULL},
/* 12: CD_PROP_STR */
{sizeof(MStringProperty), "MStringProperty", 1, N_("String"), layerCopy_propString, NULL, NULL, NULL},
/* 13: CD_ORIGSPACE */
{sizeof(OrigSpaceFace), "OrigSpaceFace", 1, N_("UVMap"), layerCopy_origspace_face, NULL,
layerInterp_origspace_face, layerSwap_origspace_face, layerDefault_origspace_face},
/* 14: CD_ORCO */
{sizeof(float) * 3, "", 0, NULL, NULL, NULL, NULL, NULL, NULL},
/* 15: CD_MTEXPOLY */
/* note, when we expose the UV Map / TexFace split to the user, change this back to face Texture */
{sizeof(MTexPoly), "MTexPoly", 1, N_("UVMap") /* "Face Texture" */, NULL, NULL, NULL, NULL, NULL},
/* 16: CD_MLOOPUV */
{sizeof(MLoopUV), "MLoopUV", 1, N_("UV coord"), NULL, NULL, layerInterp_mloopuv, NULL, NULL,
layerEqual_mloopuv, layerMultiply_mloopuv, layerInitMinMax_mloopuv,
layerAdd_mloopuv, layerDoMinMax_mloopuv, layerCopyValue_mloopuv},
/* 17: CD_MLOOPCOL */
{sizeof(MLoopCol), "MLoopCol", 1, N_("Col"), NULL, NULL, layerInterp_mloopcol, NULL,
layerDefault_mloopcol, layerEqual_mloopcol, layerMultiply_mloopcol, layerInitMinMax_mloopcol,
layerAdd_mloopcol, layerDoMinMax_mloopcol, layerCopyValue_mloopcol},
/* 18: CD_TANGENT */
{sizeof(float) * 4 * 4, "", 0, NULL, NULL, NULL, NULL, NULL, NULL},
/* 19: CD_MDISPS */
{sizeof(MDisps), "MDisps", 1, NULL, layerCopy_mdisps,
layerFree_mdisps, NULL, layerSwap_mdisps, NULL,
NULL, NULL, NULL, NULL, NULL, NULL,
layerRead_mdisps, layerWrite_mdisps, layerFilesize_mdisps},
/* 20: CD_PREVIEW_MCOL */
{sizeof(MCol) * 4, "MCol", 4, N_("PreviewCol"), NULL, NULL, layerInterp_mcol,
layerSwap_mcol, layerDefault_mcol},
/* 21: CD_ID_MCOL */
{sizeof(MCol) * 4, "MCol", 4, N_("IDCol"), NULL, NULL, layerInterp_mcol,
layerSwap_mcol, layerDefault_mcol},
/* 22: CD_TEXTURE_MCOL */
{sizeof(MCol) * 4, "MCol", 4, N_("TexturedCol"), NULL, NULL, layerInterp_mcol,
layerSwap_mcol, layerDefault_mcol},
/* 23: CD_CLOTH_ORCO */
{sizeof(float) * 3, "", 0, NULL, NULL, NULL, NULL, NULL, NULL},
/* 24: CD_RECAST */
{sizeof(MRecast), "MRecast", 1, N_("Recast"), NULL, NULL, NULL, NULL},
/* BMESH ONLY */
/* 25: CD_MPOLY */
{sizeof(MPoly), "MPoly", 1, N_("NGon Face"), NULL, NULL, NULL, NULL, NULL},
/* 26: CD_MLOOP */
{sizeof(MLoop), "MLoop", 1, N_("NGon Face-Vertex"), NULL, NULL, NULL, NULL, NULL},
/* 27: CD_SHAPE_KEYINDEX */
{sizeof(int), "", 0, NULL, NULL, NULL, NULL, NULL, NULL},
/* 28: CD_SHAPEKEY */
{sizeof(float) * 3, "", 0, N_("ShapeKey"), NULL, NULL, layerInterp_shapekey},
/* 29: CD_BWEIGHT */
{sizeof(float), "", 0, N_("BevelWeight"), NULL, NULL, layerInterp_bweight},
/* 30: CD_CREASE */
{sizeof(float), "", 0, N_("SubSurfCrease"), NULL, NULL, layerInterp_bweight},
/* 31: CD_ORIGSPACE_MLOOP */
{sizeof(OrigSpaceLoop), "OrigSpaceLoop", 1, N_("OS Loop"), NULL, NULL, layerInterp_mloop_origspace, NULL, NULL,
layerEqual_mloop_origspace, layerMultiply_mloop_origspace, layerInitMinMax_mloop_origspace,
layerAdd_mloop_origspace, layerDoMinMax_mloop_origspace, layerCopyValue_mloop_origspace},
/* 32: CD_PREVIEW_MLOOPCOL */
{sizeof(MLoopCol), "MLoopCol", 1, N_("PreviewLoopCol"), NULL, NULL, layerInterp_mloopcol, NULL,
layerDefault_mloopcol, layerEqual_mloopcol, layerMultiply_mloopcol, layerInitMinMax_mloopcol,
layerAdd_mloopcol, layerDoMinMax_mloopcol, layerCopyValue_mloopcol},
/* 33: CD_BM_ELEM_PYPTR */
{sizeof(void *), "", 1, NULL, layerCopy_bmesh_elem_py_ptr,
layerFree_bmesh_elem_py_ptr, NULL, NULL, NULL},
/* END BMESH ONLY */
/* 34: CD_PAINT_MASK */
{sizeof(float), "", 0, NULL, NULL, NULL, NULL, NULL, NULL},
/* 35: CD_GRID_PAINT_MASK */
{sizeof(GridPaintMask), "GridPaintMask", 1, NULL, layerCopy_grid_paint_mask,
layerFree_grid_paint_mask, NULL, NULL, NULL},
/* 36: CD_SKIN_NODE */
{sizeof(MVertSkin), "MVertSkin", 1, NULL, NULL, NULL,
layerInterp_mvert_skin, NULL, layerDefault_mvert_skin},
/* 37: CD_FREESTYLE_EDGE */
{sizeof(FreestyleEdge), "FreestyleEdge", 1, NULL, NULL, NULL, NULL, NULL, NULL},
/* 38: CD_FREESTYLE_FACE */
{sizeof(FreestyleFace), "FreestyleFace", 1, NULL, NULL, NULL, NULL, NULL, NULL}
};
/* note, numbers are from trunk and need updating for bmesh */
static const char *LAYERTYPENAMES[CD_NUMTYPES] = {
/* 0-4 */ "CDMVert", "CDMSticky", "CDMDeformVert", "CDMEdge", "CDMFace",
/* 5-9 */ "CDMTFace", "CDMCol", "CDOrigIndex", "CDNormal", "CDFlags",
/* 10-14 */ "CDMFloatProperty", "CDMIntProperty", "CDMStringProperty", "CDOrigSpace", "CDOrco",
/* 15-19 */ "CDMTexPoly", "CDMLoopUV", "CDMloopCol", "CDTangent", "CDMDisps",
/* 20-24 */ "CDPreviewMCol", "CDIDMCol", "CDTextureMCol", "CDClothOrco", "CDMRecast",
/* BMESH ONLY */
/* 25-29 */ "CDMPoly", "CDMLoop", "CDShapeKeyIndex", "CDShapeKey", "CDBevelWeight",
/* 30-34 */ "CDSubSurfCrease", "CDOrigSpaceLoop", "CDPreviewLoopCol", "CDBMElemPyPtr", "CDPaintMask",
/* 35-36 */ "CDGridPaintMask", "CDMVertSkin",
/* 37-38 */ "CDFreestyleEdge", "CDFreestyleFace"
};
const CustomDataMask CD_MASK_BAREMESH =
CD_MASK_MVERT | CD_MASK_MEDGE | CD_MASK_MFACE | CD_MASK_MLOOP | CD_MASK_MPOLY | CD_MASK_BWEIGHT;
const CustomDataMask CD_MASK_MESH =
CD_MASK_MVERT | CD_MASK_MEDGE | CD_MASK_MFACE |
CD_MASK_MSTICKY | CD_MASK_MDEFORMVERT | CD_MASK_MTFACE | CD_MASK_MCOL |
CD_MASK_PROP_FLT | CD_MASK_PROP_INT | CD_MASK_PROP_STR | CD_MASK_MDISPS |
CD_MASK_MLOOPUV | CD_MASK_MLOOPCOL | CD_MASK_MPOLY | CD_MASK_MLOOP |
CD_MASK_MTEXPOLY | CD_MASK_RECAST | CD_MASK_PAINT_MASK |
CD_MASK_GRID_PAINT_MASK | CD_MASK_MVERT_SKIN | CD_MASK_FREESTYLE_EDGE | CD_MASK_FREESTYLE_FACE;
const CustomDataMask CD_MASK_EDITMESH =
CD_MASK_MSTICKY | CD_MASK_MDEFORMVERT | CD_MASK_MTFACE | CD_MASK_MLOOPUV |
CD_MASK_MLOOPCOL | CD_MASK_MTEXPOLY | CD_MASK_SHAPE_KEYINDEX |
CD_MASK_MCOL | CD_MASK_PROP_FLT | CD_MASK_PROP_INT | CD_MASK_PROP_STR |
CD_MASK_MDISPS | CD_MASK_SHAPEKEY | CD_MASK_RECAST | CD_MASK_PAINT_MASK |
CD_MASK_GRID_PAINT_MASK | CD_MASK_MVERT_SKIN;
const CustomDataMask CD_MASK_DERIVEDMESH =
CD_MASK_MSTICKY | CD_MASK_MDEFORMVERT | CD_MASK_MTFACE |
CD_MASK_MCOL | CD_MASK_PROP_FLT | CD_MASK_PROP_INT | CD_MASK_CLOTH_ORCO |
CD_MASK_MLOOPUV | CD_MASK_MLOOPCOL | CD_MASK_MTEXPOLY | CD_MASK_PREVIEW_MLOOPCOL |
CD_MASK_PROP_STR | CD_MASK_ORIGSPACE | CD_MASK_ORIGSPACE_MLOOP | CD_MASK_ORCO | CD_MASK_TANGENT |
CD_MASK_PREVIEW_MCOL | CD_MASK_SHAPEKEY | CD_MASK_RECAST |
CD_MASK_ORIGINDEX | CD_MASK_MVERT_SKIN | CD_MASK_FREESTYLE_EDGE | CD_MASK_FREESTYLE_FACE;
const CustomDataMask CD_MASK_BMESH =
CD_MASK_MLOOPUV | CD_MASK_MLOOPCOL | CD_MASK_MTEXPOLY |
CD_MASK_MSTICKY | CD_MASK_MDEFORMVERT | CD_MASK_PROP_FLT | CD_MASK_PROP_INT |
CD_MASK_PROP_STR | CD_MASK_SHAPEKEY | CD_MASK_SHAPE_KEYINDEX | CD_MASK_MDISPS |
CD_MASK_CREASE | CD_MASK_BWEIGHT | CD_MASK_RECAST | CD_MASK_PAINT_MASK |
CD_MASK_GRID_PAINT_MASK | CD_MASK_MVERT_SKIN | CD_MASK_FREESTYLE_EDGE | CD_MASK_FREESTYLE_FACE;
const CustomDataMask CD_MASK_FACECORNERS =
CD_MASK_MTFACE | CD_MASK_MCOL | CD_MASK_MTEXPOLY | CD_MASK_MLOOPUV |
CD_MASK_MLOOPCOL;
const CustomDataMask CD_MASK_EVERYTHING =
CD_MASK_MVERT | CD_MASK_MSTICKY /* DEPRECATED */ | CD_MASK_MDEFORMVERT | CD_MASK_MEDGE | CD_MASK_MFACE |
CD_MASK_MTFACE | CD_MASK_MCOL | CD_MASK_ORIGINDEX | CD_MASK_NORMAL /* | CD_MASK_POLYINDEX */ | CD_MASK_PROP_FLT |
CD_MASK_PROP_INT | CD_MASK_PROP_STR | CD_MASK_ORIGSPACE | CD_MASK_ORCO | CD_MASK_MTEXPOLY | CD_MASK_MLOOPUV |
CD_MASK_MLOOPCOL | CD_MASK_TANGENT | CD_MASK_MDISPS | CD_MASK_PREVIEW_MCOL | CD_MASK_CLOTH_ORCO | CD_MASK_RECAST |
/* BMESH ONLY START */
CD_MASK_MPOLY | CD_MASK_MLOOP | CD_MASK_SHAPE_KEYINDEX | CD_MASK_SHAPEKEY | CD_MASK_BWEIGHT | CD_MASK_CREASE |
CD_MASK_ORIGSPACE_MLOOP | CD_MASK_PREVIEW_MLOOPCOL | CD_MASK_BM_ELEM_PYPTR |
/* BMESH ONLY END */
CD_MASK_PAINT_MASK | CD_MASK_GRID_PAINT_MASK | CD_MASK_MVERT_SKIN | CD_MASK_FREESTYLE_EDGE | CD_MASK_FREESTYLE_FACE;
