This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/freestyle/intern/view_map/FEdgeXDetector.cpp
Brecht Van Lommel 1840f44666 Fix build error on Windows without precompiled headers
Recent refactoring to use uint relied on indirect includes and precompiled
headers for uint to be defined. Explicitly include BLI_sys_types where this
type is used now.
2022-10-26 19:59:55 +02:00

789 lines
24 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup freestyle
* \brief Detects/flags/builds extended features edges on the WXEdge structure
*/
#include <cfloat>
#include "FEdgeXDetector.h"
#include "../geometry/GeomUtils.h"
#include "../geometry/normal_cycle.h"
#include "BLI_sys_types.h"
#include "BKE_global.h"
namespace Freestyle {
void FEdgeXDetector::processShapes(WingedEdge &we)
{
bool progressBarDisplay = false;
#if 0
Vec3r Min, Max;
#endif
vector<WShape *> wshapes = we.getWShapes();
WXShape *wxs;
if (_pProgressBar != nullptr) {
_pProgressBar->reset();
_pProgressBar->setLabelText("Detecting feature lines");
_pProgressBar->setTotalSteps(wshapes.size() * 3);
_pProgressBar->setProgress(0);
progressBarDisplay = true;
}
for (vector<WShape *>::const_iterator it = wshapes.begin(); it != wshapes.end(); it++) {
if (_pRenderMonitor && _pRenderMonitor->testBreak()) {
break;
}
wxs = dynamic_cast<WXShape *>(*it);
#if 0
wxs->bbox(Min, Max);
_bbox_diagonal = (Max - Min).norm();
#endif
if (_changes) {
vector<WFace *> &wfaces = wxs->GetFaceList();
for (vector<WFace *>::iterator wf = wfaces.begin(), wfend = wfaces.end(); wf != wfend;
++wf) {
WXFace *wxf = dynamic_cast<WXFace *>(*wf);
wxf->Clear();
}
_computeViewIndependent = true;
}
else if (!(wxs)->getComputeViewIndependentFlag()) {
wxs->Reset();
_computeViewIndependent = false;
}
else {
_computeViewIndependent = true;
}
preProcessShape(wxs);
if (progressBarDisplay) {
_pProgressBar->setProgress(_pProgressBar->getProgress() + 1);
}
processBorderShape(wxs);
if (_computeMaterialBoundaries) {
processMaterialBoundaryShape(wxs);
}
processCreaseShape(wxs);
if (_computeRidgesAndValleys) {
processRidgesAndValleysShape(wxs);
}
if (_computeSuggestiveContours) {
processSuggestiveContourShape(wxs);
}
processSilhouetteShape(wxs);
processEdgeMarksShape(wxs);
if (progressBarDisplay) {
_pProgressBar->setProgress(_pProgressBar->getProgress() + 1);
}
// build smooth edges:
buildSmoothEdges(wxs);
// Post processing for suggestive contours
if (_computeSuggestiveContours) {
postProcessSuggestiveContourShape(wxs);
}
if (progressBarDisplay) {
_pProgressBar->setProgress(_pProgressBar->getProgress() + 1);
}
wxs->setComputeViewIndependentFlag(false);
_computeViewIndependent = false;
_changes = false;
// reset user data
(*it)->ResetUserData();
}
}
// GENERAL STUFF
////////////////
void FEdgeXDetector::preProcessShape(WXShape *iWShape)
{
_meanK1 = 0;
_meanKr = 0;
_minK1 = FLT_MAX;
_maxK1 = -FLT_MAX;
_minKr = FLT_MAX;
_maxKr = -FLT_MAX;
_nPoints = 0;
#if 0
_meanEdgeSize = iWShape->getMeanEdgeSize();
#else
_meanEdgeSize = iWShape->ComputeMeanEdgeSize();
#endif
vector<WFace *> &wfaces = iWShape->GetFaceList();
vector<WFace *>::iterator f, fend;
// view dependent stuff
for (f = wfaces.begin(), fend = wfaces.end(); f != fend; ++f) {
preProcessFace((WXFace *)(*f));
