This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/kernel/integrator/intersect_closest.h
Brecht Van Lommel ac51d331df Refactor: Cycles light sampling code reorganization
* Split light types into own files, move light type specific code from
  light tree and MNEE.
* Move flat light distribution code into own kernel file and host side
  building function, in preparation of light tree addition. Add light/sample.h
  as main entry point to kernel light sampling.
* Better separate calculation of pdf for selecting a light, and pdf for
  sampling a point on the light. The selection pdf is now also stored in
  LightSampling for MNEE to correctly recalculate the full pdf when the
  shading position changes but the point on the light remains fixed.
* Improvement to kernel light storage, using packed_float3, better variable
  names, etc.

Includes contributions by Brecht Van Lommel and Weizhen Huang.

Ref T77889
2022-11-30 21:19:51 +01:00

408 lines
16 KiB
C++

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
#pragma once
#include "kernel/camera/projection.h"
#include "kernel/film/light_passes.h"
#include "kernel/integrator/guiding.h"
#include "kernel/integrator/path_state.h"
#include "kernel/integrator/shadow_catcher.h"
#include "kernel/geom/geom.h"
#include "kernel/light/light.h"
#include "kernel/bvh/bvh.h"
CCL_NAMESPACE_BEGIN
ccl_device_forceinline bool integrator_intersect_terminate(KernelGlobals kg,
IntegratorState state,
const int shader_flags)
{
/* Optional AO bounce termination.
* We continue evaluating emissive/transparent surfaces and volumes, similar
* to direct lighting. Only if we know there are none can we terminate the
* path immediately. */
if (path_state_ao_bounce(kg, state)) {
if (shader_flags & (SD_HAS_TRANSPARENT_SHADOW | SD_HAS_EMISSION)) {
INTEGRATOR_STATE_WRITE(state, path, flag) |= PATH_RAY_TERMINATE_AFTER_TRANSPARENT;
}
else if (!integrator_state_volume_stack_is_empty(kg, state)) {
INTEGRATOR_STATE_WRITE(state, path, flag) |= PATH_RAY_TERMINATE_AFTER_VOLUME;
}
else {
return true;
}
}
/* Load random number state. */
RNGState rng_state;
path_state_rng_load(state, &rng_state);
/* We perform path termination in this kernel to avoid launching shade_surface
* and evaluating the shader when not needed. Only for emission and transparent
* surfaces in front of emission do we need to evaluate the shader, since we
* perform MIS as part of indirect rays. */
const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);
const float continuation_probability = path_state_continuation_probability(kg, state, path_flag);
INTEGRATOR_STATE_WRITE(state, path, continuation_probability) = continuation_probability;
guiding_record_continuation_probability(kg, state, continuation_probability);
if (continuation_probability != 1.0f) {
const float terminate = path_state_rng_1D(kg, &rng_state, PRNG_TERMINATE);
if (continuation_probability == 0.0f || terminate >= continuation_probability) {
if (shader_flags & SD_HAS_EMISSION) {
/* Mark path to be terminated right after shader evaluation on the surface. */
INTEGRATOR_STATE_WRITE(state, path, flag) |= PATH_RAY_TERMINATE_ON_NEXT_SURFACE;
}
else if (!integrator_state_volume_stack_is_empty(kg, state)) {
/* TODO: only do this for emissive volumes. */
INTEGRATOR_STATE_WRITE(state, path, flag) |= PATH_RAY_TERMINATE_IN_NEXT_VOLUME;
}
else {
return true;
}
}
}
return false;
}
#ifdef __SHADOW_CATCHER__
/* Split path if a shadow catcher was hit. */
ccl_device_forceinline void integrator_split_shadow_catcher(
KernelGlobals kg,
IntegratorState state,
ccl_private const Intersection *ccl_restrict isect,
ccl_global float *ccl_restrict render_buffer)
{
/* Test if we hit a shadow catcher object, and potentially split the path to continue tracing two
* paths from here. */
const int object_flags = intersection_get_object_flags(kg, isect);
if (!kernel_shadow_catcher_is_path_split_bounce(kg, state, object_flags)) {
return;
}
film_write_shadow_catcher_bounce_data(kg, state, render_buffer);
/* Mark state as having done a shadow catcher split so that it stops contributing to
* the shadow catcher matte pass, but keeps contributing to the combined pass. */
INTEGRATOR_STATE_WRITE(state, path, flag) |= PATH_RAY_SHADOW_CATCHER_HIT;
/* Copy current state to new state. */
state = integrator_state_shadow_catcher_split(kg, state);
/* Initialize new state.