static const LayerTypeInfo *layerType_getInfo(int type)
{
if (type < 0 || type >= CD_NUMTYPES) return NULL;
return &LAYERTYPEINFO[type];
}
static const char *layerType_getName(int type)
{
if (type < 0 || type >= CD_NUMTYPES) return NULL;
return LAYERTYPENAMES[type];
}
void customData_mask_layers__print(CustomDataMask mask)
{
int i;
printf("mask=0x%lx:\n", (long unsigned int)mask);
for (i = 0; i < CD_NUMTYPES; i++) {
if (mask & CD_TYPE_AS_MASK(i)) {
printf(" %s\n", layerType_getName(i));
}
}
}
/********************* CustomData functions *********************/
static void customData_update_offsets(CustomData *data);
static CustomDataLayer *customData_add_layer__internal(CustomData *data, int type, int alloctype, void *layerdata,
int totelem, const char *name);
void CustomData_update_typemap(CustomData *data)
{
int i, lasttype = -1;
for (i = 0; i < CD_NUMTYPES; i++) {
data->typemap[i] = -1;
}
for (i = 0; i < data->totlayer; i++) {
if (data->layers[i].type != lasttype) {
data->typemap[data->layers[i].type] = i;
}
lasttype = data->layers[i].type;
}
}
/* currently only used in BLI_assert */
#ifndef NDEBUG
static int customdata_typemap_is_valid(const CustomData *data)
{
CustomData data_copy = *data;
CustomData_update_typemap(&data_copy);
return (memcmp(data->typemap, data_copy.typemap, sizeof(data->typemap)) == 0);
}
#endif
bool CustomData_merge(const struct CustomData *source, struct CustomData *dest,
CustomDataMask mask, int alloctype, int totelem)
{
/*const LayerTypeInfo *typeInfo;*/
CustomDataLayer *layer, *newlayer;
void *data;
int i, type, number = 0, lasttype = -1, lastactive = 0, lastrender = 0, lastclone = 0, lastmask = 0, lastflag = 0;
bool change = false;
for (i = 0; i < source->totlayer; ++i) {
layer = &source->layers[i];
/*typeInfo = layerType_getInfo(layer->type);*/ /*UNUSED*/
type = layer->type;
if (type != lasttype) {
number = 0;
lastactive = layer->active;
lastrender = layer->active_rnd;
lastclone = layer->active_clone;
lastmask = layer->active_mask;
lasttype = type;
lastflag = layer->flag;
}
else
number++;
if (lastflag & CD_FLAG_NOCOPY) continue;
else if (!(mask & CD_TYPE_AS_MASK(type))) continue;
else if (number < CustomData_number_of_layers(dest, type)) continue;
switch (alloctype) {
case CD_ASSIGN:
case CD_REFERENCE:
case CD_DUPLICATE:
data = layer->data;
break;
default:
data = NULL;
break;
}
if ((alloctype == CD_ASSIGN) && (lastflag & CD_FLAG_NOFREE))
newlayer = customData_add_layer__internal(dest, type, CD_REFERENCE,
data, totelem, layer->name);
else
newlayer = customData_add_layer__internal(dest, type, alloctype,
data, totelem, layer->name);
if (newlayer) {
newlayer->uid = layer->uid;
newlayer->active = lastactive;
newlayer->active_rnd = lastrender;
newlayer->active_clone = lastclone;
newlayer->active_mask = lastmask;
newlayer->flag |= lastflag & (CD_FLAG_EXTERNAL | CD_FLAG_IN_MEMORY);
change = true;
}
}
CustomData_update_typemap(dest);
return change;
}
void CustomData_copy(const struct CustomData *source, struct CustomData *dest,
CustomDataMask mask, int alloctype, int totelem)
{
CustomData_reset(dest);
if (source->external)
dest->external = MEM_dupallocN(source->external);
CustomData_merge(source, dest, mask, alloctype, totelem);
}
static void customData_free_layer__internal(CustomDataLayer *layer, int totelem)
{
const LayerTypeInfo *typeInfo;
if (!(layer->flag & CD_FLAG_NOFREE) && layer->data) {
typeInfo = layerType_getInfo(layer->type);
if (typeInfo->free)
typeInfo->free(layer->data, totelem, typeInfo->size);
if (layer->data)
MEM_freeN(layer->data);
}
}
static void CustomData_external_free(CustomData *data)
{
if (data->external) {
MEM_freeN(data->external);
data->external = NULL;
}
}
void CustomData_reset(CustomData *data)
{
memset(data, 0, sizeof(*data));
fill_vn_i(data->typemap, CD_NUMTYPES, -1);
}
void CustomData_free(CustomData *data, int totelem)
{
int i;
for (i = 0; i < data->totlayer; ++i)
customData_free_layer__internal(&data->layers[i], totelem);
if (data->layers)
MEM_freeN(data->layers);
CustomData_external_free(data);
CustomData_reset(data);
}
static void customData_update_offsets(CustomData *data)
{
const LayerTypeInfo *typeInfo;
int i, offset = 0;
for (i = 0; i < data->totlayer; ++i) {
typeInfo = layerType_getInfo(data->layers[i].type);
data->layers[i].offset = offset;
offset += typeInfo->size;
}
data->totsize = offset;
CustomData_update_typemap(data);
}
/* to use when we're in the middle of modifying layers */
static int CustomData_get_layer_index__notypemap(const CustomData *data, int type)
{
int i;
for (i = 0; i < data->totlayer; ++i)
if (data->layers[i].type == type)
return i;
return -1;
}
/* -------------------------------------------------------------------- */
/* index values to access the layers (offset from the layer start) */
int CustomData_get_layer_index(const CustomData *data, int type)
{
BLI_assert(customdata_typemap_is_valid(data));
return data->typemap[type];
}
int CustomData_get_layer_index_n(const struct CustomData *data, int type, int n)
{
int i = CustomData_get_layer_index(data, type);
if (i != -1) {
BLI_assert(i + n < data->totlayer);
i = (data->layers[i + n].type == type) ? (i + n) : (-1);
}
return i;
}
int CustomData_get_named_layer_index(const CustomData *data, int type, const char *name)
{
int i;
for (i = 0; i < data->totlayer; ++i)
if (data->layers[i].type == type && strcmp(data->layers[i].name, name) == 0)
return i;
return -1;
}
int CustomData_get_active_layer_index(const CustomData *data, int type)
{
const int layer_index = data->typemap[type];
BLI_assert(customdata_typemap_is_valid(data));
return (layer_index != -1) ? layer_index + data->layers[layer_index].active: -1;
}
int CustomData_get_render_layer_index(const CustomData *data, int type)
{
const int layer_index = data->typemap[type];
BLI_assert(customdata_typemap_is_valid(data));
return (layer_index != -1) ? layer_index + data->layers[layer_index].active_rnd : -1;
}
int CustomData_get_clone_layer_index(const CustomData *data, int type)
{
const int layer_index = data->typemap[type];
BLI_assert(customdata_typemap_is_valid(data));
return (layer_index != -1) ? layer_index + data->layers[layer_index].active_clone : -1;
}
int CustomData_get_stencil_layer_index(const CustomData *data, int type)
{
const int layer_index = data->typemap[type];
BLI_assert(customdata_typemap_is_valid(data));
return (layer_index != -1) ? layer_index + data->layers[layer_index].active_mask : -1;
}
/* -------------------------------------------------------------------- */
/* index values per layer type */
int CustomData_get_named_layer(const struct CustomData *data, int type, const char *name)
{
const int named_index = CustomData_get_named_layer_index(data, type, name);
const int layer_index = data->typemap[type];
BLI_assert(customdata_typemap_is_valid(data));
return (named_index != -1) ? named_index - layer_index : -1;
}
int CustomData_get_active_layer(const CustomData *data, int type)
{
const int layer_index = data->typemap[type];
BLI_assert(customdata_typemap_is_valid(data));
return (layer_index != -1) ? data->layers[layer_index].active : -1;
}
int CustomData_get_render_layer(const CustomData *data, int type)
{
const int layer_index = data->typemap[type];
BLI_assert(customdata_typemap_is_valid(data));
return (layer_index != -1) ? data->layers[layer_index].active_rnd : -1;
}
int CustomData_get_clone_layer(const CustomData *data, int type)
{
const int layer_index = data->typemap[type];
BLI_assert(customdata_typemap_is_valid(data));
return (layer_index != -1) ? data->layers[layer_index].active_clone : -1;
}
int CustomData_get_stencil_layer(const CustomData *data, int type)
{
const int layer_index = data->typemap[type];
BLI_assert(customdata_typemap_is_valid(data));