}
if (_computeRidgesAndValleys || _computeSuggestiveContours) {
vector<WVertex *> &wvertices = iWShape->getVertexList();
for (vector<WVertex *>::iterator wv = wvertices.begin(), wvend = wvertices.end(); wv != wvend;
++wv) {
// Compute curvatures
WXVertex *wxv = dynamic_cast<WXVertex *>(*wv);
computeCurvatures(wxv);
}
_meanK1 /= (real)(_nPoints);
_meanKr /= (real)(_nPoints);
}
}
void FEdgeXDetector::preProcessFace(WXFace *iFace)
{
Vec3f firstPoint = iFace->GetVertex(0)->GetVertex();
Vec3f N = iFace->GetNormal();
// Compute the dot product between V (=_Viewpoint - firstPoint) and N:
Vec3f V;
if (_orthographicProjection) {
V = Vec3f(0.0f, 0.0f, _Viewpoint.z() - firstPoint.z());
}
else {
V = Vec3f(_Viewpoint - firstPoint);
}
N.normalize();
V.normalize();
iFace->setDotP(N * V);
// compute the distance between the face center and the viewpoint:
if (_orthographicProjection) {
iFace->setZ(iFace->center().z() - _Viewpoint.z());
}
else {
Vec3f dist_vec(iFace->center() - _Viewpoint);
iFace->setZ(dist_vec.norm());
}
}
void FEdgeXDetector::computeCurvatures(WXVertex *vertex)
{
// TODO: for some reason, the 'vertex' may have no associated edges
// (i.e., WVertex::_EdgeList is empty), which causes a crash due to
// a subsequent call of WVertex::_EdgeList.front().
if (vertex->GetEdges().empty()) {
if (G.debug & G_DEBUG_FREESTYLE) {
printf("Warning: WVertex %d has no associated edges.\n", vertex->GetId());
}
return;
}
// CURVATURE LAYER
// store all the curvature data for each vertex
// soc unused - real K1, K2
real cos2theta, sin2theta;
Vec3r e1, n, v;
// one vertex curvature info :
CurvatureInfo *C;
float radius = _sphereRadius * _meanEdgeSize;
// view independent stuff
if (_computeViewIndependent) {
C = new CurvatureInfo();
vertex->setCurvatures(C);
OGF::NormalCycle ncycle;
ncycle.begin();
if (radius > 0) {
OGF::compute_curvature_tensor(vertex, radius, ncycle);
}
else {
OGF::compute_curvature_tensor_one_ring(vertex, ncycle);
}
ncycle.end();
C->K1 = ncycle.kmin();
C->K2 = ncycle.kmax();
C->e1 = ncycle.Kmax(); // ncycle.kmin() * ncycle.Kmax();
C->e2 = ncycle.Kmin(); // ncycle.kmax() * ncycle.Kmin();
real absK1 = fabs(C->K1);
_meanK1 += absK1;
if (absK1 > _maxK1) {
_maxK1 = absK1;
}
if (absK1 < _minK1) {
_minK1 = absK1;
}
}
// view dependent
C = vertex->curvatures();
if (C == nullptr) {
return;
}
// compute radial curvature :
n = C->e1 ^ C->e2;
if (_orthographicProjection) {
v = Vec3r(0.0, 0.0, _Viewpoint.z() - vertex->GetVertex().z());
}
else {
v = Vec3r(_Viewpoint - vertex->GetVertex());
}
C->er = v - (v * n) * n;
C->er.normalize();
e1 = C->e1;
e1.normalize();
cos2theta = C->er * e1;
cos2theta *= cos2theta;
sin2theta = 1 - cos2theta;
C->Kr = C->K1 * cos2theta + C->K2 * sin2theta;
real absKr = fabs(C->Kr);
_meanKr += absKr;
if (absKr > _maxKr) {
_maxKr = absKr;
}
if (absKr < _minKr) {
_minKr = absKr;
}
++_nPoints;
}
// SILHOUETTE
/////////////
void FEdgeXDetector::processSilhouetteShape(WXShape *iWShape)
{
// Make a first pass on every polygons in order to compute all their silhouette relative values:
vector<WFace *> &wfaces = iWShape->GetFaceList();
vector<WFace *>::iterator f, fend;
for (f = wfaces.begin(), fend = wfaces.end(); f != fend; ++f) {
