Uses a light tree to more effectively sample scenes with many lights. This can significantly reduce noise, at the cost of a somewhat longer render time per sample. Light tree sampling is enabled by default. It can be disabled in the Sampling > Lights panel. Scenes using light clamping or ray visibility tricks may render different as these are biased techniques that depend on the sampling strategy. The implementation is currently disabled on AMD HIP. This is planned to be fixed before the release. Implementation by Jeffrey Liu, Weizhen Huang, Alaska and Brecht Van Lommel. Ref T77889
458 lines
14 KiB
C++
458 lines
14 KiB
C++
/* SPDX-License-Identifier: Apache-2.0
|
|
* Copyright 2011-2022 Blender Foundation */
|
|
|
|
#pragma once
|
|
|
|
#include "kernel/light/area.h"
|
|
#include "kernel/light/common.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Background Light */
|
|
|
|
ccl_device float3 background_map_sample(KernelGlobals kg,
|
|
float randu,
|
|
float randv,
|
|
ccl_private float *pdf)
|
|
{
|
|
/* for the following, the CDF values are actually a pair of floats, with the
|
|
* function value as X and the actual CDF as Y. The last entry's function
|
|
* value is the CDF total. */
|
|
int res_x = kernel_data.background.map_res_x;
|
|
int res_y = kernel_data.background.map_res_y;
|
|
int cdf_width = res_x + 1;
|
|
|
|
/* This is basically std::lower_bound as used by PBRT. */
|
|
int first = 0;
|
|
int count = res_y;
|
|
|
|
while (count > 0) {
|
|
int step = count >> 1;
|
|
int middle = first + step;
|
|
|
|
if (kernel_data_fetch(light_background_marginal_cdf, middle).y < randv) {
|
|
first = middle + 1;
|
|
count -= step + 1;
|
|
}
|
|
else
|
|
count = step;
|
|
}
|
|
|
|
int index_v = max(0, first - 1);
|
|
kernel_assert(index_v >= 0 && index_v < res_y);
|
|
|
|
float2 cdf_v = kernel_data_fetch(light_background_marginal_cdf, index_v);
|
|
float2 cdf_next_v = kernel_data_fetch(light_background_marginal_cdf, index_v + 1);
|
|
float2 cdf_last_v = kernel_data_fetch(light_background_marginal_cdf, res_y);
|
|
|
|
/* importance-sampled V direction */
|
|
float dv = inverse_lerp(cdf_v.y, cdf_next_v.y, randv);
|
|
float v = (index_v + dv) / res_y;
|
|
|
|
/* This is basically std::lower_bound as used by PBRT. */
|
|
first = 0;
|
|
count = res_x;
|
|
while (count > 0) {
|
|
int step = count >> 1;
|
|
int middle = first + step;
|
|
|
|
if (kernel_data_fetch(light_background_conditional_cdf, index_v * cdf_width + middle).y <
|
|
randu) {
|
|
first = middle + 1;
|
|
count -= step + 1;
|
|
}
|
|
else
|
|
count = step;
|
|
}
|
|
|
|
int index_u = max(0, first - 1);
|
|
kernel_assert(index_u >= 0 && index_u < res_x);
|
|
|
|
float2 cdf_u = kernel_data_fetch(light_background_conditional_cdf,
|
|
index_v * cdf_width + index_u);
|
|
float2 cdf_next_u = kernel_data_fetch(light_background_conditional_cdf,
|
|
index_v * cdf_width + index_u + 1);
|
|
float2 cdf_last_u = kernel_data_fetch(light_background_conditional_cdf,
|
|
index_v * cdf_width + res_x);
|
|
|
|
/* importance-sampled U direction */
|
|
float du = inverse_lerp(cdf_u.y, cdf_next_u.y, randu);
|
|
float u = (index_u + du) / res_x;
|
|
|
|
/* compute pdf */
|
|
float sin_theta = sinf(M_PI_F * v);
|
|
float denom = (M_2PI_F * M_PI_F * sin_theta) * cdf_last_u.x * cdf_last_v.x;
|
|
|
|
if (sin_theta == 0.0f || denom == 0.0f)
|
|
*pdf = 0.0f;
|
|
else
|
|
*pdf = (cdf_u.x * cdf_v.x) / denom;
|
|
|
|
/* compute direction */
|
|
return equirectangular_to_direction(u, v);
|
|
}
|
|
|
|
/* TODO(sergey): Same as above, after the release we should consider using
|
|
* 'noinline' for all devices.