return (layer_index != -1) ? data->layers[layer_index].active_mask : -1;
}
void CustomData_set_layer_active(CustomData *data, int type, int n)
{
int i;
for (i = 0; i < data->totlayer; ++i)
if (data->layers[i].type == type)
data->layers[i].active = n;
}
void CustomData_set_layer_render(CustomData *data, int type, int n)
{
int i;
for (i = 0; i < data->totlayer; ++i)
if (data->layers[i].type == type)
data->layers[i].active_rnd = n;
}
void CustomData_set_layer_clone(CustomData *data, int type, int n)
{
int i;
for (i = 0; i < data->totlayer; ++i)
if (data->layers[i].type == type)
data->layers[i].active_clone = n;
}
void CustomData_set_layer_stencil(CustomData *data, int type, int n)
{
int i;
for (i = 0; i < data->totlayer; ++i)
if (data->layers[i].type == type)
data->layers[i].active_mask = n;
}
/* for using with an index from CustomData_get_active_layer_index and CustomData_get_render_layer_index */
void CustomData_set_layer_active_index(CustomData *data, int type, int n)
{
int i;
for (i = 0; i < data->totlayer; ++i)
if (data->layers[i].type == type)
data->layers[i].active = n - i;
}
void CustomData_set_layer_render_index(CustomData *data, int type, int n)
{
int i;
for (i = 0; i < data->totlayer; ++i)
if (data->layers[i].type == type)
data->layers[i].active_rnd = n - i;
}
void CustomData_set_layer_clone_index(CustomData *data, int type, int n)
{
int i;
for (i = 0; i < data->totlayer; ++i)
if (data->layers[i].type == type)
data->layers[i].active_clone = n - i;
}
void CustomData_set_layer_stencil_index(CustomData *data, int type, int n)
{
int i;
for (i = 0; i < data->totlayer; ++i)
if (data->layers[i].type == type)
data->layers[i].active_mask = n - i;
}
void CustomData_set_layer_flag(struct CustomData *data, int type, int flag)
{
int i;
for (i = 0; i < data->totlayer; ++i)
if (data->layers[i].type == type)
data->layers[i].flag |= flag;
}
static int customData_resize(CustomData *data, int amount)
{
CustomDataLayer *tmp = MEM_callocN(sizeof(*tmp) * (data->maxlayer + amount),
"CustomData->layers");
if (!tmp) return 0;
data->maxlayer += amount;
if (data->layers) {
memcpy(tmp, data->layers, sizeof(*tmp) * data->totlayer);
MEM_freeN(data->layers);
}
data->layers = tmp;
return 1;
}
static CustomDataLayer *customData_add_layer__internal(CustomData *data, int type, int alloctype, void *layerdata,
int totelem, const char *name)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
int size = typeInfo->size * totelem, flag = 0, index = data->totlayer;
void *newlayerdata = NULL;
/* Passing a layerdata to copy from with an alloctype that won't copy is
* most likely a bug */
BLI_assert(!layerdata ||
(alloctype == CD_ASSIGN) ||
(alloctype == CD_DUPLICATE) ||
(alloctype == CD_REFERENCE));
if (!typeInfo->defaultname && CustomData_has_layer(data, type))
return &data->layers[CustomData_get_layer_index(data, type)];
if ((alloctype == CD_ASSIGN) || (alloctype == CD_REFERENCE)) {
newlayerdata = layerdata;
}
else if (size > 0) {
newlayerdata = MEM_callocN(size, layerType_getName(type));
if (!newlayerdata)
return NULL;
}
if (alloctype == CD_DUPLICATE && layerdata) {
if (typeInfo->copy)
typeInfo->copy(layerdata, newlayerdata, totelem);
else
memcpy(newlayerdata, layerdata, size);
}
else if (alloctype == CD_DEFAULT) {
if (typeInfo->set_default)
typeInfo->set_default((char *)newlayerdata, totelem);
}
else if (alloctype == CD_REFERENCE)
flag |= CD_FLAG_NOFREE;
if (index >= data->maxlayer) {
if (!customData_resize(data, CUSTOMDATA_GROW)) {
if (newlayerdata != layerdata)
MEM_freeN(newlayerdata);
return NULL;
}
}
data->totlayer++;
/* keep layers ordered by type */
for (; index > 0 && data->layers[index - 1].type > type; --index)
data->layers[index] = data->layers[index - 1];
data->layers[index].type = type;
data->layers[index].flag = flag;
data->layers[index].data = newlayerdata;
if (name || (name = DATA_(typeInfo->defaultname))) {
BLI_strncpy(data->layers[index].name, name, sizeof(data->layers[index].name));
CustomData_set_layer_unique_name(data, index);
}
else
data->layers[index].name[0] = '\0';
if (index > 0 && data->layers[index - 1].type == type) {
data->layers[index].active = data->layers[index - 1].active;
data->layers[index].active_rnd = data->layers[index - 1].active_rnd;
data->layers[index].active_clone = data->layers[index - 1].active_clone;
data->layers[index].active_mask = data->layers[index - 1].active_mask;
}
else {
data->layers[index].active = 0;
data->layers[index].active_rnd = 0;
data->layers[index].active_clone = 0;
data->layers[index].active_mask = 0;
}
customData_update_offsets(data);
return &data->layers[index];
}
void *CustomData_add_layer(CustomData *data, int type, int alloctype,
void *layerdata, int totelem)
{
CustomDataLayer *layer;
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
layer = customData_add_layer__internal(data, type, alloctype, layerdata,
totelem, typeInfo->defaultname);
CustomData_update_typemap(data);
if (layer)
return layer->data;
return NULL;
}
/*same as above but accepts a name*/
void *CustomData_add_layer_named(CustomData *data, int type, int alloctype,
void *layerdata, int totelem, const char *name)
{
CustomDataLayer *layer;
layer = customData_add_layer__internal(data, type, alloctype, layerdata,
totelem, name);
CustomData_update_typemap(data);
if (layer)
return layer->data;
return NULL;
}
bool CustomData_free_layer(CustomData *data, int type, int totelem, int index)
{
int i;
if (index < 0) return 0;
customData_free_layer__internal(&data->layers[index], totelem);
for (i = index + 1; i < data->totlayer; ++i)
data->layers[i - 1] = data->layers[i];
data->totlayer--;
/* if layer was last of type in array, set new active layer */
i = CustomData_get_layer_index__notypemap(data, type);
if (i != -1) {
/* don't decrement zero index */
const int index_nonzero = index ? index : 1;
CustomDataLayer *layer;
for (layer = &data->layers[i]; i < data->totlayer && layer->type == type; i++, layer++) {
if (layer->active >= index_nonzero) layer->active--;
if (layer->active_rnd >= index_nonzero) layer->active_rnd--;
if (layer->active_clone >= index_nonzero) layer->active_clone--;
if (layer->active_mask >= index_nonzero) layer->active_mask--;
}
}
if (data->totlayer <= data->maxlayer - CUSTOMDATA_GROW)
customData_resize(data, -CUSTOMDATA_GROW);
customData_update_offsets(data);
return 1;
}
bool CustomData_free_layer_active(CustomData *data, int type, int totelem)
{
int index = 0;
index = CustomData_get_active_layer_index(data, type);
if (index < 0) return 0;
return CustomData_free_layer(data, type, totelem, index);
}
void CustomData_free_layers(CustomData *data, int type, int totelem)
{
while (CustomData_has_layer(data, type))
CustomData_free_layer_active(data, type, totelem);
}
bool CustomData_has_layer(const CustomData *data, int type)
{
return (CustomData_get_layer_index(data, type) != -1);
}
int CustomData_number_of_layers(const CustomData *data, int type)
{
int i, number = 0;
for (i = 0; i < data->totlayer; i++)
if (data->layers[i].type == type)
number++;
return number;
}
int CustomData_number_of_layers_typemask(const CustomData *data, CustomDataMask mask)
{
int i, number = 0;
for (i = 0; i < data->totlayer; i++)
if (mask & CD_TYPE_AS_MASK(data->layers[i].type))
number++;
return number;
}
void *CustomData_duplicate_referenced_layer(struct CustomData *data, const int type, const int totelem)
{
CustomDataLayer *layer;
int layer_index;
/* get the layer index of the first layer of type */
layer_index = CustomData_get_active_layer_index(data, type);
if (layer_index < 0) return NULL;
layer = &data->layers[layer_index];
if (layer->flag & CD_FLAG_NOFREE) {
/* MEM_dupallocN won't work in case of complex layers, like e.g.
