also added access to this in python's mathutils.Matrix() loc, quat, scale = matrix.decompose()
		
			
				
	
	
		
			1987 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1987 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * $Id$
 | |
|  *
 | |
|  * ***** BEGIN GPL LICENSE BLOCK *****
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | |
|  *
 | |
|  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Contributor(s): Michel Selten & Joseph Gilbert
 | |
|  *
 | |
|  * ***** END GPL LICENSE BLOCK *****
 | |
|  */
 | |
| 
 | |
| #include "mathutils.h"
 | |
| 
 | |
| #include "BKE_utildefines.h"
 | |
| #include "BLI_math.h"
 | |
| #include "BLI_blenlib.h"
 | |
| 
 | |
| static PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec); /* utility func */
 | |
| 
 | |
| 
 | |
| /* matrix vector callbacks */
 | |
| int mathutils_matrix_vector_cb_index= -1;
 | |
| 
 | |
| static int mathutils_matrix_vector_check(BaseMathObject *bmo)
 | |
| {
 | |
| 	MatrixObject *self= (MatrixObject *)bmo->cb_user;
 | |
| 	return BaseMath_ReadCallback(self);
 | |
| }
 | |
| 
 | |
| static int mathutils_matrix_vector_get(BaseMathObject *bmo, int subtype)
 | |
| {
 | |
| 	MatrixObject *self= (MatrixObject *)bmo->cb_user;
 | |
| 	int i;
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return 0;
 | |
| 
 | |
| 	for(i=0; i < self->colSize; i++)
 | |
| 		bmo->data[i]= self->matrix[subtype][i];
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int mathutils_matrix_vector_set(BaseMathObject *bmo, int subtype)
 | |
| {
 | |
| 	MatrixObject *self= (MatrixObject *)bmo->cb_user;
 | |
| 	int i;
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return 0;
 | |
| 
 | |
| 	for(i=0; i < self->colSize; i++)
 | |
| 		self->matrix[subtype][i]= bmo->data[i];
 | |
| 
 | |
| 	(void)BaseMath_WriteCallback(self);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int mathutils_matrix_vector_get_index(BaseMathObject *bmo, int subtype, int index)
 | |
| {
 | |
| 	MatrixObject *self= (MatrixObject *)bmo->cb_user;
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return 0;
 | |
| 
 | |
| 	bmo->data[index]= self->matrix[subtype][index];
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int mathutils_matrix_vector_set_index(BaseMathObject *bmo, int subtype, int index)
 | |
| {
 | |
| 	MatrixObject *self= (MatrixObject *)bmo->cb_user;
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return 0;
 | |
| 
 | |
| 	self->matrix[subtype][index]= bmo->data[index];
 | |
| 
 | |
| 	(void)BaseMath_WriteCallback(self);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| Mathutils_Callback mathutils_matrix_vector_cb = {
 | |
| 	mathutils_matrix_vector_check,
 | |
| 	mathutils_matrix_vector_get,
 | |
| 	mathutils_matrix_vector_set,
 | |
| 	mathutils_matrix_vector_get_index,
 | |
| 	mathutils_matrix_vector_set_index
 | |
| };
 | |
| /* matrix vector callbacks, this is so you can do matrix[i][j] = val  */
 | |
| 
 | |
| //----------------------------------mathutils.Matrix() -----------------
 | |
| //mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
 | |
| //create a new matrix type
 | |
| static PyObject *Matrix_new(PyTypeObject *UNUSED(type), PyObject *args, PyObject *kwds)
 | |
| {
 | |
| 	PyObject *argObject, *m, *s;
 | |
| 	MatrixObject *mat;
 | |
| 	int argSize, seqSize = 0, i, j;
 | |
| 	float matrix[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 	float scalar;
 | |
| 
 | |
| 	if(kwds && PyDict_Size(kwds)) {
 | |
| 		PyErr_SetString(PyExc_TypeError, "mathutils.Matrix(): takes no keyword args");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	argSize = PyTuple_GET_SIZE(args);
 | |
| 	if(argSize > MATRIX_MAX_DIM) {	//bad arg nums
 | |
| 		PyErr_SetString(PyExc_AttributeError, "mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
 | |
| 		return NULL;
 | |
| 	} else if (argSize == 0) { //return empty 4D matrix
 | |
| 		return (PyObject *) newMatrixObject(NULL, 4, 4, Py_NEW, NULL);
 | |
| 	}else if (argSize == 1){
 | |
| 		//copy constructor for matrix objects
 | |
| 		argObject = PyTuple_GET_ITEM(args, 0);
 | |
| 		if(MatrixObject_Check(argObject)){
 | |
| 			mat = (MatrixObject*)argObject;
 | |
| 			if(!BaseMath_ReadCallback(mat))
 | |
| 				return NULL;
 | |
| 
 | |
| 			memcpy(matrix, mat->contigPtr, sizeof(float) * mat->rowSize * mat->colSize);
 | |
| 			argSize = mat->rowSize;
 | |
| 			seqSize = mat->colSize;
 | |
| 		}
 | |
| 	}else{ //2-4 arguments (all seqs? all same size?)
 | |
| 		for(i =0; i < argSize; i++){
 | |
| 			argObject = PyTuple_GET_ITEM(args, i);
 | |
| 			if (PySequence_Check(argObject)) { //seq?
 | |
| 				if(seqSize){ //0 at first
 | |
| 					if(PySequence_Length(argObject) != seqSize){ //seq size not same
 | |
| 						PyErr_SetString(PyExc_AttributeError, "mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
 | |
| 						return NULL;
 | |
| 					}
 | |
| 				}
 | |
| 				seqSize = PySequence_Length(argObject);
 | |
| 			}else{ //arg not a sequence
 | |
| 				PyErr_SetString(PyExc_TypeError, "mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
 | |
| 				return NULL;
 | |
| 			}
 | |
| 		}
 | |
| 		//all is well... let's continue parsing
 | |
| 		for (i = 0; i < argSize; i++){
 | |
| 			m = PyTuple_GET_ITEM(args, i);
 | |
| 			if (m == NULL) { // Failed to read sequence
 | |
| 				PyErr_SetString(PyExc_RuntimeError, "mathutils.Matrix(): failed to parse arguments...\n");
 | |
| 				return NULL;
 | |
| 			}
 | |
| 
 | |
| 			for (j = 0; j < seqSize; j++) {
 | |
| 				s = PySequence_GetItem(m, j);
 | |
| 				if (s == NULL) { // Failed to read sequence
 | |
| 					PyErr_SetString(PyExc_RuntimeError, "mathutils.Matrix(): failed to parse arguments...\n");
 | |
| 					return NULL;
 | |
| 				}
 | |
| 				
 | |
| 				scalar= (float)PyFloat_AsDouble(s);
 | |
| 				Py_DECREF(s);
 | |
| 				
 | |
| 				if(scalar==-1 && PyErr_Occurred()) { // parsed item is not a number
 | |
| 					PyErr_SetString(PyExc_AttributeError, "mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
 | |
| 					return NULL;
 | |
| 				}
 | |
| 
 | |
| 				matrix[(seqSize*i)+j]= scalar;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return newMatrixObject(matrix, argSize, seqSize, Py_NEW, NULL);
 | |
| }
 | |
| 
 | |
| /*-----------------------CLASS-METHODS----------------------------*/
 | |
| 
 | |
| //----------------------------------mathutils.RotationMatrix() ----------
 | |
| //mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
 | |
| static char C_Matrix_Rotation_doc[] =
 | |
| ".. classmethod:: Rotation(angle, size, axis)\n"
 | |
| "\n"
 | |
| "   Create a matrix representing a rotation.\n"
 | |
| "\n"
 | |
| "   :arg angle: The angle of rotation desired, in radians.\n"
 | |
| "   :type angle: float\n"
 | |
| "   :arg size: The size of the rotation matrix to construct [2, 4].\n"
 | |
| "   :type size: int\n"
 | |
| "   :arg axis: a string in ['X', 'Y', 'Z'] or a 3D Vector Object (optional when size is 2).\n"
 | |
| "   :type axis: string or :class:`Vector`\n"
 | |
| "   :return: A new rotation matrix.\n"
 | |
| "   :rtype: :class:`Matrix`\n";
 | |
| 
 | |
| static PyObject *C_Matrix_Rotation(PyObject *cls, PyObject *args)
 | |
| {
 | |
| 	VectorObject *vec= NULL;
 | |
| 	char *axis= NULL;
 | |
| 	int matSize;
 | |
| 	float angle = 0.0f;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "fi|O", &angle, &matSize, &vec)) {
 | |
| 		PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(angle, size, axis): expected float int and a string or vector\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(vec && !VectorObject_Check(vec)) {
 | |
| 		axis= _PyUnicode_AsString((PyObject *)vec);
 | |
| 		if(axis==NULL || axis[0]=='\0' || axis[1]!='\0' || axis[0] < 'X' || axis[0] > 'Z') {
 | |