ProcessSilhouetteFace((WXFace *)(*f));
}
// Make a pass on the edges to detect the silhouette edges that are not smooth
vector<WEdge *>::iterator we, weend;
vector<WEdge *> &wedges = iWShape->getEdgeList();
for (we = wedges.begin(), weend = wedges.end(); we != weend; ++we) {
ProcessSilhouetteEdge((WXEdge *)(*we));
}
}
void FEdgeXDetector::ProcessSilhouetteFace(WXFace *iFace)
{
// SILHOUETTE LAYER
Vec3f normal;
// Compute the dot products between View direction and N at each vertex of the face:
Vec3f point;
int closestPointId = 0;
float dist, minDist = FLT_MAX;
int numVertices = iFace->numberOfVertices();
WXFaceLayer *faceLayer = new WXFaceLayer(iFace, Nature::SILHOUETTE, true);
for (int i = 0; i < numVertices; i++) {
point = iFace->GetVertex(i)->GetVertex();
normal = iFace->GetVertexNormal(i);
normal.normalize();
Vec3f V;
if (_orthographicProjection) {
V = Vec3f(0.0f, 0.0f, _Viewpoint.z() - point.z());
}
else {
V = Vec3f(_Viewpoint - point);
}
V.normalize();
float d = normal * V;
faceLayer->PushDotP(d);
// Find the point the closest to the viewpoint
if (_orthographicProjection) {
dist = point.z() - _Viewpoint.z();
}
else {
Vec3f dist_vec(point - _Viewpoint);
dist = dist_vec.norm();
}
if (dist < minDist) {
minDist = dist;
closestPointId = i;
}
}
// Set the closest point id:
faceLayer->setClosestPointIndex(closestPointId);
// Add this layer to the face:
iFace->AddSmoothLayer(faceLayer);
}
void FEdgeXDetector::ProcessSilhouetteEdge(WXEdge *iEdge)
{
if (iEdge->nature() & Nature::BORDER) {
return;
}
// SILHOUETTE ?
//-------------
WXFace *fA = (WXFace *)iEdge->GetaOEdge()->GetaFace();
WXFace *fB = (WXFace *)iEdge->GetaOEdge()->GetbFace();
if (fA->front() ^
fB->front()) { // fA->visible XOR fB->visible (true if one is 0 and the other is 1)
// The only edges we want to set as silhouette edges in this way are the ones with 2 different
// normals for 1 vertex for these two faces
//--------------------
// In reality we only test the normals for 1 of the 2 vertices.
if (fA->GetVertexNormal(iEdge->GetaVertex()) == fB->GetVertexNormal(iEdge->GetaVertex())) {
return;
}
iEdge->AddNature(Nature::SILHOUETTE);
if (fB->front()) {
iEdge->setOrder(1);
}
else {
iEdge->setOrder(-1);
}
}
}
// BORDER
/////////
void FEdgeXDetector::processBorderShape(WXShape *iWShape)
{
if (!_computeViewIndependent) {
return;
}
// Make a pass on the edges to detect the BORDER
vector<WEdge *>::iterator we, weend;
vector<WEdge *> &wedges = iWShape->getEdgeList();
for (we = wedges.begin(), weend = wedges.end(); we != weend; ++we) {
ProcessBorderEdge((WXEdge *)(*we));
}
}
void FEdgeXDetector::ProcessBorderEdge(WXEdge *iEdge)
{
// first check whether it is a border edge: BORDER ?
//---------
if (iEdge->GetaFace() == nullptr) {
// it is a border edge
iEdge->AddNature(Nature::BORDER);
}
}
// CREASE
/////////
void FEdgeXDetector::processCreaseShape(WXShape *iWShape)
{
if (!_computeViewIndependent) {
return;
}
// Make a pass on the edges to detect the CREASE
vector<WEdge *>::iterator we, weend;
vector<WEdge *> &wedges = iWShape->getEdgeList();
for (we = wedges.begin(), weend = wedges.end(); we != weend; ++we) {
ProcessCreaseEdge((WXEdge *)(*we));
}
}
void FEdgeXDetector::ProcessCreaseEdge(WXEdge *iEdge)
{
// CREASE ?