* CD_MDEFORMVERT, which has pointers to allocated data...
* So in case a custom copy function is defined, use it!
*/
const LayerTypeInfo *typeInfo = layerType_getInfo(layer->type);
if (typeInfo->copy) {
char *dest_data = MEM_mallocN(typeInfo->size * totelem, "CD duplicate ref layer");
typeInfo->copy(layer->data, dest_data, totelem);
layer->data = dest_data;
}
else
layer->data = MEM_dupallocN(layer->data);
layer->flag &= ~CD_FLAG_NOFREE;
}
return layer->data;
}
void *CustomData_duplicate_referenced_layer_named(struct CustomData *data,
const int type, const char *name, const int totelem)
{
CustomDataLayer *layer;
int layer_index;
/* get the layer index of the desired layer */
layer_index = CustomData_get_named_layer_index(data, type, name);
if (layer_index < 0) return NULL;
layer = &data->layers[layer_index];
if (layer->flag & CD_FLAG_NOFREE) {
/* MEM_dupallocN won't work in case of complex layers, like e.g.
* CD_MDEFORMVERT, which has pointers to allocated data...
* So in case a custom copy function is defined, use it!
*/
const LayerTypeInfo *typeInfo = layerType_getInfo(layer->type);
if (typeInfo->copy) {
char *dest_data = MEM_mallocN(typeInfo->size * totelem, "CD duplicate ref layer");
typeInfo->copy(layer->data, dest_data, totelem);
layer->data = dest_data;
}
else
layer->data = MEM_dupallocN(layer->data);
layer->flag &= ~CD_FLAG_NOFREE;
}
return layer->data;
}
bool CustomData_is_referenced_layer(struct CustomData *data, int type)
{
CustomDataLayer *layer;
int layer_index;
/* get the layer index of the first layer of type */
layer_index = CustomData_get_active_layer_index(data, type);
if (layer_index < 0) return 0;
layer = &data->layers[layer_index];
return (layer->flag & CD_FLAG_NOFREE) != 0;
}
void CustomData_free_temporary(CustomData *data, int totelem)
{
CustomDataLayer *layer;
int i, j;
for (i = 0, j = 0; i < data->totlayer; ++i) {
layer = &data->layers[i];
if (i != j)
data->layers[j] = data->layers[i];
if ((layer->flag & CD_FLAG_TEMPORARY) == CD_FLAG_TEMPORARY)
customData_free_layer__internal(layer, totelem);
else
j++;
}
data->totlayer = j;
if (data->totlayer <= data->maxlayer - CUSTOMDATA_GROW)
customData_resize(data, -CUSTOMDATA_GROW);
customData_update_offsets(data);
}
void CustomData_set_only_copy(const struct CustomData *data,
CustomDataMask mask)
{
int i;
for (i = 0; i < data->totlayer; ++i)
if (!(mask & CD_TYPE_AS_MASK(data->layers[i].type)))
data->layers[i].flag |= CD_FLAG_NOCOPY;
}
void CustomData_copy_elements(int type, void *source, void *dest, int count)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
if (typeInfo->copy)
typeInfo->copy(source, dest, count);
else
memcpy(dest, source, typeInfo->size * count);
}
void CustomData_copy_data(const CustomData *source, CustomData *dest,
int source_index, int dest_index, int count)
{
const LayerTypeInfo *typeInfo;
int src_i, dest_i;
int src_offset;
int dest_offset;
/* copies a layer at a time */
dest_i = 0;
for (src_i = 0; src_i < source->totlayer; ++src_i) {
/* find the first dest layer with type >= the source type
* (this should work because layers are ordered by type)
*/
while (dest_i < dest->totlayer && dest->layers[dest_i].type < source->layers[src_i].type) {
dest_i++;
}
/* if there are no more dest layers, we're done */
if (dest_i >= dest->totlayer) return;
/* if we found a matching layer, copy the data */
if (dest->layers[dest_i].type == source->layers[src_i].type) {
char *src_data = source->layers[src_i].data;
char *dest_data = dest->layers[dest_i].data;
typeInfo = layerType_getInfo(source->layers[src_i].type);
src_offset = source_index * typeInfo->size;
dest_offset = dest_index * typeInfo->size;
if (!src_data || !dest_data) {
if (src_data != NULL && dest_data != NULL) {
printf("%s: warning null data for %s type (%p --> %p), skipping\n",
__func__, layerType_getName(source->layers[src_i].type),
(void *)src_data, (void *)dest_data);
}
continue;
}
if (typeInfo->copy)
typeInfo->copy(src_data + src_offset,
dest_data + dest_offset,
count);
else
memcpy(dest_data + dest_offset,
src_data + src_offset,
count * typeInfo->size);
/* if there are multiple source & dest layers of the same type,
* we don't want to copy all source layers to the same dest, so
* increment dest_i
*/
dest_i++;
}
}
}
void CustomData_free_elem(CustomData *data, int index, int count)
{
int i;
const LayerTypeInfo *typeInfo;
for (i = 0; i < data->totlayer; ++i) {
if (!(data->layers[i].flag & CD_FLAG_NOFREE)) {
typeInfo = layerType_getInfo(data->layers[i].type);
if (typeInfo->free) {
int offset = typeInfo->size * index;
typeInfo->free((char *)data->layers[i].data + offset,
count, typeInfo->size);
}
}
}
}
#define SOURCE_BUF_SIZE 100
void CustomData_interp(const CustomData *source, CustomData *dest,
int *src_indices, float *weights, float *sub_weights,
int count, int dest_index)
{
int src_i, dest_i;
int dest_offset;
int j;
void *source_buf[SOURCE_BUF_SIZE];
void **sources = source_buf;
/* slow fallback in case we're interpolating a ridiculous number of
* elements
*/
if (count > SOURCE_BUF_SIZE)
sources = MEM_callocN(sizeof(*sources) * count,
"CustomData_interp sources");
/* interpolates a layer at a time */
dest_i = 0;
for (src_i = 0; src_i < source->totlayer; ++src_i) {
const LayerTypeInfo *typeInfo = layerType_getInfo(source->layers[src_i].type);
if (!typeInfo->interp) continue;
/* find the first dest layer with type >= the source type
* (this should work because layers are ordered by type)
*/
while (dest_i < dest->totlayer && dest->layers[dest_i].type < source->layers[src_i].type) {
dest_i++;
}
/* if there are no more dest layers, we're done */
if (dest_i >= dest->totlayer) break;
/* if we found a matching layer, copy the data */
if (dest->layers[dest_i].type == source->layers[src_i].type) {
void *src_data = source->layers[src_i].data;
for (j = 0; j < count; ++j) {
sources[j] = (char *)src_data + typeInfo->size * src_indices[j];
}
dest_offset = dest_index * typeInfo->size;
typeInfo->interp(sources, weights, sub_weights, count,
(char *)dest->layers[dest_i].data + dest_offset);
/* if there are multiple source & dest layers of the same type,
* we don't want to copy all source layers to the same dest, so
* increment dest_i
*/
dest_i++;
}
}
if (count > SOURCE_BUF_SIZE) MEM_freeN(sources);
}
void CustomData_swap(struct CustomData *data, int index, const int *corner_indices)
{
const LayerTypeInfo *typeInfo;
int i;
for (i = 0; i < data->totlayer; ++i) {
typeInfo = layerType_getInfo(data->layers[i].type);
if (typeInfo->swap) {
int offset = typeInfo->size * index;
typeInfo->swap((char *)data->layers[i].data + offset, corner_indices);
}
}
}
void *CustomData_get(const CustomData *data, int index, int type)
{
int offset;
int layer_index;
BLI_assert(index >= 0);
/* get the layer index of the active layer of type */
layer_index = CustomData_get_active_layer_index(data, type);
if (layer_index < 0) return NULL;
/* get the offset of the desired element */
offset = layerType_getInfo(type)->size * index;
return (char *)data->layers[layer_index].data + offset;
}
void *CustomData_get_n(const CustomData *data, int type, int index, int n)
{
int layer_index;
int offset;
BLI_assert(index >= 0 && n >= 0);
/* get the layer index of the first layer of type */
layer_index = data->typemap[type];
if (layer_index < 0) return NULL;
offset = layerType_getInfo(type)->size * index;
return (char *)data->layers[layer_index + n].data + offset;
}
void *CustomData_get_layer(const CustomData *data, int type)
{
/* get the layer index of the active layer of type */
int layer_index = CustomData_get_active_layer_index(data, type);
if (layer_index < 0) return NULL;
return data->layers[layer_index].data;
}
void *CustomData_get_layer_n(const CustomData *data, int type, int n)
{
/* get the layer index of the active layer of type */
int layer_index = CustomData_get_layer_index_n(data, type, n);
if (layer_index < 0) return NULL;
return data->layers[layer_index].data;
}
void *CustomData_get_layer_named(const struct CustomData *data, int type,
const char *name)
{
int layer_index = CustomData_get_named_layer_index(data, type, name);
