This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/kernel/closure/bsdf_principled_diffuse.h
Weizhen Huang 543bf28fb1 Refactor: renamed I -> wi, omega_in -> wo in Cycles
wi is the viewing direction, and wo is the illumination direction. Under this notation, BSDF sampling always samples from wi and outputs wo, which is consistent with most of the papers and mitsuba. This order is reversed compared with PBRT, although PBRT also traces from the camera.
2023-01-17 18:07:13 +01:00

158 lines
4.9 KiB
C++

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
#pragma once
/* DISNEY PRINCIPLED DIFFUSE BRDF
*
* Shading model by Brent Burley (Disney): "Physically Based Shading at Disney" (2012)
*
* "Extending the Disney BRDF to a BSDF with Integrated Subsurface Scattering" (2015)
* For the separation of retro-reflection, "2.3 Dielectric BRDF with integrated
* subsurface scattering"
*/
#include "kernel/closure/bsdf_util.h"
#include "kernel/sample/mapping.h"
CCL_NAMESPACE_BEGIN
enum PrincipledDiffuseBsdfComponents {
PRINCIPLED_DIFFUSE_FULL = 1,
PRINCIPLED_DIFFUSE_LAMBERT = 2,
PRINCIPLED_DIFFUSE_LAMBERT_EXIT = 4,
PRINCIPLED_DIFFUSE_RETRO_REFLECTION = 8,
};
typedef struct PrincipledDiffuseBsdf {
SHADER_CLOSURE_BASE;
float roughness;
int components;
} PrincipledDiffuseBsdf;
static_assert(sizeof(ShaderClosure) >= sizeof(PrincipledDiffuseBsdf),
"PrincipledDiffuseBsdf is too large!");
ccl_device int bsdf_principled_diffuse_setup(ccl_private PrincipledDiffuseBsdf *bsdf)
{
bsdf->type = CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID;
bsdf->components = PRINCIPLED_DIFFUSE_FULL;
return SD_BSDF | SD_BSDF_HAS_EVAL;
}
ccl_device Spectrum
bsdf_principled_diffuse_compute_brdf(ccl_private const PrincipledDiffuseBsdf *bsdf,
float3 N,
float3 V,
float3 L,
ccl_private float *pdf)
{
const float NdotL = dot(N, L);
if (NdotL <= 0) {
return zero_spectrum();
}
const float NdotV = dot(N, V);
const float FV = schlick_fresnel(NdotV);
const float FL = schlick_fresnel(NdotL);
float f = 0.0f;
/* Lambertian component. */
if (bsdf->components & (PRINCIPLED_DIFFUSE_FULL | PRINCIPLED_DIFFUSE_LAMBERT)) {
f += (1.0f - 0.5f * FV) * (1.0f - 0.5f * FL);
}
else if (bsdf->components & PRINCIPLED_DIFFUSE_LAMBERT_EXIT) {
f += (1.0f - 0.5f * FL);
}
/* Retro-reflection component. */
if (bsdf->components & (PRINCIPLED_DIFFUSE_FULL | PRINCIPLED_DIFFUSE_RETRO_REFLECTION)) {
/* H = normalize(L + V); // Bisector of an angle between L and V
* LH2 = 2 * dot(L, H)^2 = 2cos(x)^2 = cos(2x) + 1 = dot(L, V) + 1,
* half-angle x between L and V is at most 90 deg. */
const float LH2 = dot(L, V) + 1;
const float RR = bsdf->roughness * LH2;
f += RR * (FL + FV + FL * FV * (RR - 1.0f));
}
float value = M_1_PI_F * NdotL * f;
return make_spectrum(value);
}
/* Compute Fresnel at entry point, to be combined with #PRINCIPLED_DIFFUSE_LAMBERT_EXIT
* at the exit point to get the complete BSDF. */
ccl_device_inline float bsdf_principled_diffuse_compute_entry_fresnel(const float NdotV)
{
const float FV = schlick_fresnel(NdotV);
return (1.0f - 0.5f * FV);
}
/* Ad-hoc weight adjustment to avoid retro-reflection taking away half the
* samples from BSSRDF. */
ccl_device_inline float bsdf_principled_diffuse_retro_reflection_sample_weight(
ccl_private PrincipledDiffuseBsdf *bsdf, const float3 I)
{
return bsdf->roughness * schlick_fresnel(dot(bsdf->N, I));
}
ccl_device int bsdf_principled_diffuse_setup(ccl_private PrincipledDiffuseBsdf *bsdf,
int components)
{
bsdf->type = CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID;
bsdf->components = components;
return SD_BSDF | SD_BSDF_HAS_EVAL;
}
ccl_device Spectrum bsdf_principled_diffuse_eval(ccl_private const ShaderClosure *sc,
const float3 wi,
const float3 wo,
ccl_private float *pdf)
{
ccl_private const PrincipledDiffuseBsdf *bsdf = (ccl_private const PrincipledDiffuseBsdf *)sc;
const float3 N = bsdf->N;
if (dot(N, wo) > 0.0f) {
const float3 V = wi;
const float3 L = wo;
*pdf = fmaxf(dot(N, wo), 0.0f) * M_1_PI_F;
return bsdf_principled_diffuse_compute_brdf(bsdf, N, V, L, pdf);
}
else {
*pdf = 0.0f;
return zero_spectrum();
}
}
ccl_device int bsdf_principled_diffuse_sample(ccl_private const ShaderClosure *sc,
float3 Ng,
float3 wi,
float randu,
float randv,
ccl_private Spectrum *eval,
ccl_private float3 *wo,
ccl_private float *pdf)
{
ccl_private const PrincipledDiffuseBsdf *bsdf = (ccl_private const PrincipledDiffuseBsdf *)sc;
float3 N = bsdf->N;
sample_cos_hemisphere(N, randu, randv, wo, pdf);
if (dot(Ng, *wo) > 0) {
*eval = bsdf_principled_diffuse_compute_brdf(bsdf, N, wi, *wo, pdf);
}
else {
*pdf = 0.0f;
*eval = zero_spectrum();
}
return LABEL_REFLECT | LABEL_DIFFUSE;
}
CCL_NAMESPACE_END