|
|
*/
|
|
ccl_device float background_map_pdf(KernelGlobals kg, float3 direction)
|
|
{
|
|
float2 uv = direction_to_equirectangular(direction);
|
|
int res_x = kernel_data.background.map_res_x;
|
|
int res_y = kernel_data.background.map_res_y;
|
|
int cdf_width = res_x + 1;
|
|
|
|
float sin_theta = sinf(uv.y * M_PI_F);
|
|
|
|
if (sin_theta == 0.0f)
|
|
return 0.0f;
|
|
|
|
int index_u = clamp(float_to_int(uv.x * res_x), 0, res_x - 1);
|
|
int index_v = clamp(float_to_int(uv.y * res_y), 0, res_y - 1);
|
|
|
|
/* pdfs in V direction */
|
|
float2 cdf_last_u = kernel_data_fetch(light_background_conditional_cdf,
|
|
index_v * cdf_width + res_x);
|
|
float2 cdf_last_v = kernel_data_fetch(light_background_marginal_cdf, res_y);
|
|
|
|
float denom = (M_2PI_F * M_PI_F * sin_theta) * cdf_last_u.x * cdf_last_v.x;
|
|
|
|
if (denom == 0.0f)
|
|
return 0.0f;
|
|
|
|
/* pdfs in U direction */
|
|
float2 cdf_u = kernel_data_fetch(light_background_conditional_cdf,
|
|
index_v * cdf_width + index_u);
|
|
float2 cdf_v = kernel_data_fetch(light_background_marginal_cdf, index_v);
|
|
|
|
return (cdf_u.x * cdf_v.x) / denom;
|
|
}
|
|
|
|
ccl_device_inline bool background_portal_data_fetch_and_check_side(
|
|
KernelGlobals kg, float3 P, int index, ccl_private float3 *lightpos, ccl_private float3 *dir)
|
|
{
|
|
int portal = kernel_data.integrator.portal_offset + index;
|
|
const ccl_global KernelLight *klight = &kernel_data_fetch(lights, portal);
|
|
|
|
*lightpos = klight->co;
|
|
*dir = klight->area.dir;
|
|
|
|
/* Check whether portal is on the right side. */
|
|
if (dot(*dir, P - *lightpos) > 1e-4f)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
ccl_device_inline float background_portal_pdf(
|
|
KernelGlobals kg, float3 P, float3 direction, int ignore_portal, ccl_private bool *is_possible)
|
|
{
|
|
float portal_pdf = 0.0f;
|
|
|
|
int num_possible = 0;
|
|
for (int p = 0; p < kernel_data.integrator.num_portals; p++) {
|
|
if (p == ignore_portal)
|
|
continue;
|
|
|
|
float3 lightpos, dir;
|
|
if (!background_portal_data_fetch_and_check_side(kg, P, p, &lightpos, &dir))
|
|
continue;
|
|
|
|
/* There's a portal that could be sampled from this position. */
|
|
if (is_possible) {
|
|
*is_possible = true;
|
|
}
|
|
num_possible++;
|
|
|
|
int portal = kernel_data.integrator.portal_offset + p;
|
|
const ccl_global KernelLight *klight = &kernel_data_fetch(lights, portal);
|
|
|
|
const float3 axis_u = klight->area.axis_u;
|
|
const float len_u = klight->area.len_u;
|
|
const float3 axis_v = klight->area.axis_v;
|
|
const float len_v = klight->area.len_v;
|
|
const float3 inv_extent_u = axis_u / len_u;
|
|
const float3 inv_extent_v = axis_v / len_v;
|
|
|
|
bool is_round = (klight->area.invarea < 0.0f);
|
|
|
|
if (!ray_quad_intersect(P,
|
|
direction,
|