| 			PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(): 3rd argument axis value must be a 3D vector or a string in 'X', 'Y', 'Z'\n");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		else {
 | |
| 			/* use the string */
 | |
| 			vec= NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	while (angle<-(Py_PI*2))
 | |
| 		angle+=(Py_PI*2);
 | |
| 	while (angle>(Py_PI*2))
 | |
| 		angle-=(Py_PI*2);
 | |
| 	
 | |
| 	if(matSize != 2 && matSize != 3 && matSize != 4) {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(matSize == 2 && (vec != NULL)) {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if((matSize == 3 || matSize == 4) && (axis == NULL) && (vec == NULL)) {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): please choose an axis of rotation for 3d and 4d matrices\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(vec) {
 | |
| 		if(vec->size != 3) {
 | |
| 			PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): the vector axis must be a 3D vector\n");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		
 | |
| 		if(!BaseMath_ReadCallback(vec))
 | |
| 			return NULL;
 | |
| 		
 | |
| 	}
 | |
| 
 | |
| 	/* check for valid vector/axis above */
 | |
| 	if(vec) {
 | |
| 		axis_angle_to_mat3( (float (*)[3])mat,vec->vec, angle);
 | |
| 	}
 | |
| 	else if(matSize == 2) {
 | |
| 		//2D rotation matrix
 | |
| 		mat[0] = (float) cos (angle);
 | |
| 		mat[1] = (float) sin (angle);
 | |
| 		mat[2] = -((float) sin(angle));
 | |
| 		mat[3] = (float) cos(angle);
 | |
| 	} else if(strcmp(axis, "X") == 0) {
 | |
| 		//rotation around X
 | |
| 		mat[0] = 1.0f;
 | |
| 		mat[4] = (float) cos(angle);
 | |
| 		mat[5] = (float) sin(angle);
 | |
| 		mat[7] = -((float) sin(angle));
 | |
| 		mat[8] = (float) cos(angle);
 | |
| 	} else if(strcmp(axis, "Y") == 0) {
 | |
| 		//rotation around Y
 | |
| 		mat[0] = (float) cos(angle);
 | |
| 		mat[2] = -((float) sin(angle));
 | |
| 		mat[4] = 1.0f;
 | |
| 		mat[6] = (float) sin(angle);
 | |
| 		mat[8] = (float) cos(angle);
 | |
| 	} else if(strcmp(axis, "Z") == 0) {
 | |
| 		//rotation around Z
 | |
| 		mat[0] = (float) cos(angle);
 | |
| 		mat[1] = (float) sin(angle);
 | |
| 		mat[3] = -((float) sin(angle));
 | |
| 		mat[4] = (float) cos(angle);
 | |
| 		mat[8] = 1.0f;
 | |
| 	}
 | |
| 	else {
 | |
| 		/* should never get here */
 | |
| 		PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): unknown error\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(matSize == 4) {
 | |
| 		//resize matrix
 | |
| 		mat[10] = mat[8];
 | |
| 		mat[9] = mat[7];
 | |
| 		mat[8] = mat[6];
 | |
| 		mat[7] = 0.0f;
 | |
| 		mat[6] = mat[5];
 | |
| 		mat[5] = mat[4];
 | |
| 		mat[4] = mat[3];
 | |
| 		mat[3] = 0.0f;
 | |
| 	}
 | |
| 	//pass to matrix creation
 | |
| 	return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
 | |
| }
 | |
| 
 | |
| 
 | |
| static char C_Matrix_Translation_doc[] =
 | |
| ".. classmethod:: Translation(vector)\n"
 | |
| "\n"
 | |
| "   Create a matrix representing a translation.\n"
 | |
| "\n"
 | |
| "   :arg vector: The translation vector.\n"
 | |
| "   :type vector: :class:`Vector`\n"
 | |
| "   :return: An identity matrix with a translation.\n"
 | |
| "   :rtype: :class:`Matrix`\n";
 | |
| 
 | |
| static PyObject *C_Matrix_Translation(PyObject *cls, VectorObject * vec)
 | |
| {
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 	
 | |
| 	if(!VectorObject_Check(vec)) {
 | |
| 		PyErr_SetString(PyExc_TypeError, "mathutils.TranslationMatrix(): expected vector\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(vec->size != 3 && vec->size != 4) {
 | |
| 		PyErr_SetString(PyExc_TypeError, "mathutils.TranslationMatrix(): vector must be 3D or 4D\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(vec))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	//create a identity matrix and add translation
 | |
| 	unit_m4((float(*)[4]) mat);
 | |
| 	mat[12] = vec->vec[0];
 | |
| 	mat[13] = vec->vec[1];
 | |
| 	mat[14] = vec->vec[2];
 | |
| 
 | |
| 	return newMatrixObject(mat, 4, 4, Py_NEW, (PyTypeObject *)cls);
 | |
| }
 | |
| //----------------------------------mathutils.ScaleMatrix() -------------
 | |
| //mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
 | |
| static char C_Matrix_Scale_doc[] =
 | |
| ".. classmethod:: Scale(factor, size, axis)\n"
 | |
| "\n"
 | |
| "   Create a matrix representing a scaling.\n"
 | |
| "\n"
 | |
| "   :arg factor: The factor of scaling to apply.\n"
 | |
| "   :type factor: float\n"
 | |
| "   :arg size: The size of the scale matrix to construct [2, 4].\n"
 | |
| "   :type size: int\n"
 | |
| "   :arg axis: Direction to influence scale. (optional).\n"
 | |
| "   :type axis: :class:`Vector`\n"
 | |
| "   :return: A new scale matrix.\n"
 | |
| "   :rtype: :class:`Matrix`\n";
 | |
| 
 | |
| static PyObject *C_Matrix_Scale(PyObject *cls, PyObject *args)
 | |
| {
 | |
| 	VectorObject *vec = NULL;
 | |
| 	float norm = 0.0f, factor;
 | |
| 	int matSize, x;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "fi|O!", &factor, &matSize, &vector_Type, &vec)) {
 | |
| 		PyErr_SetString(PyExc_TypeError, "mathutils.ScaleMatrix(): expected float int and optional vector\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(matSize != 2 && matSize != 3 && matSize != 4) {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "mathutils.ScaleMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(vec) {
 | |
| 		if(vec->size > 2 && matSize == 2) {
 | |
| 			PyErr_SetString(PyExc_AttributeError, "mathutils.ScaleMatrix(): please use 2D vectors when scaling in 2D\n");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		
 | |
| 		if(!BaseMath_ReadCallback(vec))
 | |
| 			return NULL;
 | |
| 		
 | |
| 	}
 | |
| 	if(vec == NULL) {	//scaling along axis
 | |
| 		if(matSize == 2) {
 | |
| 			mat[0] = factor;
 | |
| 			mat[3] = factor;
 | |
| 		} else {
 | |
| 			mat[0] = factor;
 | |
| 			mat[4] = factor;
 | |
| 			mat[8] = factor;
 | |
| 		}
 | |
| 	} else { //scaling in arbitrary direction
 | |
| 		//normalize arbitrary axis
 | |
| 		for(x = 0; x < vec->size; x++) {
 | |
| 			norm += vec->vec[x] * vec->vec[x];
 | |
| 		}
 | |
| 		norm = (float) sqrt(norm);
 | |
| 		for(x = 0; x < vec->size; x++) {
 | |
| 			vec->vec[x] /= norm;
 | |
| 		}
 | |
| 		if(matSize == 2) {
 | |
| 			mat[0] = 1 +((factor - 1) *(vec->vec[0] * vec->vec[0]));
 | |
| 			mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
 | |
| 			mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
 | |
| 			mat[3] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
 | |
| 		} else {
 | |
| 			mat[0] = 1 + ((factor - 1) *(vec->vec[0] * vec->vec[0]));
 | |
| 			mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
 | |
| 			mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
 | |
| 			mat[3] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
 | |
| 			mat[4] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
 | |
| 			mat[5] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
 | |
| 			mat[6] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
 | |
| 			mat[7] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
 | |
| 			mat[8] = 1 + ((factor - 1) *(vec->vec[2] * vec->vec[2]));
 | |
| 		}
 | |
| 	}
 | |
| 	if(matSize == 4) {
 | |
| 		//resize matrix
 | |
| 		mat[10] = mat[8];
 | |
| 		mat[9] = mat[7];
 | |
| 		mat[8] = mat[6];
 | |
| 		mat[7] = 0.0f;
 | |
| 		mat[6] = mat[5];
 | |
| 		mat[5] = mat[4];
 | |
| 		mat[4] = mat[3];
 | |
| 		mat[3] = 0.0f;
 | |
| 	}
 | |
| 	//pass to matrix creation
 | |
| 	return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
 | |
| }
 | |
| //----------------------------------mathutils.OrthoProjectionMatrix() ---
 | |
| //mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
 | |
| static char C_Matrix_OrthoProjection_doc[] =
 | |