//---------
if (iEdge->nature() & Nature::BORDER) {
return;
}
WXFace *fA = (WXFace *)iEdge->GetaOEdge()->GetaFace();
WXFace *fB = (WXFace *)iEdge->GetaOEdge()->GetbFace();
WVertex *aVertex = iEdge->GetaVertex();
if ((fA->GetVertexNormal(aVertex) * fB->GetVertexNormal(aVertex)) <= _creaseAngle) {
iEdge->AddNature(Nature::CREASE);
}
}
// RIDGES AND VALLEYS
/////////////////////
void FEdgeXDetector::processRidgesAndValleysShape(WXShape *iWShape)
{
// Don't forget to add the built layer to the face at the end of the ProcessFace:
// iFace->AddSmoothLayer(faceLayer);
if (!_computeViewIndependent) {
return;
}
// Here the curvatures must already have been computed
vector<WFace *> &wfaces = iWShape->GetFaceList();
vector<WFace *>::iterator f, fend;
for (f = wfaces.begin(), fend = wfaces.end(); f != fend; ++f) {
ProcessRidgeFace((WXFace *)(*f));
}
}
// RIDGES
/////////
void FEdgeXDetector::ProcessRidgeFace(WXFace *iFace)
{
WXFaceLayer *flayer = new WXFaceLayer(iFace, Nature::RIDGE | Nature::VALLEY, false);
iFace->AddSmoothLayer(flayer);
uint numVertices = iFace->numberOfVertices();
for (uint i = 0; i < numVertices; ++i) {
WVertex *wv = iFace->GetVertex(i);
WXVertex *wxv = dynamic_cast<WXVertex *>(wv);
flayer->PushDotP(wxv->curvatures()->K1);
}
#if 0 // XXX fabs(flayer->dotP(i)) < threshold cannot be true
real threshold = 0;
//real threshold = _maxK1 - (_maxK1 - _meanK1) / 20.0;
if (flayer->nPosDotP() != numVertices) {
if ((fabs(flayer->dotP(0)) < threshold) && (fabs(flayer->dotP(1)) < threshold) &&
(fabs(flayer->dotP(2)) < threshold)) {
flayer->ReplaceDotP(0, 0);
flayer->ReplaceDotP(1, 0);
flayer->ReplaceDotP(2, 0);
}
}
#endif
}
#if 0
void FEdgeXDetector::ProcessRidgeFace(WXFace *iFace)
{
// RIDGE LAYER
// Compute the RidgeFunction, that is the derivative of the ppal curvature along e1 at each vertex of the face
WVertex *v;
Vec3r v1v2;
real t;
vector<WXFaceLayer *> SmoothLayers;
WXFaceLayer *faceLayer;
Face_Curvature_Info *layer_info;
real K1_a(0), K1_b(0);
Vec3r Inter_a, Inter_b;
// find the ridge layer of the face
iFace->retrieveSmoothLayers(Nature::RIDGE, SmoothLayers);
if (SmoothLayers.size() != 1) {
return;
}
faceLayer = SmoothLayers[0];
// retrieve the curvature info of this layer
layer_info = (Face_Curvature_Info *)faceLayer->userdata;
int numVertices = iFace->numberOfVertices();
for (int i = 0; i < numVertices; i++) {
v = iFace->GetVertex(i);
// vec_curvature_info[i] contains the curvature info of this vertex
Vec3r e2 = layer_info->vec_curvature_info[i]->K2 * layer_info->vec_curvature_info[i]->e2;
Vec3r e1 = layer_info->vec_curvature_info[i]->K1 * layer_info->vec_curvature_info[i]->e1;
e2.normalize();
WVertex::face_iterator fit = v->faces_begin();
WVertex::face_iterator fitend = v->faces_end();
for (; fit != fitend; ++fit) {
WXFace *wxf = dynamic_cast<WXFace *>(*fit);
WOEdge *oppositeEdge;
if (!(wxf->getOppositeEdge(v, oppositeEdge))) {
continue;
}
v1v2 = oppositeEdge->GetbVertex()->GetVertex() - oppositeEdge->GetaVertex()->GetVertex();
GeomUtils::intersection_test res;
res = GeomUtils::intersectRayPlane(
oppositeEdge->GetaVertex()->GetVertex(), v1v2, e2, -(v->GetVertex() * e2), t, 1.0e-06);
if ((res == GeomUtils::DO_INTERSECT) && (t >= 0.0) && (t <= 1.0)) {
vector<WXFaceLayer *> second_ridge_layer;
wxf->retrieveSmoothLayers(Nature::RIDGE, second_ridge_layer);
if (second_ridge_layer.size() != 1) {
continue;
}
Face_Curvature_Info *second_layer_info =
(Face_Curvature_Info *)second_ridge_layer[0]->userdata;
unsigned index1 = wxf->GetIndex(oppositeEdge->GetaVertex());
unsigned index2 = wxf->GetIndex(oppositeEdge->GetbVertex());
real K1_1 = second_layer_info->vec_curvature_info[index1]->K1;
real K1_2 = second_layer_info->vec_curvature_info[index2]->K1;
real K1 = (1.0 - t) * K1_1 + t * K1_2;
Vec3r inter((1.0 - t) * oppositeEdge->GetaVertex()->GetVertex() +
t * oppositeEdge->GetbVertex()->GetVertex());
Vec3r vtmp(inter - v->GetVertex());
// is it K1_a or K1_b ?
