This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/kernel/device/gpu/parallel_active_index.h
Michael Jones 654e1e901b Cycles: Use local atomics for faster shader sorting (enabled on Metal)
This patch adds two new kernels: SORT_BUCKET_PASS and SORT_WRITE_PASS. These replace PREFIX_SUM and SORTED_PATHS_ARRAY on supported devices (currently implemented on Metal, but will be trivial to enable on the other backends). The new kernels exploit sort partitioning (see D15331) by sorting each partition separately using local atomics. This can give an overall render speedup of 2-3% depending on architecture. As before, we fall back to the original non-partitioned sorting when the shader count is "too high".

Reviewed By: brecht

Differential Revision: https://developer.blender.org/D16909
2023-02-06 11:18:26 +00:00

195 lines
7.4 KiB
C++

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2021-2022 Blender Foundation */
#pragma once
CCL_NAMESPACE_BEGIN
/* Given an array of states, build an array of indices for which the states
* are active.
*
* Shared memory requirement is `sizeof(int) * (number_of_warps + 1)`. */
#include "util/atomic.h"
#ifdef __HIP__
# define GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE 1024
#else
# define GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE 512
#endif
/* TODO: abstract more device differences, define ccl_gpu_local_syncthreads,
* ccl_gpu_thread_warp, ccl_gpu_warp_index, ccl_gpu_num_warps for all devices
* and keep device specific code in compat.h */
#ifdef __KERNEL_ONEAPI__
template<typename IsActiveOp>
void gpu_parallel_active_index_array_impl(const uint num_states,
ccl_global int *ccl_restrict indices,
ccl_global int *ccl_restrict num_indices,
IsActiveOp is_active_op)
{
# ifdef WITH_ONEAPI_SYCL_HOST_TASK
int write_index = 0;
for (int state_index = 0; state_index < num_states; state_index++) {
if (is_active_op(state_index))
indices[write_index++] = state_index;
}
*num_indices = write_index;
return;
# endif /* WITH_ONEAPI_SYCL_HOST_TASK */
const sycl::nd_item<1> &item_id = sycl::ext::oneapi::experimental::this_nd_item<1>();
const uint blocksize = item_id.get_local_range(0);
sycl::multi_ptr<int[GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE + 1],
sycl::access::address_space::local_space>
ptr = sycl::ext::oneapi::group_local_memory<
int[GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE + 1]>(item_id.get_group());
int *warp_offset = *ptr;
/* NOTE(@nsirgien): Here we calculate the same value as below but
* faster for DPC++ : seems CUDA converting "%", "/", "*" based calculations below into
* something faster already but DPC++ doesn't, so it's better to use
* direct request of needed parameters - switching from this computation to computation below
* will cause 2.5x performance slowdown. */
const uint thread_index = item_id.get_local_id(0);
const uint thread_warp = item_id.get_sub_group().get_local_id();
const uint warp_index = item_id.get_sub_group().get_group_id();
const uint num_warps = item_id.get_sub_group().get_group_range()[0];
const uint state_index = item_id.get_global_id(0);
/* Test if state corresponding to this thread is active. */
const uint is_active = (state_index < num_states) ? is_active_op(state_index) : 0;
#else /* !__KERNEL__ONEAPI__ */
# ifndef __KERNEL_METAL__
template<typename IsActiveOp>
__device__
# endif
void
gpu_parallel_active_index_array_impl(const uint num_states,
ccl_global int *indices,
ccl_global int *num_indices,
# ifdef __KERNEL_METAL__
const uint is_active,
const uint blocksize,
const int thread_index,
const uint state_index,
const int ccl_gpu_warp_size,
const int thread_warp,
const int warp_index,
const int num_warps,
threadgroup int *warp_offset)
{
# else
IsActiveOp is_active_op)
{
extern ccl_gpu_shared int warp_offset[];
# ifndef __KERNEL_METAL__
const uint blocksize = ccl_gpu_block_dim_x;
# endif
const uint thread_index = ccl_gpu_thread_idx_x;
const uint thread_warp = thread_index % ccl_gpu_warp_size;
const uint warp_index = thread_index / ccl_gpu_warp_size;
const uint num_warps = blocksize / ccl_gpu_warp_size;
const uint state_index = ccl_gpu_block_idx_x * blocksize + thread_index;
/* Test if state corresponding to this thread is active. */
const uint is_active = (state_index < num_states) ? is_active_op(state_index) : 0;
# endif
#endif /* !__KERNEL_ONEAPI__ */
/* For each thread within a warp compute how many other active states precede it. */
#ifdef __KERNEL_ONEAPI__
const uint thread_offset = sycl::exclusive_scan_over_group(
item_id.get_sub_group(), is_active, std::plus<>());
#else
const uint thread_offset = popcount(ccl_gpu_ballot(is_active) &
ccl_gpu_thread_mask(thread_warp));
#endif
/* Last thread in warp stores number of active states for each warp. */
#ifdef __KERNEL_ONEAPI__
if (thread_warp == item_id.get_sub_group().get_local_range()[0] - 1) {
#else
if (thread_warp == ccl_gpu_warp_size - 1) {
#endif
warp_offset[warp_index] = thread_offset + is_active;
}
#ifdef __KERNEL_ONEAPI__
/* NOTE(@nsirgien): For us here only local memory writing (warp_offset) is important,
* so faster local barriers can be used. */
ccl_gpu_local_syncthreads();
#else
ccl_gpu_syncthreads();
#endif
/* Last thread in block converts per-warp sizes to offsets, increments global size of
* index array and gets offset to write to. */
if (thread_index == blocksize - 1) {
/* TODO: parallelize this. */
int offset = 0;
for (int i = 0; i < num_warps; i++) {
int num_active = warp_offset[i];
warp_offset[i] = offset;
offset += num_active;
}
const uint block_num_active = warp_offset[warp_index] + thread_offset + is_active;
warp_offset[num_warps] = atomic_fetch_and_add_uint32(num_indices, block_num_active);
}
#ifdef __KERNEL_ONEAPI__
/* NOTE(@nsirgien): For us here only important local memory writing (warp_offset),
* so faster local barriers can be used. */
ccl_gpu_local_syncthreads();
#else
ccl_gpu_syncthreads();
#endif
/* Write to index array. */
if (is_active) {
const uint block_offset = warp_offset[num_warps];
indices[block_offset + warp_offset[warp_index] + thread_offset] = state_index;
}
}
#ifdef __KERNEL_METAL__
# define gpu_parallel_active_index_array(num_states, indices, num_indices, is_active_op) \
const uint is_active = (ccl_gpu_global_id_x() < num_states) ? \
is_active_op(ccl_gpu_global_id_x()) : \
0; \
gpu_parallel_active_index_array_impl(num_states, \
indices, \
num_indices, \
is_active, \
metal_local_size, \
metal_local_id, \
metal_global_id, \
simdgroup_size, \
simd_lane_index, \
simd_group_index, \
num_simd_groups, \
(threadgroup int *)threadgroup_array)
#elif defined(__KERNEL_ONEAPI__)
# define gpu_parallel_active_index_array(num_states, indices, num_indices, is_active_op) \
gpu_parallel_active_index_array_impl(num_states, indices, num_indices, is_active_op)
#else
# define gpu_parallel_active_index_array(num_states, indices, num_indices, is_active_op) \
gpu_parallel_active_index_array_impl(num_states, indices, num_indices, is_active_op)
#endif
CCL_NAMESPACE_END