| ".. classmethod:: OrthoProjection(plane, size, axis)\n"
 | |
| "\n"
 | |
| "   Create a matrix to represent an orthographic projection.\n"
 | |
| "\n"
 | |
| "   :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ', 'R'], where a single axis is for a 2D matrix and 'R' requires axis is given.\n"
 | |
| "   :type plane: string\n"
 | |
| "   :arg size: The size of the projection matrix to construct [2, 4].\n"
 | |
| "   :type size: int\n"
 | |
| "   :arg axis: Arbitrary perpendicular plane vector (optional).\n"
 | |
| "   :type axis: :class:`Vector`\n"
 | |
| "   :return: A new projection matrix.\n"
 | |
| "   :rtype: :class:`Matrix`\n";
 | |
| static PyObject *C_Matrix_OrthoProjection(PyObject *cls, PyObject *args)
 | |
| {
 | |
| 	VectorObject *vec = NULL;
 | |
| 	char *plane;
 | |
| 	int matSize, x;
 | |
| 	float norm = 0.0f;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 	
 | |
| 	if(!PyArg_ParseTuple(args, "si|O!", &plane, &matSize, &vector_Type, &vec)) {
 | |
| 		PyErr_SetString(PyExc_TypeError, "mathutils.OrthoProjectionMatrix(): expected string and int and optional vector\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(matSize != 2 && matSize != 3 && matSize != 4) {
 | |
| 		PyErr_SetString(PyExc_AttributeError,"mathutils.OrthoProjectionMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(vec) {
 | |
| 		if(vec->size > 2 && matSize == 2) {
 | |
| 			PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): please use 2D vectors when scaling in 2D\n");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		
 | |
| 		if(!BaseMath_ReadCallback(vec))
 | |
| 			return NULL;
 | |
| 		
 | |
| 	}
 | |
| 	if(vec == NULL) {	//ortho projection onto cardinal plane
 | |
| 		if((strcmp(plane, "X") == 0) && matSize == 2) {
 | |
| 			mat[0] = 1.0f;
 | |
| 		} else if((strcmp(plane, "Y") == 0) && matSize == 2) {
 | |
| 			mat[3] = 1.0f;
 | |
| 		} else if((strcmp(plane, "XY") == 0) && matSize > 2) {
 | |
| 			mat[0] = 1.0f;
 | |
| 			mat[4] = 1.0f;
 | |
| 		} else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
 | |
| 			mat[0] = 1.0f;
 | |
| 			mat[8] = 1.0f;
 | |
| 		} else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
 | |
| 			mat[4] = 1.0f;
 | |
| 			mat[8] = 1.0f;
 | |
| 		} else {
 | |
| 			PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): unknown plane - expected: X, Y, XY, XZ, YZ\n");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	} else { //arbitrary plane
 | |
| 		//normalize arbitrary axis
 | |
| 		for(x = 0; x < vec->size; x++) {
 | |
| 			norm += vec->vec[x] * vec->vec[x];
 | |
| 		}
 | |
| 		norm = (float) sqrt(norm);
 | |
| 		for(x = 0; x < vec->size; x++) {
 | |
| 			vec->vec[x] /= norm;
 | |
| 		}
 | |
| 		if((strcmp(plane, "R") == 0) && matSize == 2) {
 | |
| 			mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
 | |
| 			mat[1] = -(vec->vec[0] * vec->vec[1]);
 | |
| 			mat[2] = -(vec->vec[0] * vec->vec[1]);
 | |
| 			mat[3] = 1 - (vec->vec[1] * vec->vec[1]);
 | |
| 		} else if((strcmp(plane, "R") == 0) && matSize > 2) {
 | |
| 			mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
 | |
| 			mat[1] = -(vec->vec[0] * vec->vec[1]);
 | |
| 			mat[2] = -(vec->vec[0] * vec->vec[2]);
 | |
| 			mat[3] = -(vec->vec[0] * vec->vec[1]);
 | |
| 			mat[4] = 1 - (vec->vec[1] * vec->vec[1]);
 | |
| 			mat[5] = -(vec->vec[1] * vec->vec[2]);
 | |
| 			mat[6] = -(vec->vec[0] * vec->vec[2]);
 | |
| 			mat[7] = -(vec->vec[1] * vec->vec[2]);
 | |
| 			mat[8] = 1 - (vec->vec[2] * vec->vec[2]);
 | |
| 		} else {
 | |
| 			PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): unknown plane - expected: 'r' expected for axis designation\n");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	if(matSize == 4) {
 | |
| 		//resize matrix
 | |
| 		mat[10] = mat[8];
 | |
| 		mat[9] = mat[7];
 | |
| 		mat[8] = mat[6];
 | |
| 		mat[7] = 0.0f;
 | |
| 		mat[6] = mat[5];
 | |
| 		mat[5] = mat[4];
 | |
| 		mat[4] = mat[3];
 | |
| 		mat[3] = 0.0f;
 | |
| 	}
 | |
| 	//pass to matrix creation
 | |
| 	return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
 | |
| }
 | |
| 
 | |
| static char C_Matrix_Shear_doc[] =
 | |
| ".. classmethod:: Shear(plane, factor, size)\n"
 | |
| "\n"
 | |
| "   Create a matrix to represent an shear transformation.\n"
 | |
| "\n"
 | |
| "   :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ'], where a single axis is for a 2D matrix.\n"
 | |
| "   :type plane: string\n"
 | |
| "   :arg factor: The factor of shear to apply.\n"
 | |
| "   :type factor: float\n"
 | |
| "   :arg size: The size of the shear matrix to construct [2, 4].\n"
 | |
| "   :type size: int\n"
 | |
| "   :return: A new shear matrix.\n"
 | |
| "   :rtype: :class:`Matrix`\n";
 | |
| 
 | |
| static PyObject *C_Matrix_Shear(PyObject *cls, PyObject *args)
 | |
| {
 | |
| 	int matSize;
 | |
| 	char *plane;
 | |
| 	float factor;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)) {
 | |
| 		PyErr_SetString(PyExc_TypeError,"mathutils.ShearMatrix(): expected string float and int\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(matSize != 2 && matSize != 3 && matSize != 4) {
 | |
| 		PyErr_SetString(PyExc_AttributeError,"mathutils.ShearMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if((strcmp(plane, "X") == 0)
 | |
| 		&& matSize == 2) {
 | |
| 		mat[0] = 1.0f;
 | |
| 		mat[2] = factor;
 | |
| 		mat[3] = 1.0f;
 | |
| 	} else if((strcmp(plane, "Y") == 0) && matSize == 2) {
 | |
| 		mat[0] = 1.0f;
 | |
| 		mat[1] = factor;
 | |
| 		mat[3] = 1.0f;
 | |
| 	} else if((strcmp(plane, "XY") == 0) && matSize > 2) {
 | |
| 		mat[0] = 1.0f;
 | |
| 		mat[4] = 1.0f;
 | |
| 		mat[6] = factor;
 | |
| 		mat[7] = factor;
 | |
| 	} else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
 | |
| 		mat[0] = 1.0f;
 | |
| 		mat[3] = factor;
 | |
| 		mat[4] = 1.0f;
 | |
| 		mat[5] = factor;
 | |
| 		mat[8] = 1.0f;
 | |
| 	} else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
 | |
| 		mat[0] = 1.0f;
 | |
| 		mat[1] = factor;
 | |
| 		mat[2] = factor;
 | |
| 		mat[4] = 1.0f;
 | |
| 		mat[8] = 1.0f;
 | |
| 	} else {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "mathutils.ShearMatrix(): expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(matSize == 4) {
 | |
| 		//resize matrix
 | |
| 		mat[10] = mat[8];
 | |
| 		mat[9] = mat[7];
 | |
| 		mat[8] = mat[6];
 | |
| 		mat[7] = 0.0f;
 | |
| 		mat[6] = mat[5];
 | |
| 		mat[5] = mat[4];
 | |
| 		mat[4] = mat[3];
 | |
| 		mat[3] = 0.0f;
 | |
| 	}
 | |
| 	//pass to matrix creation
 | |
| 	return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
 | |
| }
 | |
| 
 | |
| /* assumes rowsize == colsize is checked and the read callback has run */
 | |
| static float matrix_determinant(MatrixObject * self)
 | |
| {
 | |
| 	if(self->rowSize == 2) {
 | |
| 		return determinant_m2(self->matrix[0][0], self->matrix[0][1],
 | |
| 					 self->matrix[1][0], self->matrix[1][1]);
 | |
| 	} else if(self->rowSize == 3) {
 | |
| 		return determinant_m3(self->matrix[0][0], self->matrix[0][1],
 | |
| 					 self->matrix[0][2], self->matrix[1][0],
 | |
| 					 self->matrix[1][1], self->matrix[1][2],
 | |
| 					 self->matrix[2][0], self->matrix[2][1],
 | |
| 					 self->matrix[2][2]);
 | |
| 	} else {
 | |
| 		return determinant_m4((float (*)[4])self->contigPtr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*-----------------------------METHODS----------------------------*/
 | |
| static char Matrix_toQuat_doc[] =
 | |
| ".. method:: to_quat()\n"
 | |
| "\n"
 | |
| "   Return a quaternion representation of the rotation matrix.\n"
 | |
| "\n"
 | |
| "   :return: Quaternion representation of the rotation matrix.\n"
 | |
| "   :rtype: :class:`Quaternion`\n";
 | |
| 
 | |
| static PyObject *Matrix_toQuat(MatrixObject * self)
 | |
| {
 | |
| 	float quat[4];