|
1e-4f,
|
|
FLT_MAX,
|
|
lightpos,
|
|
inv_extent_u,
|
|
inv_extent_v,
|
|
dir,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
is_round))
|
|
continue;
|
|
|
|
if (is_round) {
|
|
float t;
|
|
float3 D = normalize_len(lightpos - P, &t);
|
|
portal_pdf += fabsf(klight->area.invarea) * lamp_light_pdf(dir, -D, t);
|
|
}
|
|
else {
|
|
portal_pdf += area_light_rect_sample(
|
|
P, &lightpos, axis_u, len_u, axis_v, len_v, 0.0f, 0.0f, false);
|
|
}
|
|
}
|
|
|
|
if (ignore_portal >= 0) {
|
|
/* We have skipped a portal that could be sampled as well. */
|
|
num_possible++;
|
|
}
|
|
|
|
return (num_possible > 0) ? portal_pdf / num_possible : 0.0f;
|
|
}
|
|
|
|
ccl_device int background_num_possible_portals(KernelGlobals kg, float3 P)
|
|
{
|
|
int num_possible_portals = 0;
|
|
for (int p = 0; p < kernel_data.integrator.num_portals; p++) {
|
|
float3 lightpos, dir;
|
|
if (background_portal_data_fetch_and_check_side(kg, P, p, &lightpos, &dir))
|
|
num_possible_portals++;
|
|
}
|
|
return num_possible_portals;
|
|
}
|
|
|
|
ccl_device float3 background_portal_sample(KernelGlobals kg,
|
|
float3 P,
|
|
float randu,
|
|
float randv,
|
|
int num_possible,
|
|
ccl_private int *sampled_portal,
|
|
ccl_private float *pdf)
|
|
{
|
|
/* Pick a portal, then re-normalize randv. */
|
|
randv *= num_possible;
|
|
int portal = (int)randv;
|
|
randv -= portal;
|
|
|
|
/* TODO(sergey): Some smarter way of finding portal to sample
|
|
* is welcome.
|
|
*/
|
|
for (int p = 0; p < kernel_data.integrator.num_portals; p++) {
|
|
/* Search for the sampled portal. */
|
|
float3 lightpos, dir;
|
|
if (!background_portal_data_fetch_and_check_side(kg, P, p, &lightpos, &dir))
|
|
continue;
|
|
|
|
if (portal == 0) {
|
|
/* p is the portal to be sampled. */
|
|
int portal = kernel_data.integrator.portal_offset + p;
|
|
const ccl_global KernelLight *klight = &kernel_data_fetch(lights, portal);
|
|
const float3 axis_u = klight->area.axis_u;
|
|
const float3 axis_v = klight->area.axis_v;
|
|
const float len_u = klight->area.len_u;
|
|
const float len_v = klight->area.len_v;
|
|
bool is_round = (klight->area.invarea < 0.0f);
|
|
|
|
float3 D;
|
|
if (is_round) {
|
|
lightpos += ellipse_sample(axis_u * len_u * 0.5f, axis_v * len_v * 0.5f, randu, randv);
|
|
float t;
|
|
D = normalize_len(lightpos - P, &t);
|
|
*pdf = fabsf(klight->area.invarea) * lamp_light_pdf(dir, -D, t);
|
|
}
|
|
else {
|
|
*pdf = area_light_rect_sample(
|
|
P, &lightpos, axis_u, len_u, axis_v, len_v, randu, randv, true);
|
|
D = normalize(lightpos - P);
|
|
}
|
|
|
|
*pdf /= num_possible;
|
|
*sampled_portal = p;
|
|
return D;
|
|
}
|
|
|
|
portal--;
|
|
}
|
|
|
|
return zero_float3();
|
|
}
|
|
|
|
ccl_device_inline float3 background_sun_sample(KernelGlobals kg,
|
|
float randu,
|
|
float randv,
|
|