if (vtmp * e1 > 0) {
K1_b = K1;
Inter_b = inter;
}
else {
K1_a = K1;
Inter_a = inter;
}
}
}
// Once we have K1 along the ppal direction compute the derivative : K1b - K1a put it in DotP
//real d = fabs(K1_b) - fabs(K1_a);
real d = 0;
real threshold = _meanK1 + (_maxK1 - _meanK1) / 7.0;
//real threshold = _meanK1;
//if ((fabs(K1_b) > threshold) || ((fabs(K1_a) > threshold)))
d = (K1_b) - (K1_a) / (Inter_b - Inter_a).norm();
faceLayer->PushDotP(d);
//faceLayer->PushDotP(layer_info->vec_curvature_info[i]->K1);
}
// Make the values relevant by checking whether all principal directions have the "same" direction:
Vec3r e0((layer_info->vec_curvature_info[0]->K1 * layer_info->vec_curvature_info[0]->e1));
e0.normalize();
Vec3r e1((layer_info->vec_curvature_info[1]->K1 * layer_info->vec_curvature_info[1]->e1));
e1.normalize();
Vec3r e2((layer_info->vec_curvature_info[2]->K1 * layer_info->vec_curvature_info[2]->e1));
e2.normalize();
if (e0 * e1 < 0) {
// invert dotP[1]
faceLayer->ReplaceDotP(1, -faceLayer->dotP(1));
}
if (e0 * e2 < 0) {
// invert dotP[2]
faceLayer->ReplaceDotP(2, -faceLayer->dotP(2));
}
# if 0 // remove the weakest values;
real minDiff = (_maxK1 - _minK1) / 10.0;
real minDiff = _meanK1;
if ((faceLayer->dotP(0) < minDiff) && (faceLayer->dotP(1) < minDiff) && (faceLayer->dotP(2) < minDiff)) {
faceLayer->ReplaceDotP(0, 0);
faceLayer->ReplaceDotP(1, 0);
faceLayer->ReplaceDotP(2, 0);
}
# endif
}
#endif
// SUGGESTIVE CONTOURS
//////////////////////
void FEdgeXDetector::processSuggestiveContourShape(WXShape *iWShape)
{
// Here the curvatures must already have been computed
vector<WFace *> &wfaces = iWShape->GetFaceList();
vector<WFace *>::iterator f, fend;
for (f = wfaces.begin(), fend = wfaces.end(); f != fend; ++f) {
ProcessSuggestiveContourFace((WXFace *)(*f));
}
}
void FEdgeXDetector::ProcessSuggestiveContourFace(WXFace *iFace)
{
WXFaceLayer *faceLayer = new WXFaceLayer(iFace, Nature::SUGGESTIVE_CONTOUR, true);
iFace->AddSmoothLayer(faceLayer);
uint numVertices = iFace->numberOfVertices();
for (uint i = 0; i < numVertices; ++i) {
WVertex *wv = iFace->GetVertex(i);
WXVertex *wxv = dynamic_cast<WXVertex *>(wv);
faceLayer->PushDotP(wxv->curvatures()->Kr);
}
#if 0 // FIXME: find a more clever way to compute the threshold
real threshold = _meanKr;
if (faceLayer->nPosDotP() != numVertices) {
if ((fabs(faceLayer->dotP(0)) < threshold) && (fabs(faceLayer->dotP(1)) < threshold) &&
(fabs(faceLayer->dotP(2)) < threshold)) {
faceLayer->ReplaceDotP(0, 0);
faceLayer->ReplaceDotP(1, 0);
faceLayer->ReplaceDotP(2, 0);
}
}
#endif
}
void FEdgeXDetector::postProcessSuggestiveContourShape(WXShape *iShape)
{
vector<WFace *> &wfaces = iShape->GetFaceList();
vector<WFace *>::iterator f, fend;
for (f = wfaces.begin(), fend = wfaces.end(); f != fend; ++f) {
postProcessSuggestiveContourFace((WXFace *)(*f));
}
}
void FEdgeXDetector::postProcessSuggestiveContourFace(WXFace *iFace)
{
// Compute the derivative of the radial curvature in the radial direction, at the two extremities
// of the smooth edge.