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	/*must be 3-4 cols, 3-4 rows, square matrix*/
 | |
| 	if(self->colSize < 3 || self->rowSize < 3 || (self->colSize != self->rowSize)) {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix.to_quat(): inappropriate matrix size - expects 3x3 or 4x4 matrix");
 | |
| 		return NULL;
 | |
| 	} 
 | |
| 	if(self->colSize == 3){
 | |
| 		mat3_to_quat( quat,(float (*)[3])self->contigPtr);
 | |
| 	}else{
 | |
| 		mat4_to_quat( quat,(float (*)[4])self->contigPtr);
 | |
| 	}
 | |
| 	
 | |
| 	return newQuaternionObject(quat, Py_NEW, NULL);
 | |
| }
 | |
| 
 | |
| /*---------------------------Matrix.toEuler() --------------------*/
 | |
| static char Matrix_toEuler_doc[] =
 | |
| ".. method:: to_euler(order, euler_compat)\n"
 | |
| "\n"
 | |
| "   Return an Euler representation of the rotation matrix (3x3 or 4x4 matrix only).\n"
 | |
| "\n"
 | |
| "   :arg order: Optional rotation order argument in ['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX'].\n"
 | |
| "   :type order: string\n"
 | |
| "   :arg euler_compat: Optional euler argument the new euler will be made compatible with (no axis flipping between them). Useful for converting a series of matrices to animation curves.\n"
 | |
| "   :type euler_compat: :class:`Euler`\n"
 | |
| "   :return: Euler representation of the matrix.\n"
 | |
| "   :rtype: :class:`Euler`\n";
 | |
| 
 | |
| PyObject *Matrix_toEuler(MatrixObject * self, PyObject *args)
 | |
| {
 | |
| 	char *order_str= NULL;
 | |
| 	short order= EULER_ORDER_XYZ;
 | |
| 	float eul[3], eul_compatf[3];
 | |
| 	EulerObject *eul_compat = NULL;
 | |
| 
 | |
| 	float tmat[3][3];
 | |
| 	float (*mat)[3];
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	if(!PyArg_ParseTuple(args, "|sO!:to_euler", &order_str, &euler_Type, &eul_compat))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	if(eul_compat) {
 | |
| 		if(!BaseMath_ReadCallback(eul_compat))
 | |
| 			return NULL;
 | |
| 
 | |
| 		copy_v3_v3(eul_compatf, eul_compat->eul);
 | |
| 	}
 | |
| 	
 | |
| 	/*must be 3-4 cols, 3-4 rows, square matrix*/
 | |
| 	if(self->colSize ==3 && self->rowSize ==3) {
 | |
| 		mat= (float (*)[3])self->contigPtr;
 | |
| 	}else if (self->colSize ==4 && self->rowSize ==4) {
 | |
| 		copy_m3_m4(tmat, (float (*)[4])self->contigPtr);
 | |
| 		mat= tmat;
 | |
| 	}else {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix.to_euler(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(order_str) {
 | |
| 		order= euler_order_from_string(order_str, "Matrix.to_euler()");
 | |
| 
 | |
| 		if(order == -1)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(eul_compat) {
 | |
| 		if(order == 1)	mat3_to_compatible_eul( eul, eul_compatf, mat);
 | |
| 		else			mat3_to_compatible_eulO(eul, eul_compatf, order, mat);
 | |
| 	}
 | |
| 	else {
 | |
| 		if(order == 1)	mat3_to_eul(eul, mat);
 | |
| 		else			mat3_to_eulO(eul, order, mat);
 | |
| 	}
 | |
| 
 | |
| 	return newEulerObject(eul, order, Py_NEW, NULL);
 | |
| }
 | |
| /*---------------------------Matrix.resize4x4() ------------------*/
 | |
| static char Matrix_Resize4x4_doc[] =
 | |
| ".. method:: resize4x4()\n"
 | |
| "\n"
 | |
| "   Resize the matrix to 4x4.\n"
 | |
| "\n"
 | |
| "   :return: an instance of itself.\n"
 | |
| "   :rtype: :class:`Matrix`\n";
 | |
| 
 | |
| PyObject *Matrix_Resize4x4(MatrixObject * self)
 | |
| {
 | |
| 	int x, first_row_elem, curr_pos, new_pos, blank_columns, blank_rows, index;
 | |
| 
 | |
| 	if(self->wrapped==Py_WRAP){
 | |
| 		PyErr_SetString(PyExc_TypeError, "cannot resize wrapped data - make a copy and resize that");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if(self->cb_user){
 | |
| 		PyErr_SetString(PyExc_TypeError, "cannot resize owned data - make a copy and resize that");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	self->contigPtr = PyMem_Realloc(self->contigPtr, (sizeof(float) * 16));
 | |
| 	if(self->contigPtr == NULL) {
 | |
| 		PyErr_SetString(PyExc_MemoryError, "matrix.resize4x4(): problem allocating pointer space");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	/*set row pointers*/
 | |
| 	for(x = 0; x < 4; x++) {
 | |
| 		self->matrix[x] = self->contigPtr + (x * 4);
 | |
| 	}
 | |
| 	/*move data to new spot in array + clean*/
 | |
| 	for(blank_rows = (4 - self->rowSize); blank_rows > 0; blank_rows--){
 | |
| 		for(x = 0; x < 4; x++){
 | |
| 			index = (4 * (self->rowSize + (blank_rows - 1))) + x;
 | |
| 			if (index == 10 || index == 15){
 | |
| 				self->contigPtr[index] = 1.0f;
 | |
| 			}else{
 | |
| 				self->contigPtr[index] = 0.0f;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	for(x = 1; x <= self->rowSize; x++){
 | |
| 		first_row_elem = (self->colSize * (self->rowSize - x));
 | |
| 		curr_pos = (first_row_elem + (self->colSize -1));
 | |
| 		new_pos = (4 * (self->rowSize - x )) + (curr_pos - first_row_elem);
 | |
| 		for(blank_columns = (4 - self->colSize); blank_columns > 0; blank_columns--){
 | |
| 			self->contigPtr[new_pos + blank_columns] = 0.0f;
 | |
| 		}
 | |
| 		for(curr_pos = curr_pos; curr_pos >= first_row_elem; curr_pos--){
 | |
| 			self->contigPtr[new_pos] = self->contigPtr[curr_pos];
 | |
| 			new_pos--;
 | |
| 		}
 | |
| 	}
 | |
| 	self->rowSize = 4;
 | |
| 	self->colSize = 4;
 | |
| 	
 | |
| 	Py_INCREF(self);
 | |
| 	return (PyObject *)self;
 | |
| }
 | |
| 
 | |
| static char Matrix_to_4x4_doc[] =
 | |
| ".. method:: to_4x4()\n"
 | |
| "\n"
 | |
| "   Return a 4x4 copy of this matrix.\n"
 | |
| "\n"
 | |
| "   :return: a new matrix.\n"
 | |
| "   :rtype: :class:`Matrix`\n";
 | |
| PyObject *Matrix_to_4x4(MatrixObject * self)
 | |
| {
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if(self->colSize==4 && self->rowSize==4) {
 | |
| 		return (PyObject *)newMatrixObject(self->contigPtr, 4, 4, Py_NEW, Py_TYPE(self));
 | |
| 	}
 | |
| 	else if(self->colSize==3 && self->rowSize==3) {
 | |
| 		float mat[4][4];
 | |
| 		copy_m4_m3(mat, (float (*)[3])self->contigPtr);
 | |
| 		return (PyObject *)newMatrixObject((float *)mat, 4, 4, Py_NEW, Py_TYPE(self));
 | |
| 	}
 | |
| 	/* TODO, 2x2 matrix */
 | |
| 
 | |
| 	PyErr_SetString(PyExc_TypeError, "Matrix.to_4x4(): inappropriate matrix size");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static char Matrix_to_3x3_doc[] =
 | |
| ".. method:: to_3x3()\n"
 | |
| "\n"
 | |
| "   Return a 3x3 copy of this matrix.\n"
 | |
| "\n"
 | |
| "   :return: a new matrix.\n"
 | |
| "   :rtype: :class:`Matrix`\n";
 | |
| PyObject *Matrix_to_3x3(MatrixObject * self)
 | |
| {
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if(self->colSize==3 && self->rowSize==3) {
 | |
| 		return (PyObject *)newMatrixObject(self->contigPtr, 3, 3, Py_NEW, Py_TYPE(self));
 | |
| 	}
 | |
| 	else if(self->colSize==4 && self->rowSize==4) {
 | |
| 		float mat[3][3];
 | |
| 		copy_m3_m4(mat, (float (*)[4])self->contigPtr);
 | |
| 		return (PyObject *)newMatrixObject((float *)mat, 3, 3, Py_NEW, Py_TYPE(self));
 | |
| 	}
 | |
| 	/* TODO, 2x2 matrix */
 | |
| 
 | |
| 	PyErr_SetString(PyExc_TypeError, "Matrix.to_3x3(): inappropriate matrix size");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*---------------------------Matrix.translationPart() ------------*/
 | |
| static char Matrix_TranslationPart_doc[] =
 | |
| ".. method:: translation_part()\n"
 | |
| "\n"
 | |
| "   Return a the translation part of a 4 row matrix.\n"
 | |
| "\n"
 | |
| "   :return: Return a the translation of a matrix.\n"
 | |
| "   :rtype: :class:`Matrix`\n"
 | |
| "\n"
 | |
| "   .. note:: Note that the (4,4) element of a matrix can be used for uniform scaling too.\n";
 | |
| 
 | |
| PyObject *Matrix_TranslationPart(MatrixObject * self)
 | |
| {
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	if(self->colSize < 3 || self->rowSize < 4){
