This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/kernel/light/triangle.h

330 lines
11 KiB
C++

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
#pragma once
#include "kernel/geom/geom.h"
CCL_NAMESPACE_BEGIN
/* returns true if the triangle is has motion blur or an instancing transform applied */
ccl_device_inline bool triangle_world_space_vertices(
KernelGlobals kg, int object, int prim, float time, float3 V[3])
{
bool has_motion = false;
const int object_flag = kernel_data_fetch(object_flag, object);
if (object_flag & SD_OBJECT_HAS_VERTEX_MOTION && time >= 0.0f) {
motion_triangle_vertices(kg, object, prim, time, V);
has_motion = true;
}
else {
triangle_vertices(kg, prim, V);
}
if (!(object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
#ifdef __OBJECT_MOTION__
float object_time = (time >= 0.0f) ? time : 0.5f;
Transform tfm = object_fetch_transform_motion_test(kg, object, object_time, NULL);
#else
Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM);
#endif
V[0] = transform_point(&tfm, V[0]);
V[1] = transform_point(&tfm, V[1]);
V[2] = transform_point(&tfm, V[2]);
has_motion = true;
}
return has_motion;
}
ccl_device_inline float triangle_light_pdf_area_sampling(const float3 Ng, const float3 I, float t)
{
float cos_pi = fabsf(dot(Ng, I));
if (cos_pi == 0.0f)
return 0.0f;
return t * t / cos_pi;
}
ccl_device_forceinline float triangle_light_pdf(KernelGlobals kg,
ccl_private const ShaderData *sd,
float t)
{
/* A naive heuristic to decide between costly solid angle sampling
* and simple area sampling, comparing the distance to the triangle plane
* to the length of the edges of the triangle. */
float3 V[3];
bool has_motion = triangle_world_space_vertices(kg, sd->object, sd->prim, sd->time, V);
const float3 e0 = V[1] - V[0];
const float3 e1 = V[2] - V[0];
const float3 e2 = V[2] - V[1];
const float longest_edge_squared = max(len_squared(e0), max(len_squared(e1), len_squared(e2)));
const float3 N = cross(e0, e1);
const float distance_to_plane = fabsf(dot(N, sd->wi * t)) / dot(N, N);
const float area = 0.5f * len(N);
float pdf;
if (longest_edge_squared > distance_to_plane * distance_to_plane) {
/* sd contains the point on the light source
* calculate Px, the point that we're shading */
const float3 Px = sd->P + sd->wi * t;
const float3 v0_p = V[0] - Px;
const float3 v1_p = V[1] - Px;
const float3 v2_p = V[2] - Px;
const float3 u01 = safe_normalize(cross(v0_p, v1_p));
const float3 u02 = safe_normalize(cross(v0_p, v2_p));
const float3 u12 = safe_normalize(cross(v1_p, v2_p));
const float alpha = fast_acosf(dot(u02, u01));
const float beta = fast_acosf(-dot(u01, u12));
const float gamma = fast_acosf(dot(u02, u12));
const float solid_angle = alpha + beta + gamma - M_PI_F;
/* distribution_pdf_triangles is calculated over triangle area, but we're not sampling over
* its area */
if (UNLIKELY(solid_angle == 0.0f)) {
return 0.0f;
}
else {
pdf = 1.0f / solid_angle;
}
}
else {
if (UNLIKELY(area == 0.0f)) {
return 0.0f;
}
pdf = triangle_light_pdf_area_sampling(sd->Ng, sd->wi, t) / area;
}
/* Belongs in distribution.h but can reuse computations here. */
if (!kernel_data.integrator.use_light_tree) {
float distribution_area = area;
if (has_motion && area != 0.0f) {
/* For motion blur need area of triangle at fixed time as used in the CDF. */
triangle_world_space_vertices(kg, sd->object, sd->prim, -1.0f, V);
distribution_area = triangle_area(V[0], V[1], V[2]);
}
pdf *= distribution_area * kernel_data.integrator.distribution_pdf_triangles;
}
return pdf;
}
template<bool in_volume_segment>
ccl_device_forceinline bool triangle_light_sample(KernelGlobals kg,
int prim,
int object,
float randu,
float randv,
float time,
ccl_private LightSample *ls,
const float3 P)
{
/* A naive heuristic to decide between costly solid angle sampling
* and simple area sampling, comparing the distance to the triangle plane
* to the length of the edges of the triangle. */
float3 V[3];
bool has_motion = triangle_world_space_vertices(kg, object, prim, time, V);
const float3 e0 = V[1] - V[0];
const float3 e1 = V[2] - V[0];
const float3 e2 = V[2] - V[1];
const float longest_edge_squared = max(len_squared(e0), max(len_squared(e1), len_squared(e2)));
const float3 N0 = cross(e0, e1);
float Nl = 0.0f;
ls->Ng = safe_normalize_len(N0, &Nl);
const float area = 0.5f * Nl;
/* flip normal if necessary */
const int object_flag = kernel_data_fetch(object_flag, object);
if (object_flag & SD_OBJECT_NEGATIVE_SCALE) {
ls->Ng = -ls->Ng;
}
ls->eval_fac = 1.0f;
ls->shader = kernel_data_fetch(tri_shader, prim);
ls->object = object;
ls->prim = prim;
ls->lamp = LAMP_NONE;
ls->shader |= SHADER_USE_MIS;
ls->type = LIGHT_TRIANGLE;
ls->group = object_lightgroup(kg, object);
float distance_to_plane = fabsf(dot(N0, V[0] - P) / dot(N0, N0));
if (!in_volume_segment && (longest_edge_squared > distance_to_plane * distance_to_plane)) {
/* see James Arvo, "Stratified Sampling of Spherical Triangles"