if (layer_index < 0) return NULL;
return data->layers[layer_index].data;
}
int CustomData_get_offset(const CustomData *data, int type)
{
/* get the layer index of the active layer of type */
int layer_index = CustomData_get_active_layer_index(data, type);
if (layer_index < 0) return -1;
return data->layers[layer_index].offset;
}
int CustomData_get_n_offset(const CustomData *data, int type, int n)
{
/* get the layer index of the active layer of type */
int layer_index = CustomData_get_layer_index_n(data, type, n);
if (layer_index < 0) return -1;
return data->layers[layer_index].offset;
}
bool CustomData_set_layer_name(const CustomData *data, int type, int n, const char *name)
{
/* get the layer index of the first layer of type */
int layer_index = CustomData_get_layer_index_n(data, type, n);
if (layer_index < 0) return false;
if (!name) return false;
BLI_strncpy(data->layers[layer_index].name, name, sizeof(data->layers[layer_index].name));
return true;
}
void *CustomData_set_layer(const CustomData *data, int type, void *ptr)
{
/* get the layer index of the first layer of type */
int layer_index = CustomData_get_active_layer_index(data, type);
if (layer_index < 0) return NULL;
data->layers[layer_index].data = ptr;
return ptr;
}
void *CustomData_set_layer_n(const struct CustomData *data, int type, int n, void *ptr)
{
/* get the layer index of the first layer of type */
int layer_index = CustomData_get_layer_index_n(data, type, n);
if (layer_index < 0) return NULL;
data->layers[layer_index].data = ptr;
return ptr;
}
void CustomData_set(const CustomData *data, int index, int type, void *source)
{
void *dest = CustomData_get(data, index, type);
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
if (!dest) return;
if (typeInfo->copy)
typeInfo->copy(source, dest, 1);
else
memcpy(dest, source, typeInfo->size);
}
/* BMesh functions */
/* needed to convert to/from different face reps */
void CustomData_to_bmeshpoly(CustomData *fdata, CustomData *pdata, CustomData *ldata,
int totloop, int totpoly)
{
int i;
for (i = 0; i < fdata->totlayer; i++) {
if (fdata->layers[i].type == CD_MTFACE) {
CustomData_add_layer_named(pdata, CD_MTEXPOLY, CD_CALLOC, NULL, totpoly, fdata->layers[i].name);
CustomData_add_layer_named(ldata, CD_MLOOPUV, CD_CALLOC, NULL, totloop, fdata->layers[i].name);
}
else if (fdata->layers[i].type == CD_MCOL) {
CustomData_add_layer_named(ldata, CD_MLOOPCOL, CD_CALLOC, NULL, totloop, fdata->layers[i].name);
}
else if (fdata->layers[i].type == CD_MDISPS) {
CustomData_add_layer_named(ldata, CD_MDISPS, CD_CALLOC, NULL, totloop, fdata->layers[i].name);
}
}
}
void CustomData_from_bmeshpoly(CustomData *fdata, CustomData *pdata, CustomData *ldata, int total)
{
int i;
for (i = 0; i < pdata->totlayer; i++) {
if (pdata->layers[i].type == CD_MTEXPOLY) {
CustomData_add_layer_named(fdata, CD_MTFACE, CD_CALLOC, NULL, total, pdata->layers[i].name);
}
}
for (i = 0; i < ldata->totlayer; i++) {
if (ldata->layers[i].type == CD_MLOOPCOL) {
CustomData_add_layer_named(fdata, CD_MCOL, CD_CALLOC, NULL, total, ldata->layers[i].name);
}
else if (ldata->layers[i].type == CD_PREVIEW_MLOOPCOL) {
CustomData_add_layer_named(fdata, CD_PREVIEW_MCOL, CD_CALLOC, NULL, total, ldata->layers[i].name);
}
else if (ldata->layers[i].type == CD_ORIGSPACE_MLOOP) {
CustomData_add_layer_named(fdata, CD_ORIGSPACE, CD_CALLOC, NULL, total, ldata->layers[i].name);
}
}
CustomData_bmesh_update_active_layers(fdata, pdata, ldata);
}
void CustomData_bmesh_update_active_layers(CustomData *fdata, CustomData *pdata, CustomData *ldata)
{
int act;
if (CustomData_has_layer(pdata, CD_MTEXPOLY)) {
act = CustomData_get_active_layer(pdata, CD_MTEXPOLY);
CustomData_set_layer_active(ldata, CD_MLOOPUV, act);
CustomData_set_layer_active(fdata, CD_MTFACE, act);
act = CustomData_get_render_layer(pdata, CD_MTEXPOLY);
CustomData_set_layer_render(ldata, CD_MLOOPUV, act);
CustomData_set_layer_render(fdata, CD_MTFACE, act);
act = CustomData_get_clone_layer(pdata, CD_MTEXPOLY);
CustomData_set_layer_clone(ldata, CD_MLOOPUV, act);
CustomData_set_layer_clone(fdata, CD_MTFACE, act);
act = CustomData_get_stencil_layer(pdata, CD_MTEXPOLY);
CustomData_set_layer_stencil(ldata, CD_MLOOPUV, act);
CustomData_set_layer_stencil(fdata, CD_MTFACE, act);
}
if (CustomData_has_layer(ldata, CD_MLOOPCOL)) {
act = CustomData_get_active_layer(ldata, CD_MLOOPCOL);
CustomData_set_layer_active(fdata, CD_MCOL, act);
act = CustomData_get_render_layer(ldata, CD_MLOOPCOL);
CustomData_set_layer_render(fdata, CD_MCOL, act);
act = CustomData_get_clone_layer(ldata, CD_MLOOPCOL);
CustomData_set_layer_clone(fdata, CD_MCOL, act);
act = CustomData_get_stencil_layer(ldata, CD_MLOOPCOL);
CustomData_set_layer_stencil(fdata, CD_MCOL, act);
}
}
/* update active indices for active/render/clone/stencil custom data layers
* based on indices from fdata layers
* used by do_versions in readfile.c when creating pdata and ldata for pre-bmesh
* meshes and needed to preserve active/render/clone/stencil flags set in pre-bmesh files
*/
void CustomData_bmesh_do_versions_update_active_layers(CustomData *fdata, CustomData *pdata, CustomData *ldata)
{
int act;
if (CustomData_has_layer(fdata, CD_MTFACE)) {
act = CustomData_get_active_layer(fdata, CD_MTFACE);
CustomData_set_layer_active(pdata, CD_MTEXPOLY, act);
CustomData_set_layer_active(ldata, CD_MLOOPUV, act);
act = CustomData_get_render_layer(fdata, CD_MTFACE);
CustomData_set_layer_render(pdata, CD_MTEXPOLY, act);
CustomData_set_layer_render(ldata, CD_MLOOPUV, act);
act = CustomData_get_clone_layer(fdata, CD_MTFACE);
CustomData_set_layer_clone(pdata, CD_MTEXPOLY, act);
CustomData_set_layer_clone(ldata, CD_MLOOPUV, act);
act = CustomData_get_stencil_layer(fdata, CD_MTFACE);
CustomData_set_layer_stencil(pdata, CD_MTEXPOLY, act);
CustomData_set_layer_stencil(ldata, CD_MLOOPUV, act);
}
if (CustomData_has_layer(fdata, CD_MCOL)) {
act = CustomData_get_active_layer(fdata, CD_MCOL);
CustomData_set_layer_active(ldata, CD_MLOOPCOL, act);
act = CustomData_get_render_layer(fdata, CD_MCOL);
CustomData_set_layer_render(ldata, CD_MLOOPCOL, act);
act = CustomData_get_clone_layer(fdata, CD_MCOL);
CustomData_set_layer_clone(ldata, CD_MLOOPCOL, act);
act = CustomData_get_stencil_layer(fdata, CD_MCOL);
CustomData_set_layer_stencil(ldata, CD_MLOOPCOL, act);
}
}
void CustomData_bmesh_init_pool(CustomData *data, int totelem, const char htype)
{
int chunksize;
/* Dispose old pools before calling here to avoid leaks */
BLI_assert(data->pool == NULL);
switch (htype) {
case BM_VERT: chunksize = bm_mesh_chunksize_default.totvert; break;
case BM_EDGE: chunksize = bm_mesh_chunksize_default.totedge; break;
case BM_LOOP: chunksize = bm_mesh_chunksize_default.totloop; break;
case BM_FACE: chunksize = bm_mesh_chunksize_default.totface; break;
default:
BLI_assert(0);
chunksize = 512;
break;
}
/* If there are no layers, no pool is needed just yet */
if (data->totlayer) {
data->pool = BLI_mempool_create(data->totsize, totelem, chunksize, BLI_MEMPOOL_SYSMALLOC);
}
}
bool CustomData_bmesh_merge(CustomData *source, CustomData *dest,
CustomDataMask mask, int alloctype, BMesh *bm, const char htype)
{
BMHeader *h;
BMIter iter;
CustomData destold;
void *tmp;
int iter_type;
int totelem;
if (CustomData_number_of_layers_typemask(source, mask) == 0) {
return false;
}
/* copy old layer description so that old data can be copied into
* the new allocation */
destold = *dest;
if (destold.layers) {
destold.layers = MEM_dupallocN(destold.layers);
}
if (CustomData_merge(source, dest, mask, alloctype, 0) == false) {
if (destold.layers)
MEM_freeN(destold.layers);
return false;
}
switch (htype) {
case BM_VERT:
iter_type = BM_VERTS_OF_MESH;
totelem = bm->totvert;
break;
case BM_EDGE:
iter_type = BM_EDGES_OF_MESH;
totelem = bm->totedge;
break;
case BM_LOOP:
iter_type = BM_LOOPS_OF_FACE;
totelem = bm->totloop;
break;
case BM_FACE:
iter_type = BM_FACES_OF_MESH;
totelem = bm->totface;
break;
default: /* should never happen */
BLI_assert(!"invalid type given");
iter_type = BM_VERTS_OF_MESH;
totelem = bm->totvert;