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix.translation_part(): inappropriate matrix size");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return newVectorObject(self->matrix[3], 3, Py_NEW, NULL);
 | |
| }
 | |
| /*---------------------------Matrix.rotationPart() ---------------*/
 | |
| static char Matrix_RotationPart_doc[] =
 | |
| ".. method:: rotation_part()\n"
 | |
| "\n"
 | |
| "   Return the 3d submatrix corresponding to the linear term of the embedded affine transformation in 3d. This matrix represents rotation and scale.\n"
 | |
| "\n"
 | |
| "   :return: Return the 3d matrix for rotation and scale.\n"
 | |
| "   :rtype: :class:`Matrix`\n"
 | |
| "\n"
 | |
| "   .. note:: Note that the (4,4) element of a matrix can be used for uniform scaling too.\n";
 | |
| 
 | |
| PyObject *Matrix_RotationPart(MatrixObject * self)
 | |
| {
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if(self->colSize < 3 || self->rowSize < 3){
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix.rotation_part(): inappropriate matrix size\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	mat[0] = self->matrix[0][0];
 | |
| 	mat[1] = self->matrix[0][1];
 | |
| 	mat[2] = self->matrix[0][2];
 | |
| 	mat[3] = self->matrix[1][0];
 | |
| 	mat[4] = self->matrix[1][1];
 | |
| 	mat[5] = self->matrix[1][2];
 | |
| 	mat[6] = self->matrix[2][0];
 | |
| 	mat[7] = self->matrix[2][1];
 | |
| 	mat[8] = self->matrix[2][2];
 | |
| 
 | |
| 	return newMatrixObject(mat, 3, 3, Py_NEW, Py_TYPE(self));
 | |
| }
 | |
| /*---------------------------Matrix.scalePart() --------------------*/
 | |
| static char Matrix_scalePart_doc[] =
 | |
| ".. method:: scale_part()\n"
 | |
| "\n"
 | |
| "   Return a the scale part of a 3x3 or 4x4 matrix.\n"
 | |
| "\n"
 | |
| "   :return: Return a the scale of a matrix.\n"
 | |
| "   :rtype: :class:`Vector`\n"
 | |
| "\n"
 | |
| "   .. note:: This method does not return negative a scale on any axis because it is not possible to obtain this data from the matrix alone.\n";
 | |
| 
 | |
| PyObject *Matrix_scalePart(MatrixObject * self)
 | |
| {
 | |
| 	float scale[3], rot[3];
 | |
| 	float mat[3][3], imat[3][3], tmat[3][3];
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	/*must be 3-4 cols, 3-4 rows, square matrix*/
 | |
| 	if(self->colSize == 4 && self->rowSize == 4)
 | |
| 		copy_m3_m4(mat, (float (*)[4])self->contigPtr);
 | |
| 	else if(self->colSize == 3 && self->rowSize == 3)
 | |
| 		copy_m3_m3(mat, (float (*)[3])self->contigPtr);
 | |
| 	else {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix.scale_part(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	/* functionality copied from editobject.c apply_obmat */
 | |
| 	mat3_to_eul( rot,mat);
 | |
| 	eul_to_mat3( tmat,rot);
 | |
| 	invert_m3_m3(imat, tmat);
 | |
| 	mul_m3_m3m3(tmat, imat, mat);
 | |
| 	
 | |
| 	scale[0]= tmat[0][0];
 | |
| 	scale[1]= tmat[1][1];
 | |
| 	scale[2]= tmat[2][2];
 | |
| 	return newVectorObject(scale, 3, Py_NEW, NULL);
 | |
| }
 | |
| 
 | |
| /*---------------------------Matrix.invert() ---------------------*/
 | |
| static char Matrix_Invert_doc[] =
 | |
| ".. method:: invert()\n"
 | |
| "\n"
 | |
| "   Set the matrix to its inverse.\n"
 | |
| "\n"
 | |
| "   :return: an instance of itself.\n"
 | |
| "   :rtype: :class:`Matrix`\n"
 | |
| "\n"
 | |
| "   .. note:: :exc:`ValueError` exception is raised.\n"
 | |
| "\n"
 | |
| "   .. seealso:: <http://en.wikipedia.org/wiki/Inverse_matrix>\n";
 | |
| 
 | |
| PyObject *Matrix_Invert(MatrixObject * self)
 | |
| {
 | |
| 	
 | |
| 	int x, y, z = 0;
 | |
| 	float det = 0.0f;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if(self->rowSize != self->colSize){
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix.invert(ed): only square matrices are supported");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*calculate the determinant*/
 | |
| 	det = matrix_determinant(self);
 | |
| 
 | |
| 	if(det != 0) {
 | |
| 		/*calculate the classical adjoint*/
 | |
| 		if(self->rowSize == 2) {
 | |
| 			mat[0] = self->matrix[1][1];
 | |
| 			mat[1] = -self->matrix[0][1];
 | |
| 			mat[2] = -self->matrix[1][0];
 | |
| 			mat[3] = self->matrix[0][0];
 | |
| 		} else if(self->rowSize == 3) {
 | |
| 			adjoint_m3_m3((float (*)[3]) mat,(float (*)[3])self->contigPtr);
 | |
| 		} else if(self->rowSize == 4) {
 | |
| 			adjoint_m4_m4((float (*)[4]) mat, (float (*)[4])self->contigPtr);
 | |
| 		}
 | |
| 		/*divide by determinate*/
 | |
| 		for(x = 0; x < (self->rowSize * self->colSize); x++) {
 | |
| 			mat[x] /= det;
 | |
| 		}
 | |
| 		/*set values*/
 | |
| 		for(x = 0; x < self->rowSize; x++) {
 | |
| 			for(y = 0; y < self->colSize; y++) {
 | |
| 				self->matrix[x][y] = mat[z];
 | |
| 				z++;
 | |
| 			}
 | |
| 		}
 | |
| 		/*transpose
 | |
| 		Matrix_Transpose(self);*/
 | |
| 	} else {
 | |
| 		PyErr_SetString(PyExc_ValueError, "matrix does not have an inverse");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	(void)BaseMath_WriteCallback(self);
 | |
| 	Py_INCREF(self);
 | |
| 	return (PyObject *)self;
 | |
| }
 | |
| 
 | |
| /*---------------------------Matrix.decompose() ---------------------*/
 | |
| static char Matrix_decompose_doc[] =
 | |
| ".. method:: decompose()\n"
 | |
| "\n"
 | |
| "   Return the location, rotaion and scale components of this matrix.\n"
 | |
| "\n"
 | |
| "   :return: loc, rot, scale triple.\n"
 | |
| "   :rtype: (:class:`Vector`, :class:`Quaternion`, :class:`Vector`)";
 | |
| static PyObject *Matrix_decompose(MatrixObject * self)
 | |
| {
 | |
| 	PyObject *ret;
 | |
| 	float loc[3];
 | |
| 	float rot[3][3];
 | |
| 	float quat[4];
 | |
| 	float size[3];
 | |
| 
 | |
| 	if(self->colSize != 4 || self->rowSize != 4) {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix.decompose(): inappropriate matrix size - expects 4x4 matrix\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 
 | |
| 	mat4_to_loc_rot_size(loc, rot, size, (float (*)[4])self->contigPtr);
 | |
| 	mat3_to_quat(quat, rot);
 | |
| 
 | |
| 	ret= PyTuple_New(3);
 | |
| 	PyTuple_SET_ITEM(ret, 0, newVectorObject(loc, 3, Py_NEW, NULL));
 | |
| 	PyTuple_SET_ITEM(ret, 1, newQuaternionObject(quat, Py_NEW, NULL));
 | |
| 	PyTuple_SET_ITEM(ret, 2, newVectorObject(size, 3, Py_NEW, NULL));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*---------------------------Matrix.determinant() ----------------*/
 | |
| static char Matrix_Determinant_doc[] =
 | |
| ".. method:: determinant()\n"
 | |
| "\n"
 | |
| "   Return the determinant of a matrix.\n"
 | |
| "\n"
 | |
| "   :return: Return a the determinant of a matrix.\n"
 | |
| "   :rtype: float\n"
 | |
| "\n"
 | |
| "   .. seealso:: <http://en.wikipedia.org/wiki/Determinant>\n";
 | |
| 
 | |
| PyObject *Matrix_Determinant(MatrixObject * self)
 | |
| {
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	if(self->rowSize != self->colSize){
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix.determinant: only square matrices are supported");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return PyFloat_FromDouble((double)matrix_determinant(self));
 | |
| }
 | |
| /*---------------------------Matrix.transpose() ------------------*/
 | |
| static char Matrix_Transpose_doc[] =
 | |
| ".. method:: transpose()\n"
 | |
| "\n"
 | |
| "   Set the matrix to its transpose.\n"
 | |
| "\n"
 | |
| "   :return: an instance of itself\n"
 | |
| "   :rtype: :class:`Matrix`\n"
 | |
| "\n"
 | |
| "   .. seealso:: <http://en.wikipedia.org/wiki/Transpose>\n";
 | |
| 
 | |
| PyObject *Matrix_Transpose(MatrixObject * self)
 | |
| {
 | |
| 	float t = 0.0f;
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	if(self->rowSize != self->colSize){
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix.transpose(d): only square matrices are supported");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(self->rowSize == 2) {