ccl_private float *pdf)
|
|
{
|
|
float3 D;
|
|
const float3 N = float4_to_float3(kernel_data.background.sun);
|
|
const float angle = kernel_data.background.sun.w;
|
|
sample_uniform_cone(N, angle, randu, randv, &D, pdf);
|
|
return D;
|
|
}
|
|
|
|
ccl_device_inline float background_sun_pdf(KernelGlobals kg, float3 D)
|
|
{
|
|
const float3 N = float4_to_float3(kernel_data.background.sun);
|
|
const float angle = kernel_data.background.sun.w;
|
|
return pdf_uniform_cone(N, D, angle);
|
|
}
|
|
|
|
ccl_device_inline float3 background_light_sample(
|
|
KernelGlobals kg, float3 P, float randu, float randv, ccl_private float *pdf)
|
|
{
|
|
float portal_method_pdf = kernel_data.background.portal_weight;
|
|
float sun_method_pdf = kernel_data.background.sun_weight;
|
|
float map_method_pdf = kernel_data.background.map_weight;
|
|
|
|
int num_portals = 0;
|
|
if (portal_method_pdf > 0.0f) {
|
|
/* Check if there are portals in the scene which we can sample. */
|
|
num_portals = background_num_possible_portals(kg, P);
|
|
if (num_portals == 0) {
|
|
portal_method_pdf = 0.0f;
|
|
}
|
|
}
|
|
|
|
float pdf_fac = (portal_method_pdf + sun_method_pdf + map_method_pdf);
|
|
if (pdf_fac == 0.0f) {
|
|
/* Use uniform as a fallback if we can't use any strategy. */
|
|
*pdf = 1.0f / M_4PI_F;
|
|
return sample_uniform_sphere(randu, randv);
|
|
}
|
|
|
|
pdf_fac = 1.0f / pdf_fac;
|
|
portal_method_pdf *= pdf_fac;
|
|
sun_method_pdf *= pdf_fac;
|
|
map_method_pdf *= pdf_fac;
|
|
|
|
/* We have 100% in total and split it between the three categories.
|
|
* Therefore, we pick portals if randu is between 0 and portal_method_pdf,
|
|
* sun if randu is between portal_method_pdf and (portal_method_pdf + sun_method_pdf)
|
|
* and map if randu is between (portal_method_pdf + sun_method_pdf) and 1. */
|
|
float sun_method_cdf = portal_method_pdf + sun_method_pdf;
|
|
|
|
int method = 0;
|
|
float3 D;
|
|
if (randu < portal_method_pdf) {
|
|
method = 0;
|
|
/* Rescale randu. */
|
|
if (portal_method_pdf != 1.0f) {
|
|
randu /= portal_method_pdf;
|
|
}
|
|
|
|
/* Sample a portal. */
|
|
int portal;
|
|
D = background_portal_sample(kg, P, randu, randv, num_portals, &portal, pdf);
|
|
if (num_portals > 1) {
|
|
/* Ignore the chosen portal, its pdf is already included. */
|
|
*pdf += background_portal_pdf(kg, P, D, portal, NULL);
|
|
}
|
|
|
|
/* Skip MIS if this is the only method. */
|
|
if (portal_method_pdf == 1.0f) {
|
|
return D;
|
|
}
|
|
*pdf *= portal_method_pdf;
|
|
}
|
|
else if (randu < sun_method_cdf) {
|
|
method = 1;
|
|
/* Rescale randu. */
|
|
if (sun_method_pdf != 1.0f) {
|
|
randu = (randu - portal_method_pdf) / sun_method_pdf;
|
|
}
|
|
|
|
D = background_sun_sample(kg, randu, randv, pdf);
|
|
|
|
/* Skip MIS if this is the only method. */
|
|