break;
}
dest->pool = NULL;
CustomData_bmesh_init_pool(dest, totelem, htype);
if (iter_type != BM_LOOPS_OF_FACE) {
/*ensure all current elements follow new customdata layout*/
BM_ITER_MESH (h, &iter, bm, iter_type) {
tmp = NULL;
CustomData_bmesh_copy_data(&destold, dest, h->data, &tmp);
CustomData_bmesh_free_block(&destold, &h->data);
h->data = tmp;
}
}
else {
BMFace *f;
BMLoop *l;
BMIter liter;
/*ensure all current elements follow new customdata layout*/
BM_ITER_MESH (f, &iter, bm, BM_FACES_OF_MESH) {
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
tmp = NULL;
CustomData_bmesh_copy_data(&destold, dest, l->head.data, &tmp);
CustomData_bmesh_free_block(&destold, &l->head.data);
l->head.data = tmp;
}
}
}
if (destold.pool) BLI_mempool_destroy(destold.pool);
if (destold.layers) MEM_freeN(destold.layers);
return true;
}
void CustomData_bmesh_free_block(CustomData *data, void **block)
{
const LayerTypeInfo *typeInfo;
int i;
if (*block == NULL)
return;
for (i = 0; i < data->totlayer; ++i) {
if (!(data->layers[i].flag & CD_FLAG_NOFREE)) {
typeInfo = layerType_getInfo(data->layers[i].type);
if (typeInfo->free) {
int offset = data->layers[i].offset;
typeInfo->free((char *)*block + offset, 1, typeInfo->size);
}
}
}
if (data->totsize)
BLI_mempool_free(data->pool, *block);
*block = NULL;
}
/**
* Same as #CustomData_bmesh_free_block but zero the memory rather then freeing.
*/
void CustomData_bmesh_free_block_data(CustomData *data, void **block)
{
const LayerTypeInfo *typeInfo;
int i;
if (*block == NULL)
return;
for (i = 0; i < data->totlayer; ++i) {
if (!(data->layers[i].flag & CD_FLAG_NOFREE)) {
typeInfo = layerType_getInfo(data->layers[i].type);
if (typeInfo->free) {
int offset = data->layers[i].offset;
typeInfo->free((char *)*block + offset, 1, typeInfo->size);
}
}
}
if (data->totsize)
memset(*block, 0, data->totsize);
}
static void CustomData_bmesh_alloc_block(CustomData *data, void **block)
{
if (*block)
CustomData_bmesh_free_block(data, block);
if (data->totsize > 0)
*block = BLI_mempool_alloc(data->pool);
else
*block = NULL;
}
void CustomData_bmesh_copy_data(const CustomData *source, CustomData *dest,
void *src_block, void **dest_block)
{
const LayerTypeInfo *typeInfo;
int dest_i, src_i;
if (*dest_block == NULL) {
CustomData_bmesh_alloc_block(dest, dest_block);
if (*dest_block)
memset(*dest_block, 0, dest->totsize);
}
/* copies a layer at a time */
dest_i = 0;
for (src_i = 0; src_i < source->totlayer; ++src_i) {
/* find the first dest layer with type >= the source type
* (this should work because layers are ordered by type)
*/
while (dest_i < dest->totlayer && dest->layers[dest_i].type < source->layers[src_i].type) {
dest_i++;
}
/* if there are no more dest layers, we're done */
if (dest_i >= dest->totlayer) return;
/* if we found a matching layer, copy the data */
if (dest->layers[dest_i].type == source->layers[src_i].type &&
strcmp(dest->layers[dest_i].name, source->layers[src_i].name) == 0)
{
char *src_data = (char *)src_block + source->layers[src_i].offset;
char *dest_data = (char *)*dest_block + dest->layers[dest_i].offset;
typeInfo = layerType_getInfo(source->layers[src_i].type);
if (typeInfo->copy)
typeInfo->copy(src_data, dest_data, 1);
else
memcpy(dest_data, src_data, typeInfo->size);
/* if there are multiple source & dest layers of the same type,
* we don't want to copy all source layers to the same dest, so
* increment dest_i
*/
dest_i++;
}
}
}
/*Bmesh Custom Data Functions. Should replace editmesh ones with these as well, due to more effecient memory alloc*/
void *CustomData_bmesh_get(const CustomData *data, void *block, int type)
{
int layer_index;
/* get the layer index of the first layer of type */
layer_index = CustomData_get_active_layer_index(data, type);
if (layer_index < 0) return NULL;
return (char *)block + data->layers[layer_index].offset;
}
void *CustomData_bmesh_get_n(const CustomData *data, void *block, int type, int n)
{
int layer_index;
/* get the layer index of the first layer of type */
layer_index = CustomData_get_layer_index(data, type);
if (layer_index < 0) return NULL;
return (char *)block + data->layers[layer_index + n].offset;
}
/*gets from the layer at physical index n, note: doesn't check type.*/
void *CustomData_bmesh_get_layer_n(const CustomData *data, void *block, int n)
{
if (n < 0 || n >= data->totlayer) return NULL;
return (char *)block + data->layers[n].offset;
}
bool CustomData_layer_has_math(struct CustomData *data, int layer_n)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(data->layers[layer_n].type);
if (typeInfo->equal && typeInfo->add && typeInfo->multiply &&
typeInfo->initminmax && typeInfo->dominmax)
{
return true;
}
return false;
}
bool CustomData_layer_has_interp(struct CustomData *data, int layer_n)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(data->layers[layer_n].type);
if (typeInfo->interp) {
return true;
}
return false;
}
bool CustomData_has_math(struct CustomData *data)
{
int i;
/* interpolates a layer at a time */
for (i = 0; i < data->totlayer; ++i) {
if (CustomData_layer_has_math(data, i)) {
return true;
}
}
return false;
}
/* a non bmesh version would have to check layer->data */
bool CustomData_bmesh_has_free(struct CustomData *data)
{
const LayerTypeInfo *typeInfo;
int i;
for (i = 0; i < data->totlayer; ++i) {
if (!(data->layers[i].flag & CD_FLAG_NOFREE)) {
typeInfo = layerType_getInfo(data->layers[i].type);
if (typeInfo->free) {
return true;
}
}
}
return false;
}
bool CustomData_has_interp(struct CustomData *data)
{
int i;
/* interpolates a layer at a time */
for (i = 0; i < data->totlayer; ++i) {
if (CustomData_layer_has_interp(data, i)) {
return true;
}
}
return false;
}
/* copies the "value" (e.g. mloopuv uv or mloopcol colors) from one block to
* another, while not overwriting anything else (e.g. flags)*/
void CustomData_data_copy_value(int type, void *source, void *dest)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
if (!dest) return;
if (typeInfo->copyvalue)
typeInfo->copyvalue(source, dest);
else
memcpy(dest, source, typeInfo->size);
}
bool CustomData_data_equals(int type, void *data1, void *data2)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
if (typeInfo->equal)
return typeInfo->equal(data1, data2);
else return !memcmp(data1, data2, typeInfo->size);
}
void CustomData_data_initminmax(int type, void *min, void *max)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
if (typeInfo->initminmax)
typeInfo->initminmax(min, max);
}
void CustomData_data_dominmax(int type, void *data, void *min, void *max)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
if (typeInfo->dominmax)
typeInfo->dominmax(data, min, max);
}
void CustomData_data_multiply(int type, void *data, float fac)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
if (typeInfo->multiply)
typeInfo->multiply(data, fac);
}
void CustomData_data_add(int type, void *data1, void *data2)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
if (typeInfo->add)
typeInfo->add(data1, data2);
}
void CustomData_bmesh_set(const CustomData *data, void *block, int type, void *source)
{
void *dest = CustomData_bmesh_get(data, block, type);
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
if (!dest) return;
if (typeInfo->copy)
typeInfo->copy(source, dest, 1);
else
memcpy(dest, source, typeInfo->size);
}
void CustomData_bmesh_set_n(CustomData *data, void *block, int type, int n, void *source)
{
void *dest = CustomData_bmesh_get_n(data, block, type, n);
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
if (!dest) return;
if (typeInfo->copy)
typeInfo->copy(source, dest, 1);
else
memcpy(dest, source, typeInfo->size);
}
void CustomData_bmesh_set_layer_n(CustomData *data, void *block, int n, void *source)
{
void *dest = CustomData_bmesh_get_layer_n(data, block, n);
const LayerTypeInfo *typeInfo = layerType_getInfo(data->layers[n].type);
if (!dest) return;
if (typeInfo->copy)
typeInfo->copy(source, dest, 1);
else
memcpy(dest, source, typeInfo->size);
}
/**
* \param src_blocks must be pointers to the data, offset by layer->offset already.