 | |
| 		t = self->matrix[1][0];
 | |
| 		self->matrix[1][0] = self->matrix[0][1];
 | |
| 		self->matrix[0][1] = t;
 | |
| 	} else if(self->rowSize == 3) {
 | |
| 		transpose_m3((float (*)[3])self->contigPtr);
 | |
| 	} else {
 | |
| 		transpose_m4((float (*)[4])self->contigPtr);
 | |
| 	}
 | |
| 
 | |
| 	(void)BaseMath_WriteCallback(self);
 | |
| 	Py_INCREF(self);
 | |
| 	return (PyObject *)self;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*---------------------------Matrix.zero() -----------------------*/
 | |
| static char Matrix_Zero_doc[] =
 | |
| ".. method:: zero()\n"
 | |
| "\n"
 | |
| "   Set all the matrix values to zero.\n"
 | |
| "\n"
 | |
| "   :return: an instance of itself\n"
 | |
| "   :rtype: :class:`Matrix`\n";
 | |
| 
 | |
| PyObject *Matrix_Zero(MatrixObject * self)
 | |
| {
 | |
| 	int row, col;
 | |
| 	
 | |
| 	for(row = 0; row < self->rowSize; row++) {
 | |
| 		for(col = 0; col < self->colSize; col++) {
 | |
| 			self->matrix[row][col] = 0.0f;
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	if(!BaseMath_WriteCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	Py_INCREF(self);
 | |
| 	return (PyObject *)self;
 | |
| }
 | |
| /*---------------------------Matrix.identity(() ------------------*/
 | |
| static char Matrix_Identity_doc[] =
 | |
| ".. method:: identity()\n"
 | |
| "\n"
 | |
| "   Set the matrix to the identity matrix.\n"
 | |
| "\n"
 | |
| "   :return: an instance of itself\n"
 | |
| "   :rtype: :class:`Matrix`\n"
 | |
| "\n"
 | |
| "   .. note:: An object with zero location and rotation, a scale of one, will have an identity matrix.\n"
 | |
| "\n"
 | |
| "   .. seealso:: <http://en.wikipedia.org/wiki/Identity_matrix>\n";
 | |
| 
 | |
| PyObject *Matrix_Identity(MatrixObject * self)
 | |
| {
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	if(self->rowSize != self->colSize){
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix.identity: only square matrices are supported\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(self->rowSize == 2) {
 | |
| 		self->matrix[0][0] = 1.0f;
 | |
| 		self->matrix[0][1] = 0.0f;
 | |
| 		self->matrix[1][0] = 0.0f;
 | |
| 		self->matrix[1][1] = 1.0f;
 | |
| 	} else if(self->rowSize == 3) {
 | |
| 		unit_m3((float (*)[3])self->contigPtr);
 | |
| 	} else {
 | |
| 		unit_m4((float (*)[4])self->contigPtr);
 | |
| 	}
 | |
| 
 | |
| 	if(!BaseMath_WriteCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	Py_INCREF(self);
 | |
| 	return (PyObject *)self;
 | |
| }
 | |
| 
 | |
| /*---------------------------Matrix.copy() ------------------*/
 | |
| static char Matrix_copy_doc[] =
 | |
| ".. method:: copy()\n"
 | |
| "\n"
 | |
| "   Returns a copy of this matrix.\n"
 | |
| "\n"
 | |
| "   :return: an instance of itself\n"
 | |
| "   :rtype: :class:`Matrix`\n";
 | |
| 
 | |
| PyObject *Matrix_copy(MatrixObject *self)
 | |
| {
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	return (PyObject*)newMatrixObject((float (*))self->contigPtr, self->rowSize, self->colSize, Py_NEW, Py_TYPE(self));
 | |
| }
 | |
| 
 | |
| /*----------------------------print object (internal)-------------*/
 | |
| /*print the object to screen*/
 | |
| static PyObject *Matrix_repr(MatrixObject * self)
 | |
| {
 | |
| 	int x, y;
 | |
| 	char str[1024]="Matrix((", *str_p;
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 
 | |
| 	str_p= &str[8];
 | |
| 
 | |
| 	for(x = 0; x < self->colSize; x++){
 | |
| 		for(y = 0; y < (self->rowSize - 1); y++) {
 | |
| 			str_p += sprintf(str_p, "%f, ", self->matrix[y][x]);
 | |
| 		}
 | |
| 		if(x < (self->colSize-1)){
 | |
| 			str_p += sprintf(str_p, "%f), (", self->matrix[y][x]);
 | |
| 		}
 | |
| 		else{
 | |
| 			str_p += sprintf(str_p, "%f)", self->matrix[y][x]);
 | |
| 		}
 | |
| 	}
 | |
| 	strcat(str_p, ")");
 | |
| 
 | |
| 	return PyUnicode_FromString(str);
 | |
| }
 | |
| /*------------------------tp_richcmpr*/
 | |
| /*returns -1 execption, 0 false, 1 true*/
 | |
| static PyObject* Matrix_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
 | |
| {
 | |
| 	MatrixObject *matA = NULL, *matB = NULL;
 | |
| 	int result = 0;
 | |
| 
 | |
| 	if (!MatrixObject_Check(objectA) || !MatrixObject_Check(objectB)){
 | |
| 		if (comparison_type == Py_NE){
 | |
| 			Py_RETURN_TRUE;
 | |
| 		}else{
 | |
| 			Py_RETURN_FALSE;
 | |
| 		}
 | |
| 	}
 | |
| 	matA = (MatrixObject*)objectA;
 | |
| 	matB = (MatrixObject*)objectB;
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(matA) || !BaseMath_ReadCallback(matB))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	if (matA->colSize != matB->colSize || matA->rowSize != matB->rowSize){
 | |
| 		if (comparison_type == Py_NE){
 | |
| 			Py_RETURN_TRUE;
 | |
| 		}else{
 | |
| 			Py_RETURN_FALSE;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	switch (comparison_type){
 | |
| 		case Py_EQ:
 | |
| 			/*contigPtr is basically a really long vector*/
 | |
| 			result = EXPP_VectorsAreEqual(matA->contigPtr, matB->contigPtr,
 | |
| 				(matA->rowSize * matA->colSize), 1);
 | |
| 			break;
 | |
| 		case Py_NE:
 | |
| 			result = EXPP_VectorsAreEqual(matA->contigPtr, matB->contigPtr,
 | |
| 				(matA->rowSize * matA->colSize), 1);
 | |
| 			if (result == 0){
 | |
| 				result = 1;
 | |
| 			}else{
 | |
| 				result = 0;
 | |
| 			}
 | |
| 			break;
 | |
| 		default:
 | |
| 			printf("The result of the comparison could not be evaluated");
 | |
| 			break;
 | |
| 	}
 | |
| 	if (result == 1){
 | |
| 		Py_RETURN_TRUE;
 | |
| 	}else{
 | |
| 		Py_RETURN_FALSE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*---------------------SEQUENCE PROTOCOLS------------------------
 | |
|   ----------------------------len(object)------------------------
 | |
|   sequence length*/
 | |
| static int Matrix_len(MatrixObject * self)
 | |
| {
 | |
| 	return (self->rowSize);
 | |
| }
 | |
| /*----------------------------object[]---------------------------
 | |
|   sequence accessor (get)
 | |
|   the wrapped vector gives direct access to the matrix data*/
 | |
| static PyObject *Matrix_item(MatrixObject * self, int i)
 | |
| {
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	if(i < 0 || i >= self->rowSize) {
 | |
| 		PyErr_SetString(PyExc_IndexError, "matrix[attribute]: array index out of range");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return newVectorObject_cb((PyObject *)self, self->colSize, mathutils_matrix_vector_cb_index, i);
 | |
| }
 | |
| /*----------------------------object[]-------------------------
 | |
|   sequence accessor (set)*/
 | |
| static int Matrix_ass_item(MatrixObject * self, int i, PyObject * ob)
 | |
| {
 | |
| 	int y, x, size = 0;
 | |
| 	float vec[4];
 | |
| 	PyObject *m, *f;
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return -1;
 | |
| 	
 | |
| 	if(i >= self->rowSize || i < 0){
 | |
| 		PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: bad column\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if(PySequence_Check(ob)){
 | |
| 		size = PySequence_Length(ob);
 | |
| 		if(size != self->colSize){
 | |
| 			PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: bad sequence size\n");
 | |
| 			return -1;
 | |
| 		}
 | |
| 		for (x = 0; x < size; x++) {
 | |
| 			m = PySequence_GetItem(ob, x);
 | |
| 			if (m == NULL) { /*Failed to read sequence*/
 | |
| 				PyErr_SetString(PyExc_RuntimeError, "matrix[attribute] = x: unable to read sequence\n");
 | |
| 				return -1;
 | |
| 			}
 | |
| 
 | |
| 			f = PyNumber_Float(m);
 | |
| 			if(f == NULL) { /*parsed item not a number*/
 | |
| 				Py_DECREF(m);
 | |
| 				PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: sequence argument not a number\n");
 | |
| 				return -1;
 | |
| 			}
 | |
| 
 | |