if (sun_method_pdf == 1.0f) {
|
|
return D;
|
|
}
|
|
*pdf *= sun_method_pdf;
|
|
}
|
|
else {
|
|
method = 2;
|
|
/* Rescale randu. */
|
|
if (map_method_pdf != 1.0f) {
|
|
randu = (randu - sun_method_cdf) / map_method_pdf;
|
|
}
|
|
|
|
D = background_map_sample(kg, randu, randv, pdf);
|
|
|
|
/* Skip MIS if this is the only method. */
|
|
if (map_method_pdf == 1.0f) {
|
|
return D;
|
|
}
|
|
*pdf *= map_method_pdf;
|
|
}
|
|
|
|
/* MIS weighting. */
|
|
if (method != 0 && portal_method_pdf != 0.0f) {
|
|
*pdf += portal_method_pdf * background_portal_pdf(kg, P, D, -1, NULL);
|
|
}
|
|
if (method != 1 && sun_method_pdf != 0.0f) {
|
|
*pdf += sun_method_pdf * background_sun_pdf(kg, D);
|
|
}
|
|
if (method != 2 && map_method_pdf != 0.0f) {
|
|
*pdf += map_method_pdf * background_map_pdf(kg, D);
|
|
}
|
|
return D;
|
|
}
|
|
|
|
ccl_device float background_light_pdf(KernelGlobals kg, float3 P, float3 direction)
|
|
{
|
|
float portal_method_pdf = kernel_data.background.portal_weight;
|
|
float sun_method_pdf = kernel_data.background.sun_weight;
|
|
float map_method_pdf = kernel_data.background.map_weight;
|
|
|
|
float portal_pdf = 0.0f;
|
|
/* Portals are a special case here since we need to compute their pdf in order
|
|
* to find out if we can sample them. */
|
|
if (portal_method_pdf > 0.0f) {
|
|
/* Evaluate PDF of sampling this direction by portal sampling. */
|
|
bool is_possible = false;
|
|
portal_pdf = background_portal_pdf(kg, P, direction, -1, &is_possible);
|
|
if (!is_possible) {
|
|
/* Portal sampling is not possible here because all portals point to the wrong side.
|
|
* If other methods can be used instead, do so, otherwise uniform sampling is used as a
|
|
* fallback. */
|
|
portal_method_pdf = 0.0f;
|
|
}
|
|
}
|
|
|
|
float pdf_fac = (portal_method_pdf + sun_method_pdf + map_method_pdf);
|
|
if (pdf_fac == 0.0f) {
|
|
/* Use uniform as a fallback if we can't use any strategy. */
|
|
return 1.0f / M_4PI_F;
|
|
}
|
|
|
|
pdf_fac = 1.0f / pdf_fac;
|
|
portal_method_pdf *= pdf_fac;
|
|
sun_method_pdf *= pdf_fac;
|
|
map_method_pdf *= pdf_fac;
|
|
|
|
float pdf = portal_pdf * portal_method_pdf;
|
|
if (sun_method_pdf != 0.0f) {
|
|
pdf += background_sun_pdf(kg, direction) * sun_method_pdf;
|
|
}
|
|
if (map_method_pdf != 0.0f) {
|
|
pdf += background_map_pdf(kg, direction) * map_method_pdf;
|
|
}
|
|
|
|
return pdf;
|
|
}
|
|
|
|
ccl_device_forceinline bool background_light_tree_parameters(const float3 centroid,
|
|
ccl_private float &cos_theta_u,
|
|
ccl_private float2 &distance,
|
|
ccl_private float3 &point_to_centroid)
|
|
{
|
|
/* Cover the whole sphere */
|
|
cos_theta_u = -1.0f;
|
|
|
|
distance = make_float2(1.0f, 1.0f);
|
|
point_to_centroid = -centroid;
|
|
|
|
return true;
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|