* http://www.graphics.cornell.edu/pubs/1995/Arv95c.pdf */
/* project the triangle to the unit sphere
* and calculate its edges and angles */
const float3 v0_p = V[0] - P;
const float3 v1_p = V[1] - P;
const float3 v2_p = V[2] - P;
const float3 u01 = safe_normalize(cross(v0_p, v1_p));
const float3 u02 = safe_normalize(cross(v0_p, v2_p));
const float3 u12 = safe_normalize(cross(v1_p, v2_p));
const float3 A = safe_normalize(v0_p);
const float3 B = safe_normalize(v1_p);
const float3 C = safe_normalize(v2_p);
const float cos_alpha = dot(u02, u01);
const float cos_beta = -dot(u01, u12);
const float cos_gamma = dot(u02, u12);
/* calculate dihedral angles */
const float alpha = fast_acosf(cos_alpha);
const float beta = fast_acosf(cos_beta);
const float gamma = fast_acosf(cos_gamma);
/* the area of the unit spherical triangle = solid angle */
const float solid_angle = alpha + beta + gamma - M_PI_F;
/* precompute a few things
* these could be re-used to take several samples
* as they are independent of randu/randv */
const float cos_c = dot(A, B);
const float sin_alpha = fast_sinf(alpha);
const float product = sin_alpha * cos_c;
/* Select a random sub-area of the spherical triangle
* and calculate the third vertex C_ of that new triangle */
const float phi = randu * solid_angle - alpha;
float s, t;
fast_sincosf(phi, &s, &t);
const float u = t - cos_alpha;
const float v = s + product;
const float3 U = safe_normalize(C - dot(C, A) * A);
float q = 1.0f;
const float det = ((v * s + u * t) * sin_alpha);
if (det != 0.0f) {
q = ((v * t - u * s) * cos_alpha - v) / det;
}
const float temp = max(1.0f - q * q, 0.0f);
const float3 C_ = safe_normalize(q * A + sqrtf(temp) * U);
/* Finally, select a random point along the edge of the new triangle
* That point on the spherical triangle is the sampled ray direction */
const float z = 1.0f - randv * (1.0f - dot(C_, B));
ls->D = z * B + sin_from_cos(z) * safe_normalize(C_ - dot(C_, B) * B);
/* calculate intersection with the planar triangle */
if (!ray_triangle_intersect(
P, ls->D, 0.0f, FLT_MAX, V[0], V[1], V[2], &ls->u, &ls->v, &ls->t)) {
ls->pdf = 0.0f;
return false;
}
ls->P = P + ls->D * ls->t;
/* distribution_pdf_triangles is calculated over triangle area, but we're sampling over solid
* angle */
if (UNLIKELY(solid_angle == 0.0f)) {
ls->pdf = 0.0f;
return false;
}
else {
ls->pdf = 1.0f / solid_angle;
}
}
else {
if (UNLIKELY(area == 0.0f)) {
return 0.0f;
}
/* compute random point in triangle. From Eric Heitz's "A Low-Distortion Map Between Triangle
* and Square" */
float u = randu;
float v = randv;
if (v > u) {
u *= 0.5f;
v -= u;
}
else {
v *= 0.5f;
u -= v;
}
const float t = 1.0f - u - v;
ls->P = u * V[0] + v * V[1] + t * V[2];
/* compute incoming direction, distance and pdf */
ls->D = normalize_len(ls->P - P, &ls->t);
ls->pdf = triangle_light_pdf_area_sampling(ls->Ng, -ls->D, ls->t) / area;
ls->u = u;
ls->v = v;
}
/* Belongs in distribution.h but can reuse computations here. */
if (!kernel_data.integrator.use_light_tree) {
float distribution_area = area;
if (has_motion && area != 0.0f) {
/* For motion blur need area of triangle at fixed time as used in the CDF. */
triangle_world_space_vertices(kg, object, prim, -1.0f, V);
distribution_area = triangle_area(V[0], V[1], V[2]);
}
ls->pdf_selection = distribution_area * kernel_data.integrator.distribution_pdf_triangles;
}
return (ls->pdf > 0.0f);
}
template<bool in_volume_segment>
ccl_device_forceinline bool triangle_light_tree_parameters(
KernelGlobals kg,
const ccl_global KernelLightTreeEmitter *kemitter,
const float3 centroid,
const float3 P,
const float3 N,
const BoundingCone bcone,
ccl_private float &cos_theta_u,
ccl_private float2 &distance,
ccl_private float3 &point_to_centroid)
{
if (!in_volume_segment) {
/* TODO: a cheap substitute for minimal distance between point and primitive. Does it
* worth the overhead to compute the accurate minimal distance? */
float min_distance;
point_to_centroid = safe_normalize_len(centroid - P, &min_distance);
distance = make_float2(min_distance, min_distance);
}
cos_theta_u = FLT_MAX;
const int object = kemitter->mesh_light.object_id;
float3 vertices[3];
triangle_world_space_vertices(kg, object, kemitter->prim, -1.0f, vertices);
bool shape_above_surface = false;
for (int i = 0; i < 3; i++) {
const float3 corner = vertices[i];
float distance_point_to_corner;
const float3 point_to_corner = safe_normalize_len(corner - P, &distance_point_to_corner);
cos_theta_u = fminf(cos_theta_u, dot(point_to_centroid, point_to_corner));
shape_above_surface |= dot(point_to_corner, N) > 0;
if (!in_volume_segment) {
distance.x = fmaxf(distance.x, distance_point_to_corner);
}
}
const bool front_facing = bcone.theta_o != 0.0f || dot(bcone.axis, point_to_centroid) < 0;
const bool in_volume = is_zero(N);
return (front_facing && shape_above_surface) || in_volume;
}
CCL_NAMESPACE_END