// If the derivative is smaller than a given threshold _kr_derivative_epsilon, discard the edge.
// Find the suggestive contour layer of the face (zero or one edge).
vector<WXFaceLayer *> sc_layers;
iFace->retrieveSmoothEdgesLayers(Nature::SUGGESTIVE_CONTOUR, sc_layers);
if (sc_layers.empty()) {
return;
}
WXFaceLayer *sc_layer;
sc_layer = sc_layers[0];
// Compute the derivative value at each vertex of the face, and add it in a vector.
vector<real> kr_derivatives;
uint vertices_nb = iFace->numberOfVertices();
WXVertex *v, *opposite_vertex_a, *opposite_vertex_b;
WXFace *wxf;
WOEdge *opposite_edge;
Vec3r normal_vec, radial_normal_vec, er_vec, v_vec, inter, inter1, inter2, tmp_vec;
GeomUtils::intersection_test res;
real kr(0), kr1(0), kr2(0), t;
for (uint i = 0; i < vertices_nb; ++i) {
v = (WXVertex *)iFace->GetVertex(i);
// v is a singular vertex, skip it.
if (v->isBoundary()) {
kr_derivatives.push_back(0);
continue;
}
v_vec = v->GetVertex();
er_vec = v->curvatures()->er;
// For each vertex, iterate on its adjacent faces.
for (WVertex::face_iterator fit = v->faces_begin(), fitend = v->faces_end(); fit != fitend;
++fit) {
wxf = dynamic_cast<WXFace *>(*fit);
if (!wxf->getOppositeEdge(v, opposite_edge)) {
continue;
}
opposite_vertex_a = (WXVertex *)opposite_edge->GetaVertex();
opposite_vertex_b = (WXVertex *)opposite_edge->GetbVertex();
normal_vec = wxf->GetVertexNormal(v); // FIXME: what about e1 ^ e2 ?
radial_normal_vec = er_vec ^ normal_vec;
// Test whether the radial plan intersects with the edge at the opposite of v.
res = GeomUtils::intersectRayPlane(opposite_vertex_a->GetVertex(),
opposite_edge->GetVec(),
radial_normal_vec,
-(v_vec * radial_normal_vec),
t,
1.0e-06);
// If there is an intersection, compute the value of the derivative ath that point.
if ((res == GeomUtils::DO_INTERSECT) && (t >= 0) && (t <= 1)) {
kr = t * opposite_vertex_a->curvatures()->Kr +
(1 - t) * opposite_vertex_b->curvatures()->Kr;
inter = opposite_vertex_a->GetVertex() + t * opposite_edge->GetVec();
tmp_vec = inter - v->GetVertex();
// Is it kr1 or kr2?
if (tmp_vec * er_vec > 0) {
kr2 = kr;
inter2 = inter;
}
else {
kr1 = kr;
inter1 = inter;
}
}
}
// Now we have kr1 and kr2 along the radial direction, for one vertex of iFace.
// We have to compute the derivative of kr for that vertex, equal to:
// (kr2 - kr1) / dist(inter1, inter2).