*/
void CustomData_bmesh_interp_n(CustomData *data, void **src_blocks, const float *weights,
const float *sub_weights, int count, void *dest_block, int n)
{
CustomDataLayer *layer = &data->layers[n];
const LayerTypeInfo *typeInfo = layerType_getInfo(layer->type);
typeInfo->interp(src_blocks, weights, sub_weights, count,
(char *)dest_block + layer->offset);
}
void CustomData_bmesh_interp(CustomData *data, void **src_blocks, const float *weights,
const float *sub_weights, int count, void *dest_block)
{
int i, j;
void *source_buf[SOURCE_BUF_SIZE];
void **sources = source_buf;
/* slow fallback in case we're interpolating a ridiculous number of
* elements
*/
if (count > SOURCE_BUF_SIZE)
sources = MEM_callocN(sizeof(*sources) * count,
"CustomData_interp sources");
/* interpolates a layer at a time */
for (i = 0; i < data->totlayer; ++i) {
CustomDataLayer *layer = &data->layers[i];
const LayerTypeInfo *typeInfo = layerType_getInfo(layer->type);
if (typeInfo->interp) {
for (j = 0; j < count; ++j) {
sources[j] = (char *)src_blocks[j] + layer->offset;
}
CustomData_bmesh_interp_n(data, sources, weights, sub_weights, count, dest_block, i);
}
}
if (count > SOURCE_BUF_SIZE) MEM_freeN(sources);
}
static void CustomData_bmesh_set_default_n(CustomData *data, void **block, int n)
{
const LayerTypeInfo *typeInfo;
int offset = data->layers[n].offset;
typeInfo = layerType_getInfo(data->layers[n].type);
if (typeInfo->set_default) {
typeInfo->set_default((char *)*block + offset, 1);
}
else {
memset((char *)*block + offset, 0, typeInfo->size);
}
}
void CustomData_bmesh_set_default(CustomData *data, void **block)
{
int i;
if (*block == NULL)
CustomData_bmesh_alloc_block(data, block);
for (i = 0; i < data->totlayer; ++i) {
CustomData_bmesh_set_default_n(data, block, i);
}
}
/**
* \param use_default_init initializes data which can't be copied,
* typically you'll want to use this if the BM_xxx create function
* is called with BM_CREATE_SKIP_CD flag
*/
void CustomData_to_bmesh_block(const CustomData *source, CustomData *dest,
int src_index, void **dest_block, bool use_default_init)
{
const LayerTypeInfo *typeInfo;
int dest_i, src_i, src_offset;
if (*dest_block == NULL)
CustomData_bmesh_alloc_block(dest, dest_block);
/* copies a layer at a time */
dest_i = 0;
for (src_i = 0; src_i < source->totlayer; ++src_i) {
/* find the first dest layer with type >= the source type
* (this should work because layers are ordered by type)
*/
while (dest_i < dest->totlayer && dest->layers[dest_i].type < source->layers[src_i].type) {
if (use_default_init) {
CustomData_bmesh_set_default_n(dest, dest_block, dest_i);
}
dest_i++;
}
/* if there are no more dest layers, we're done */
if (dest_i >= dest->totlayer) break;
/* if we found a matching layer, copy the data */
if (dest->layers[dest_i].type == source->layers[src_i].type) {
int offset = dest->layers[dest_i].offset;
char *src_data = source->layers[src_i].data;
char *dest_data = (char *)*dest_block + offset;
typeInfo = layerType_getInfo(dest->layers[dest_i].type);
src_offset = src_index * typeInfo->size;
if (typeInfo->copy)
typeInfo->copy(src_data + src_offset, dest_data, 1);
else
memcpy(dest_data, src_data + src_offset, typeInfo->size);
/* if there are multiple source & dest layers of the same type,
* we don't want to copy all source layers to the same dest, so
* increment dest_i
*/
dest_i++;
}
}
if (use_default_init) {
while (dest_i < dest->totlayer) {
CustomData_bmesh_set_default_n(dest, dest_block, dest_i);
dest_i++;
}
}
}
void CustomData_from_bmesh_block(const CustomData *source, CustomData *dest,
void *src_block, int dest_index)
{
const LayerTypeInfo *typeInfo;
int dest_i, src_i, dest_offset;
/* copies a layer at a time */
dest_i = 0;
for (src_i = 0; src_i < source->totlayer; ++src_i) {
/* find the first dest layer with type >= the source type
* (this should work because layers are ordered by type)
*/
while (dest_i < dest->totlayer && dest->layers[dest_i].type < source->layers[src_i].type) {
dest_i++;
}
/* if there are no more dest layers, we're done */
if (dest_i >= dest->totlayer) return;
/* if we found a matching layer, copy the data */
if (dest->layers[dest_i].type == source->layers[src_i].type) {
int offset = source->layers[src_i].offset;
char *src_data = (char *)src_block + offset;
char *dest_data = dest->layers[dest_i].data;
typeInfo = layerType_getInfo(dest->layers[dest_i].type);
dest_offset = dest_index * typeInfo->size;
if (typeInfo->copy)
typeInfo->copy(src_data, dest_data + dest_offset, 1);
else
memcpy(dest_data + dest_offset, src_data, typeInfo->size);
/* if there are multiple source & dest layers of the same type,
* we don't want to copy all source layers to the same dest, so
* increment dest_i
*/
dest_i++;
}
}
}
void CustomData_file_write_info(int type, const char **structname, int *structnum)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
*structname = typeInfo->structname;
*structnum = typeInfo->structnum;
}
int CustomData_sizeof(int type)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
return typeInfo->size;
}
const char *CustomData_layertype_name(int type)
{
return layerType_getName(type);
}
/**
* Can only ever be one of these.