| 			vec[x] = (float)PyFloat_AS_DOUBLE(f);
 | |
| 			Py_DECREF(m);
 | |
| 			Py_DECREF(f);
 | |
| 		}
 | |
| 		/*parsed well - now set in matrix*/
 | |
| 		for(y = 0; y < size; y++){
 | |
| 			self->matrix[i][y] = vec[y];
 | |
| 		}
 | |
| 		
 | |
| 		(void)BaseMath_WriteCallback(self);
 | |
| 		return 0;
 | |
| 	}else{
 | |
| 		PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: expects a sequence of column size\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| }
 | |
| /*----------------------------object[z:y]------------------------
 | |
|   sequence slice (get)*/
 | |
| static PyObject *Matrix_slice(MatrixObject * self, int begin, int end)
 | |
| {
 | |
| 
 | |
| 	PyObject *list = NULL;
 | |
| 	int count;
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 
 | |
| 	CLAMP(begin, 0, self->rowSize);
 | |
| 	CLAMP(end, 0, self->rowSize);
 | |
| 	begin = MIN2(begin,end);
 | |
| 
 | |
| 	list = PyList_New(end - begin);
 | |
| 	for(count = begin; count < end; count++) {
 | |
| 		PyList_SetItem(list, count - begin,
 | |
| 				newVectorObject_cb((PyObject *)self, self->colSize, mathutils_matrix_vector_cb_index, count));
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	return list;
 | |
| }
 | |
| /*----------------------------object[z:y]------------------------
 | |
|   sequence slice (set)*/
 | |
| static int Matrix_ass_slice(MatrixObject * self, int begin, int end, PyObject * seq)
 | |
| {
 | |
| 	int i, x, y, size, sub_size = 0;
 | |
| 	float mat[16], f;
 | |
| 	PyObject *subseq;
 | |
| 	PyObject *m;
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return -1;
 | |
| 	
 | |
| 	CLAMP(begin, 0, self->rowSize);
 | |
| 	CLAMP(end, 0, self->rowSize);
 | |
| 	begin = MIN2(begin,end);
 | |
| 
 | |
| 	if(PySequence_Check(seq)){
 | |
| 		size = PySequence_Length(seq);
 | |
| 		if(size != (end - begin)){
 | |
| 			PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: size mismatch in slice assignment\n");
 | |
| 			return -1;
 | |
| 		}
 | |
| 		/*parse sub items*/
 | |
| 		for (i = 0; i < size; i++) {
 | |
| 			/*parse each sub sequence*/
 | |
| 			subseq = PySequence_GetItem(seq, i);
 | |
| 			if (subseq == NULL) { /*Failed to read sequence*/
 | |
| 				PyErr_SetString(PyExc_RuntimeError, "matrix[begin:end] = []: unable to read sequence");
 | |
| 				return -1;
 | |
| 			}
 | |
| 
 | |
| 			if(PySequence_Check(subseq)){
 | |
| 				/*subsequence is also a sequence*/
 | |
| 				sub_size = PySequence_Length(subseq);
 | |
| 				if(sub_size != self->colSize){
 | |
| 					Py_DECREF(subseq);
 | |
| 					PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: size mismatch in slice assignment\n");
 | |
| 					return -1;
 | |
| 				}
 | |
| 				for (y = 0; y < sub_size; y++) {
 | |
| 					m = PySequence_GetItem(subseq, y);
 | |
| 					if (m == NULL) { /*Failed to read sequence*/
 | |
| 						Py_DECREF(subseq);
 | |
| 						PyErr_SetString(PyExc_RuntimeError, "matrix[begin:end] = []: unable to read sequence\n");
 | |
| 						return -1;
 | |
| 					}
 | |
| 					
 | |
| 					f = PyFloat_AsDouble(m); /* faster to assume a float and raise an error after */
 | |
| 					if(f == -1 && PyErr_Occurred()) { /*parsed item not a number*/
 | |
| 						Py_DECREF(m);
 | |
| 						Py_DECREF(subseq);
 | |
| 						PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: sequence argument not a number\n");
 | |
| 						return -1;
 | |
| 					}
 | |
| 
 | |
| 					mat[(i * self->colSize) + y] = f;
 | |
| 					Py_DECREF(m);
 | |
| 				}
 | |
| 			}else{
 | |
| 				Py_DECREF(subseq);
 | |
| 				PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: illegal argument type for built-in operation\n");
 | |
| 				return -1;
 | |
| 			}
 | |
| 			Py_DECREF(subseq);
 | |
| 		}
 | |
| 		/*parsed well - now set in matrix*/
 | |
| 		for(x = 0; x < (size * sub_size); x++){
 | |
| 			self->matrix[begin + (int)floor(x / self->colSize)][x % self->colSize] = mat[x];
 | |
| 		}
 | |
| 		
 | |
| 		(void)BaseMath_WriteCallback(self);
 | |
| 		return 0;
 | |
| 	}else{
 | |
| 		PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: illegal argument type for built-in operation\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| }
 | |
| /*------------------------NUMERIC PROTOCOLS----------------------
 | |
|   ------------------------obj + obj------------------------------*/
 | |
| static PyObject *Matrix_add(PyObject * m1, PyObject * m2)
 | |
| {
 | |
| 	int x, y;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 	MatrixObject *mat1 = NULL, *mat2 = NULL;
 | |
| 
 | |
| 	mat1 = (MatrixObject*)m1;
 | |
| 	mat2 = (MatrixObject*)m2;
 | |
| 
 | |
| 	if(!MatrixObject_Check(m1) || !MatrixObject_Check(m2)) {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix addition: arguments not valid for this operation....");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(mat1) || !BaseMath_ReadCallback(mat2))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix addition: matrices must have the same dimensions for this operation");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	for(x = 0; x < mat1->rowSize; x++) {
 | |
| 		for(y = 0; y < mat1->colSize; y++) {
 | |
| 			mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] + mat2->matrix[x][y];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW, NULL);
 | |
| }
 | |
| /*------------------------obj - obj------------------------------
 | |
|   subtraction*/
 | |
| static PyObject *Matrix_sub(PyObject * m1, PyObject * m2)
 | |
| {
 | |
| 	int x, y;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 	MatrixObject *mat1 = NULL, *mat2 = NULL;
 | |
| 
 | |
| 	mat1 = (MatrixObject*)m1;
 | |
| 	mat2 = (MatrixObject*)m2;
 | |
| 
 | |
| 	if(!MatrixObject_Check(m1) || !MatrixObject_Check(m2)) {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix addition: arguments not valid for this operation....");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(mat1) || !BaseMath_ReadCallback(mat2))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix addition: matrices must have the same dimensions for this operation");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	for(x = 0; x < mat1->rowSize; x++) {
 | |
| 		for(y = 0; y < mat1->colSize; y++) {
 | |
| 			mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] - mat2->matrix[x][y];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW, NULL);
 | |
| }
 | |
| /*------------------------obj * obj------------------------------
 | |
|   mulplication*/
 | |
| static PyObject *Matrix_mul(PyObject * m1, PyObject * m2)
 | |
| {
 | |
| 	int x, y, z;
 | |
| 	float scalar;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 	double dot = 0.0f;
 | |
| 	MatrixObject *mat1 = NULL, *mat2 = NULL;
 | |
| 
 | |
| 	if(MatrixObject_Check(m1)) {
 | |
| 		mat1 = (MatrixObject*)m1;
 | |
| 		if(!BaseMath_ReadCallback(mat1))
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	if(MatrixObject_Check(m2)) {
 | |
| 		mat2 = (MatrixObject*)m2;
 | |
| 		if(!BaseMath_ReadCallback(mat2))
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(mat1 && mat2) { /*MATRIX * MATRIX*/
 | |
| 		if(mat1->rowSize != mat2->colSize){
 | |
| 			PyErr_SetString(PyExc_AttributeError,"Matrix multiplication: matrix A rowsize must equal matrix B colsize");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		for(x = 0; x < mat2->rowSize; x++) {
 | |
| 			for(y = 0; y < mat1->colSize; y++) {
 | |
| 				for(z = 0; z < mat1->rowSize; z++) {
 | |
| 					dot += (mat1->matrix[z][y] * mat2->matrix[x][z]);
 | |
| 				}
 | |
| 				mat[((x * mat1->colSize) + y)] = (float)dot;
 | |
| 				dot = 0.0f;
 | |
| 			}
 | |
| 		}
 | |
| 		
 | |
| 		return newMatrixObject(mat, mat2->rowSize, mat1->colSize, Py_NEW, NULL);
 | |
| 	}
 | |
| 	
 | |
| 	if(mat1==NULL){
 | |
| 		scalar=PyFloat_AsDouble(m1); // may not be a float...