*
* Note that the splitting leaves kernel and sorting counters as-is, so use INIT semantic for
* the matte path. */
/* Mark current state so that it will only track contribution of shadow catcher objects ignoring
* non-catcher objects. */
INTEGRATOR_STATE_WRITE(state, path, flag) |= PATH_RAY_SHADOW_CATCHER_PASS;
if (kernel_data.film.pass_background != PASS_UNUSED && !kernel_data.background.transparent) {
/* If using background pass, schedule background shading kernel so that we have a background
* to alpha-over on. The background kernel will then continue the path afterwards. */
INTEGRATOR_STATE_WRITE(state, path, flag) |= PATH_RAY_SHADOW_CATCHER_BACKGROUND;
integrator_path_init(kg, state, DEVICE_KERNEL_INTEGRATOR_SHADE_BACKGROUND);
return;
}
if (!integrator_state_volume_stack_is_empty(kg, state)) {
/* Volume stack is not empty. Re-init the volume stack to exclude any non-shadow catcher
* objects from it, and then continue shading volume and shadow catcher surface after. */
integrator_path_init(kg, state, DEVICE_KERNEL_INTEGRATOR_INTERSECT_VOLUME_STACK);
return;
}
/* Continue with shading shadow catcher surface. */
const int shader = intersection_get_shader(kg, isect);
const int flags = kernel_data_fetch(shaders, shader).flags;
const bool use_caustics = kernel_data.integrator.use_caustics &&
(object_flags & SD_OBJECT_CAUSTICS);
const bool use_raytrace_kernel = (flags & SD_HAS_RAYTRACE);
if (use_caustics) {
integrator_path_init_sorted(kg, state, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_MNEE, shader);
}
else if (use_raytrace_kernel) {
integrator_path_init_sorted(
kg, state, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_RAYTRACE, shader);
}
else {
integrator_path_init_sorted(kg, state, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE, shader);
}
}
/* Schedule next kernel to be executed after updating volume stack for shadow catcher. */
template<DeviceKernel current_kernel>
ccl_device_forceinline void integrator_intersect_next_kernel_after_shadow_catcher_volume(
KernelGlobals kg, IntegratorState state)
{
/* Continue with shading shadow catcher surface. Same as integrator_split_shadow_catcher, but
* using NEXT instead of INIT. */
Intersection isect ccl_optional_struct_init;
integrator_state_read_isect(kg, state, &isect);
const int shader = intersection_get_shader(kg, &isect);
const int flags = kernel_data_fetch(shaders, shader).flags;
const int object_flags = intersection_get_object_flags(kg, &isect);
const bool use_caustics = kernel_data.integrator.use_caustics &&
(object_flags & SD_OBJECT_CAUSTICS);
const bool use_raytrace_kernel = (flags & SD_HAS_RAYTRACE);
if (use_caustics) {
integrator_path_next_sorted(
kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_MNEE, shader);
}
else if (use_raytrace_kernel) {
integrator_path_next_sorted(
kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_RAYTRACE, shader);
}
else {
integrator_path_next_sorted(
kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE, shader);
}
}
/* Schedule next kernel to be executed after executing background shader for shadow catcher. */
template<DeviceKernel current_kernel>
ccl_device_forceinline void integrator_intersect_next_kernel_after_shadow_catcher_background(
KernelGlobals kg, IntegratorState state)
{
/* Same logic as integrator_split_shadow_catcher, but using NEXT instead of INIT. */
if (!integrator_state_volume_stack_is_empty(kg, state)) {
/* Volume stack is not empty. Re-init the volume stack to exclude any non-shadow catcher
* objects from it, and then continue shading volume and shadow catcher surface after. */
integrator_path_next(
kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_INTERSECT_VOLUME_STACK);
return;
}
/* Continue with shading shadow catcher surface. */
integrator_intersect_next_kernel_after_shadow_catcher_volume<current_kernel>(kg, state);
}
#endif
/* Schedule next kernel to be executed after intersect closest.