*/
bool CustomData_layertype_is_singleton(int type)
{
const LayerTypeInfo *typeInfo = layerType_getInfo(type);
return typeInfo->defaultname == NULL;
}
static bool CustomData_is_property_layer(int type)
{
if ((type == CD_PROP_FLT) || (type == CD_PROP_INT) || (type == CD_PROP_STR))
return true;
return false;
}
static bool cd_layer_find_dupe(CustomData *data, const char *name, int type, int index)
{
int i;
/* see if there is a duplicate */
for (i = 0; i < data->totlayer; i++) {
if (i != index) {
CustomDataLayer *layer = &data->layers[i];
if (CustomData_is_property_layer(type)) {
if (CustomData_is_property_layer(layer->type) && strcmp(layer->name, name) == 0) {
return true;
}
}
else {
if (i != index && layer->type == type && strcmp(layer->name, name) == 0) {
return true;
}
}
}
}
return false;
}
static bool customdata_unique_check(void *arg, const char *name)
{
struct {CustomData *data; int type; int index; } *data_arg = arg;
return cd_layer_find_dupe(data_arg->data, name, data_arg->type, data_arg->index);
}
void CustomData_set_layer_unique_name(CustomData *data, int index)
{
CustomDataLayer *nlayer = &data->layers[index];
const LayerTypeInfo *typeInfo = layerType_getInfo(nlayer->type);
struct {CustomData *data; int type; int index; } data_arg;
data_arg.data = data;
data_arg.type = nlayer->type;
data_arg.index = index;
if (!typeInfo->defaultname)
return;
BLI_uniquename_cb(customdata_unique_check, &data_arg, DATA_(typeInfo->defaultname), '.', nlayer->name,
sizeof(nlayer->name));
}
void CustomData_validate_layer_name(const CustomData *data, int type, const char *name, char *outname)
{
int index = -1;
/* if a layer name was given, try to find that layer */
if (name[0])
index = CustomData_get_named_layer_index(data, type, name);
if (index < 0) {
/* either no layer was specified, or the layer we want has been
* deleted, so assign the active layer to name
*/
index = CustomData_get_active_layer_index(data, type);
BLI_strncpy(outname, data->layers[index].name, MAX_CUSTOMDATA_LAYER_NAME);
}
else {
BLI_strncpy(outname, name, MAX_CUSTOMDATA_LAYER_NAME);
}
}
bool CustomData_verify_versions(struct CustomData *data, int index)
{
const LayerTypeInfo *typeInfo;
CustomDataLayer *layer = &data->layers[index];
bool keeplayer = true;
int i;
if (layer->type >= CD_NUMTYPES) {
keeplayer = false; /* unknown layer type from future version */
}
else {
typeInfo = layerType_getInfo(layer->type);
if (!typeInfo->defaultname && (index > 0) &&
data->layers[index - 1].type == layer->type)
{
keeplayer = false; /* multiple layers of which we only support one */
}
}
if (!keeplayer) {
for (i = index + 1; i < data->totlayer; ++i)
data->layers[i - 1] = data->layers[i];
data->totlayer--;
}
return keeplayer;
}
/****************************** External Files *******************************/
static void customdata_external_filename(char filename[FILE_MAX], ID *id, CustomDataExternal *external)
{
BLI_strncpy(filename, external->filename, FILE_MAX);
BLI_path_abs(filename, ID_BLEND_PATH(G.main, id));
}
void CustomData_external_reload(CustomData *data, ID *UNUSED(id), CustomDataMask mask, int totelem)
{
CustomDataLayer *layer;
const LayerTypeInfo *typeInfo;
int i;
for (i = 0; i < data->totlayer; i++) {
layer = &data->layers[i];
typeInfo = layerType_getInfo(layer->type);
if (!(mask & CD_TYPE_AS_MASK(layer->type))) {
/* pass */
}
else if ((layer->flag & CD_FLAG_EXTERNAL) && (layer->flag & CD_FLAG_IN_MEMORY)) {
if (typeInfo->free)
typeInfo->free(layer->data, totelem, typeInfo->size);
layer->flag &= ~CD_FLAG_IN_MEMORY;
}
}
}
void CustomData_external_read(CustomData *data, ID *id, CustomDataMask mask, int totelem)
{
CustomDataExternal *external = data->external;
CustomDataLayer *layer;
CDataFile *cdf;
CDataFileLayer *blay;
char filename[FILE_MAX];
const LayerTypeInfo *typeInfo;
int i, update = 0;
if (!external)
return;
for (i = 0; i < data->totlayer; i++) {
layer = &data->layers[i];
typeInfo = layerType_getInfo(layer->type);
if (!(mask & CD_TYPE_AS_MASK(layer->type))) {
/* pass */
}
else if (layer->flag & CD_FLAG_IN_MEMORY) {
/* pass */
}
else if ((layer->flag & CD_FLAG_EXTERNAL) && typeInfo->read) {
update = 1;
}
}
if (!update)
return;
customdata_external_filename(filename, id, external);
cdf = cdf_create(CDF_TYPE_MESH);
if (!cdf_read_open(cdf, filename)) {
fprintf(stderr, "Failed to read %s layer from %s.\n", layerType_getName(layer->type), filename);
return;
}
for (i = 0; i < data->totlayer; i++) {
layer = &data->layers[i];
typeInfo = layerType_getInfo(layer->type);
if (!(mask & CD_TYPE_AS_MASK(layer->type))) {
/* pass */
}
else if (layer->flag & CD_FLAG_IN_MEMORY) {
/* pass */
}
else if ((layer->flag & CD_FLAG_EXTERNAL) && typeInfo->read) {
blay = cdf_layer_find(cdf, layer->type, layer->name);
if (blay) {
if (cdf_read_layer(cdf, blay)) {
if (typeInfo->read(cdf, layer->data, totelem)) {
/* pass */
}
else {
break;
}
layer->flag |= CD_FLAG_IN_MEMORY;
}
else
break;
}
}
}
cdf_read_close(cdf);
cdf_free(cdf);
}
void CustomData_external_write(CustomData *data, ID *id, CustomDataMask mask, int totelem, int free)
{
CustomDataExternal *external = data->external;
CustomDataLayer *layer;
CDataFile *cdf;
CDataFileLayer *blay;
const LayerTypeInfo *typeInfo;
int i, update = 0;
char filename[FILE_MAX];
if (!external)
return;
/* test if there is anything to write */
for (i = 0; i < data->totlayer; i++) {
layer = &data->layers[i];
typeInfo = layerType_getInfo(layer->type);
if (!(mask & CD_TYPE_AS_MASK(layer->type))) {
/* pass */
}
else if ((layer->flag & CD_FLAG_EXTERNAL) && typeInfo->write) {
update = 1;
}
}
if (!update)
return;
/* make sure data is read before we try to write */
CustomData_external_read(data, id, mask, totelem);
customdata_external_filename(filename, id, external);
cdf = cdf_create(CDF_TYPE_MESH);
for (i = 0; i < data->totlayer; i++) {
layer = &data->layers[i];
typeInfo = layerType_getInfo(layer->type);
if ((layer->flag & CD_FLAG_EXTERNAL) && typeInfo->filesize) {
if (layer->flag & CD_FLAG_IN_MEMORY) {
cdf_layer_add(cdf, layer->type, layer->name,
typeInfo->filesize(cdf, layer->data, totelem));
}
else {
cdf_free(cdf);
return; /* read failed for a layer! */
}
}
}
if (!cdf_write_open(cdf, filename)) {
fprintf(stderr, "Failed to open %s for writing.\n", filename);
return;
}
for (i = 0; i < data->totlayer; i++) {
layer = &data->layers[i];
typeInfo = layerType_getInfo(layer->type);
if ((layer->flag & CD_FLAG_EXTERNAL) && typeInfo->write) {
blay = cdf_layer_find(cdf, layer->type, layer->name);
if (cdf_write_layer(cdf, blay)) {
if (typeInfo->write(cdf, layer->data, totelem)) {
/* pass */
}
else {
break;
}
}
else {
break;
}
}
}
if (i != data->totlayer) {
fprintf(stderr, "Failed to write data to %s.\n", filename);
cdf_free(cdf);
return;
}
for (i = 0; i < data->totlayer; i++) {
layer = &data->layers[i];
typeInfo = layerType_getInfo(layer->type);
if ((layer->flag & CD_FLAG_EXTERNAL) && typeInfo->write) {
if (free) {
if (typeInfo->free)
typeInfo->free(layer->data, totelem, typeInfo->size);
layer->flag &= ~CD_FLAG_IN_MEMORY;
}
}
}
cdf_write_close(cdf);
cdf_free(cdf);
}
void CustomData_external_add(CustomData *data, ID *UNUSED(id), int type, int UNUSED(totelem), const char *filename)
{
CustomDataExternal *external = data->external;
CustomDataLayer *layer;
int layer_index;
layer_index = CustomData_get_active_layer_index(data, type);
if (layer_index < 0) return;
layer = &data->layers[layer_index];
if (layer->flag & CD_FLAG_EXTERNAL)
return;
if (!external) {
external = MEM_callocN(sizeof(CustomDataExternal), "CustomDataExternal");
data->external = external;
}
BLI_strncpy(external->filename, filename, sizeof(external->filename));
layer->flag |= CD_FLAG_EXTERNAL | CD_FLAG_IN_MEMORY;
}
void CustomData_external_remove(CustomData *data, ID *id, int type, int totelem)
{
CustomDataExternal *external = data->external;
CustomDataLayer *layer;
//char filename[FILE_MAX];
int layer_index; // i, remove_file;
layer_index = CustomData_get_active_layer_index(data, type);
if (layer_index < 0) return;
layer = &data->layers[layer_index];
if (!external)
return;
if (layer->flag & CD_FLAG_EXTERNAL) {
if (!(layer->flag & CD_FLAG_IN_MEMORY))
CustomData_external_read(data, id, CD_TYPE_AS_MASK(layer->type), totelem);
layer->flag &= ~CD_FLAG_EXTERNAL;
#if 0
remove_file = 1;
for (i = 0; i < data->totlayer; i++)
if (data->layers[i].flag & CD_FLAG_EXTERNAL)
remove_file = 0;
if (remove_file) {
customdata_external_filename(filename, id, external);
cdf_remove(filename);
CustomData_external_free(data);
}
#endif
}
}
bool CustomData_external_test(CustomData *data, int type)
{
CustomDataLayer *layer;
int layer_index;
layer_index = CustomData_get_active_layer_index(data, type);
if (layer_index < 0) return false;
layer = &data->layers[layer_index];
return (layer->flag & CD_FLAG_EXTERNAL) != 0;
}
#if 0
void CustomData_external_remove_object(CustomData *data, ID *id)
{
CustomDataExternal *external = data->external;
char filename[FILE_MAX];
if (!external)
return;
customdata_external_filename(filename, id, external);
cdf_remove(filename);
CustomData_external_free(data);
}
#endif