// Then we add it to the vector of derivatives.
v->curvatures()->dKr = (kr2 - kr1) / (inter2 - inter1).norm();
kr_derivatives.push_back(v->curvatures()->dKr);
}
// At that point, we have the derivatives for each vertex of iFace.
// All we have to do now is to use linear interpolation to compute the values at the extremities
// of the smooth edge.
WXSmoothEdge *sc_edge = sc_layer->getSmoothEdge();
WOEdge *sc_oedge = sc_edge->woea();
t = sc_edge->ta();
if (t * kr_derivatives[iFace->GetIndex(sc_oedge->GetaVertex())] +
(1 - t) * kr_derivatives[iFace->GetIndex(sc_oedge->GetbVertex())] <
_kr_derivative_epsilon) {
sc_layer->removeSmoothEdge();
return;
}
sc_oedge = sc_edge->woeb();
t = sc_edge->tb();
if (t * kr_derivatives[iFace->GetIndex(sc_oedge->GetaVertex())] +
(1 - t) * kr_derivatives[iFace->GetIndex(sc_oedge->GetbVertex())] <
_kr_derivative_epsilon) {
sc_layer->removeSmoothEdge();
}
}
// MATERIAL_BOUNDARY
////////////////////
void FEdgeXDetector::processMaterialBoundaryShape(WXShape *iWShape)
{
if (!_computeViewIndependent) {
return;
}
// Make a pass on the edges to detect material boundaries
vector<WEdge *>::iterator we, weend;
vector<WEdge *> &wedges = iWShape->getEdgeList();
for (we = wedges.begin(), weend = wedges.end(); we != weend; ++we) {
ProcessMaterialBoundaryEdge((WXEdge *)(*we));
}
}
void FEdgeXDetector::ProcessMaterialBoundaryEdge(WXEdge *iEdge)
{
// check whether the edge is a material boundary?
WFace *aFace = iEdge->GetaFace();
WFace *bFace = iEdge->GetbFace();
if (aFace && bFace && aFace->frs_materialIndex() != bFace->frs_materialIndex()) {
iEdge->AddNature(Nature::MATERIAL_BOUNDARY);
}
}
// EDGE MARKS
/////////////
void FEdgeXDetector::processEdgeMarksShape(WXShape *iShape)
{
// Make a pass on the edges to detect material boundaries
vector<WEdge *>::iterator we, weend;
vector<WEdge *> &wedges = iShape->getEdgeList();
for (we = wedges.begin(), weend = wedges.end(); we != weend; ++we) {
ProcessEdgeMarks((WXEdge *)(*we));
}
}
void FEdgeXDetector::ProcessEdgeMarks(WXEdge *iEdge)
{
if (iEdge->GetMark()) {
iEdge->AddNature(Nature::EDGE_MARK);
}
}
// Build Smooth edges
/////////////////////
void FEdgeXDetector::buildSmoothEdges(WXShape *iShape)
{
bool hasSmoothEdges = false;
// Make a last pass to build smooth edges from the previous stored values:
//--------------------------------------------------------------------------
vector<WFace *> &wfaces = iShape->GetFaceList();
for (vector<WFace *>::iterator f = wfaces.begin(), fend = wfaces.end(); f != fend; ++f) {
vector<WXFaceLayer *> &faceLayers = ((WXFace *)(*f))->getSmoothLayers();
for (vector<WXFaceLayer *>::iterator wxfl = faceLayers.begin(), wxflend = faceLayers.end();
wxfl != wxflend;
++wxfl) {
if ((*wxfl)->BuildSmoothEdge()) {
hasSmoothEdges = true;
}
}
}
if (hasSmoothEdges && !_computeRidgesAndValleys && !_computeSuggestiveContours) {
vector<WVertex *> &wvertices = iShape->getVertexList();
for (vector<WVertex *>::iterator wv = wvertices.begin(), wvend = wvertices.end(); wv != wvend;
++wv) {
// Compute curvatures
WXVertex *wxv = dynamic_cast<WXVertex *>(*wv);
computeCurvatures(wxv);
}
_meanK1 /= (real)(_nPoints);
_meanKr /= (real)(_nPoints);
}
}
} /* namespace Freestyle */