*
* Note that current_kernel is a template value since making this a variable
* leads to poor performance with CUDA atomics. */
template<DeviceKernel current_kernel>
ccl_device_forceinline void integrator_intersect_next_kernel(
KernelGlobals kg,
IntegratorState state,
ccl_private const Intersection *ccl_restrict isect,
ccl_global float *ccl_restrict render_buffer,
const bool hit)
{
/* Continue with volume kernel if we are inside a volume, regardless if we hit anything. */
#ifdef __VOLUME__
if (!integrator_state_volume_stack_is_empty(kg, state)) {
const bool hit_surface = hit && !(isect->type & PRIMITIVE_LAMP);
const int shader = (hit_surface) ? intersection_get_shader(kg, isect) : SHADER_NONE;
const int flags = (hit_surface) ? kernel_data_fetch(shaders, shader).flags : 0;
if (!integrator_intersect_terminate(kg, state, flags)) {
integrator_path_next(kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_VOLUME);
}
else {
integrator_path_terminate(kg, state, current_kernel);
}
return;
}
#endif
if (hit) {
/* Hit a surface, continue with light or surface kernel. */
if (isect->type & PRIMITIVE_LAMP) {
integrator_path_next(kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_LIGHT);
}
else {
/* Hit a surface, continue with surface kernel unless terminated. */
const int shader = intersection_get_shader(kg, isect);
const int flags = kernel_data_fetch(shaders, shader).flags;
if (!integrator_intersect_terminate(kg, state, flags)) {
const int object_flags = intersection_get_object_flags(kg, isect);
const bool use_caustics = kernel_data.integrator.use_caustics &&
(object_flags & SD_OBJECT_CAUSTICS);
const bool use_raytrace_kernel = (flags & SD_HAS_RAYTRACE);
if (use_caustics) {
integrator_path_next_sorted(
kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_MNEE, shader);
}
else if (use_raytrace_kernel) {
integrator_path_next_sorted(
kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_RAYTRACE, shader);
}
else {
integrator_path_next_sorted(
kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE, shader);
}
#ifdef __SHADOW_CATCHER__
/* Handle shadow catcher. */
integrator_split_shadow_catcher(kg, state, isect, render_buffer);
#endif
}
else {
integrator_path_terminate(kg, state, current_kernel);
}
}
}
else {
/* Nothing hit, continue with background kernel. */
integrator_path_next(kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_BACKGROUND);
}
}
/* Schedule next kernel to be executed after shade volume.
*
* The logic here matches integrator_intersect_next_kernel, except that
* volume shading and termination testing have already been done. */
template<DeviceKernel current_kernel>
ccl_device_forceinline void integrator_intersect_next_kernel_after_volume(
KernelGlobals kg,
IntegratorState state,
ccl_private const Intersection *ccl_restrict isect,
ccl_global float *ccl_restrict render_buffer)
{
if (isect->prim != PRIM_NONE) {
/* Hit a surface, continue with light or surface kernel. */
if (isect->type & PRIMITIVE_LAMP) {
integrator_path_next(kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_LIGHT);
return;
}
else {
/* Hit a surface, continue with surface kernel unless terminated. */
const int shader = intersection_get_shader(kg, isect);
const int flags = kernel_data_fetch(shaders, shader).flags;
const int object_flags = intersection_get_object_flags(kg, isect);
const bool use_caustics = kernel_data.integrator.use_caustics &&
(object_flags & SD_OBJECT_CAUSTICS);
const bool use_raytrace_kernel = (flags & SD_HAS_RAYTRACE);
if (use_caustics) {
integrator_path_next_sorted(
kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_MNEE, shader);
}
else if (use_raytrace_kernel) {
integrator_path_next_sorted(
kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_RAYTRACE, shader);
}
else {
integrator_path_next_sorted(
kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE, shader);
}
#ifdef __SHADOW_CATCHER__
/* Handle shadow catcher. */
integrator_split_shadow_catcher(kg, state, isect, render_buffer);
#endif
return;
}
}
else {
/* Nothing hit, continue with background kernel. */
integrator_path_next(kg, state, current_kernel, DEVICE_KERNEL_INTEGRATOR_SHADE_BACKGROUND);
return;
}
}
ccl_device void integrator_intersect_closest(KernelGlobals kg,
IntegratorState state,
ccl_global float *ccl_restrict render_buffer)
{
PROFILING_INIT(kg, PROFILING_INTERSECT_CLOSEST);
/* Read ray from integrator state into local memory. */
Ray ray ccl_optional_struct_init;
integrator_state_read_ray(kg, state, &ray);
kernel_assert(ray.tmax != 0.0f);
const uint visibility = path_state_ray_visibility(state);
const int last_isect_prim = INTEGRATOR_STATE(state, isect, prim);
const int last_isect_object = INTEGRATOR_STATE(state, isect, object);
/* Trick to use short AO rays to approximate indirect light at the end of the path. */
if (path_state_ao_bounce(kg, state)) {
ray.tmax = kernel_data.integrator.ao_bounces_distance;
if (last_isect_object != OBJECT_NONE) {
const float object_ao_distance = kernel_data_fetch(objects, last_isect_object).ao_distance;
if (object_ao_distance != 0.0f) {
ray.tmax = object_ao_distance;
}
}
}
/* Scene Intersection. */
Intersection isect ccl_optional_struct_init;
isect.object = OBJECT_NONE;
isect.prim = PRIM_NONE;
ray.self.object = last_isect_object;
ray.self.prim = last_isect_prim;
ray.self.light_object = OBJECT_NONE;
ray.self.light_prim = PRIM_NONE;
bool hit = scene_intersect(kg, &ray, visibility, &isect);
/* TODO: remove this and do it in the various intersection functions instead. */
if (!hit) {
isect.prim = PRIM_NONE;
}
/* Setup mnee flag to signal last intersection with a caster */
const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);
#ifdef __MNEE__
/* Path culling logic for MNEE (removes fireflies at the cost of bias) */
if (kernel_data.integrator.use_caustics) {
/* The following firefly removal mechanism works by culling light connections when
* a ray comes from a caustic caster directly after bouncing off a different caustic
* receiver */
bool from_caustic_caster = false;
bool from_caustic_receiver = false;
if (!(path_flag & PATH_RAY_CAMERA) && last_isect_object != OBJECT_NONE) {
const int object_flags = kernel_data_fetch(object_flag, last_isect_object);
from_caustic_receiver = (object_flags & SD_OBJECT_CAUSTICS_RECEIVER);
from_caustic_caster = (object_flags & SD_OBJECT_CAUSTICS_CASTER);
}
bool has_receiver_ancestor = INTEGRATOR_STATE(state, path, mnee) & PATH_MNEE_RECEIVER_ANCESTOR;
INTEGRATOR_STATE_WRITE(state, path, mnee) &= ~PATH_MNEE_CULL_LIGHT_CONNECTION;
if (from_caustic_caster && has_receiver_ancestor)
INTEGRATOR_STATE_WRITE(state, path, mnee) |= PATH_MNEE_CULL_LIGHT_CONNECTION;
if (from_caustic_receiver)
INTEGRATOR_STATE_WRITE(state, path, mnee) |= PATH_MNEE_RECEIVER_ANCESTOR;
}
#endif /* __MNEE__ */
/* Light intersection for MIS. */
if (kernel_data.integrator.use_light_mis) {
/* NOTE: if we make lights visible to camera rays, we'll need to initialize
* these in the path_state_init. */
const int last_type = INTEGRATOR_STATE(state, isect, type);
hit = lights_intersect(
kg, state, &ray, &isect, last_isect_prim, last_isect_object, last_type, path_flag) ||
hit;
}
/* Write intersection result into global integrator state memory. */
integrator_state_write_isect(kg, state, &isect);
/* Setup up next kernel to be executed. */
integrator_intersect_next_kernel<DEVICE_KERNEL_INTEGRATOR_INTERSECT_CLOSEST>(
kg, state, &isect, render_buffer, hit);
}
CCL_NAMESPACE_END