 | |
| 		if ((scalar == -1.0 && PyErr_Occurred())==0) { /*FLOAT/INT * MATRIX, this line annoys theeth, lets see if he finds it */
 | |
| 			for(x = 0; x < mat2->rowSize; x++) {
 | |
| 				for(y = 0; y < mat2->colSize; y++) {
 | |
| 					mat[((x * mat2->colSize) + y)] = scalar * mat2->matrix[x][y];
 | |
| 				}
 | |
| 			}
 | |
| 			return newMatrixObject(mat, mat2->rowSize, mat2->colSize, Py_NEW, NULL);
 | |
| 		}
 | |
| 		
 | |
| 		PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	else /* if(mat1) { */ {
 | |
| 		if(VectorObject_Check(m2)) { /* MATRIX*VECTOR */
 | |
| 			return column_vector_multiplication(mat1, (VectorObject *)m2); /* vector update done inside the function */
 | |
| 		}
 | |
| 		else {
 | |
| 			scalar= PyFloat_AsDouble(m2);
 | |
| 			if ((scalar == -1.0 && PyErr_Occurred())==0) { /* MATRIX*FLOAT/INT */
 | |
| 				for(x = 0; x < mat1->rowSize; x++) {
 | |
| 					for(y = 0; y < mat1->colSize; y++) {
 | |
| 						mat[((x * mat1->colSize) + y)] = scalar * mat1->matrix[x][y];
 | |
| 					}
 | |
| 				}
 | |
| 				return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW, NULL);
 | |
| 			}
 | |
| 		}
 | |
| 		PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation\n");
 | |
| 	return NULL;
 | |
| }
 | |
| static PyObject* Matrix_inv(MatrixObject *self)
 | |
| {
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	return Matrix_Invert(self);
 | |
| }
 | |
| 
 | |
| /*-----------------PROTOCOL DECLARATIONS--------------------------*/
 | |
| static PySequenceMethods Matrix_SeqMethods = {
 | |
| 	(lenfunc) Matrix_len,						/* sq_length */
 | |
| 	(binaryfunc) NULL,							/* sq_concat */
 | |
| 	(ssizeargfunc) NULL,						/* sq_repeat */
 | |
| 	(ssizeargfunc) Matrix_item,					/* sq_item */
 | |
| 	(ssizessizeargfunc) Matrix_slice,			/* sq_slice, deprecated TODO, replace */
 | |
| 	(ssizeobjargproc) Matrix_ass_item,			/* sq_ass_item */
 | |
| 	(ssizessizeobjargproc) Matrix_ass_slice,	/* sq_ass_slice, deprecated TODO, replace */
 | |
| 	(objobjproc) NULL,							/* sq_contains */
 | |
| 	(binaryfunc) NULL,							/* sq_inplace_concat */
 | |
| 	(ssizeargfunc) NULL,						/* sq_inplace_repeat */
 | |
| };
 | |
| 
 | |
| 
 | |
| static PyObject *Matrix_subscript(MatrixObject* self, PyObject* item)
 | |
| {
 | |
| 	if (PyIndex_Check(item)) {
 | |
| 		Py_ssize_t i;
 | |
| 		i = PyNumber_AsSsize_t(item, PyExc_IndexError);
 | |
| 		if (i == -1 && PyErr_Occurred())
 | |
| 			return NULL;
 | |
| 		if (i < 0)
 | |
| 			i += self->rowSize;
 | |
| 		return Matrix_item(self, i);
 | |
| 	} else if (PySlice_Check(item)) {
 | |
| 		Py_ssize_t start, stop, step, slicelength;
 | |
| 
 | |
| 		if (PySlice_GetIndicesEx((PySliceObject*)item, self->rowSize, &start, &stop, &step, &slicelength) < 0)
 | |
| 			return NULL;
 | |
| 
 | |
| 		if (slicelength <= 0) {
 | |
| 			return PyList_New(0);
 | |
| 		}
 | |
| 		else if (step == 1) {
 | |
| 			return Matrix_slice(self, start, stop);
 | |
| 		}
 | |
| 		else {
 | |
| 			PyErr_SetString(PyExc_TypeError, "slice steps not supported with matricies");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 				 "vector indices must be integers, not %.200s",
 | |
| 				 item->ob_type->tp_name);
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int Matrix_ass_subscript(MatrixObject* self, PyObject* item, PyObject* value)
 | |
| {
 | |
| 	if (PyIndex_Check(item)) {
 | |
| 		Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
 | |
| 		if (i == -1 && PyErr_Occurred())
 | |
| 			return -1;
 | |
| 		if (i < 0)
 | |
| 			i += self->rowSize;
 | |
| 		return Matrix_ass_item(self, i, value);
 | |
| 	}
 | |
| 	else if (PySlice_Check(item)) {
 | |
| 		Py_ssize_t start, stop, step, slicelength;
 | |
| 
 | |
| 		if (PySlice_GetIndicesEx((PySliceObject*)item, self->rowSize, &start, &stop, &step, &slicelength) < 0)
 | |
| 			return -1;
 | |
| 
 | |
| 		if (step == 1)
 | |
| 			return Matrix_ass_slice(self, start, stop, value);
 | |
| 		else {
 | |
| 			PyErr_SetString(PyExc_TypeError, "slice steps not supported with matricies");
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 				 "matrix indices must be integers, not %.200s",
 | |
| 				 item->ob_type->tp_name);
 | |
| 		return -1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static PyMappingMethods Matrix_AsMapping = {
 | |
| 	(lenfunc)Matrix_len,
 | |
| 	(binaryfunc)Matrix_subscript,
 | |
| 	(objobjargproc)Matrix_ass_subscript
 | |
| };
 | |
| 
 | |
| 
 | |
| static PyNumberMethods Matrix_NumMethods = {
 | |
| 		(binaryfunc)	Matrix_add,	/*nb_add*/
 | |
| 		(binaryfunc)	Matrix_sub,	/*nb_subtract*/
 | |
| 		(binaryfunc)	Matrix_mul,	/*nb_multiply*/
 | |
| 		0,							/*nb_remainder*/
 | |
| 		0,							/*nb_divmod*/
 | |
| 		0,							/*nb_power*/
 | |
| 		(unaryfunc) 	0,	/*nb_negative*/
 | |
| 		(unaryfunc) 	0,	/*tp_positive*/
 | |
| 		(unaryfunc) 	0,	/*tp_absolute*/
 | |
| 		(inquiry)	0,	/*tp_bool*/
 | |
| 		(unaryfunc)	Matrix_inv,	/*nb_invert*/
 | |
| 		0,				/*nb_lshift*/
 | |
| 		(binaryfunc)0,	/*nb_rshift*/
 | |
| 		0,				/*nb_and*/
 | |
| 		0,				/*nb_xor*/
 | |
| 		0,				/*nb_or*/
 | |
| 		0,				/*nb_int*/
 | |
| 		0,				/*nb_reserved*/
 | |
| 		0,				/*nb_float*/
 | |
| 		0,				/* nb_inplace_add */
 | |
| 		0,				/* nb_inplace_subtract */
 | |
| 		0,				/* nb_inplace_multiply */
 | |
| 		0,				/* nb_inplace_remainder */
 | |
| 		0,				/* nb_inplace_power */
 | |
| 		0,				/* nb_inplace_lshift */
 | |
| 		0,				/* nb_inplace_rshift */
 | |
| 		0,				/* nb_inplace_and */
 | |
| 		0,				/* nb_inplace_xor */
 | |
| 		0,				/* nb_inplace_or */
 | |
| 		0,				/* nb_floor_divide */
 | |
| 		0,				/* nb_true_divide */
 | |
| 		0,				/* nb_inplace_floor_divide */
 | |
| 		0,				/* nb_inplace_true_divide */
 | |
| 		0,				/* nb_index */
 | |
| };
 | |
| 
 | |
| static PyObject *Matrix_getRowSize(MatrixObject *self, void *UNUSED(closure))
 | |
| {
 | |
| 	return PyLong_FromLong((long) self->rowSize);
 | |
| }
 | |
| 
 | |
| static PyObject *Matrix_getColSize(MatrixObject *self, void *UNUSED(closure))
 | |
| {
 | |
| 	return PyLong_FromLong((long) self->colSize);
 | |
| }
 | |
| 
 | |
| static PyObject *Matrix_getMedianScale(MatrixObject *self, void *UNUSED(closure))
 | |
| {
 | |
| 	float mat[3][3];
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*must be 3-4 cols, 3-4 rows, square matrix*/
 | |
| 	if(self->colSize == 4 && self->rowSize == 4)
 | |
| 		copy_m3_m4(mat, (float (*)[4])self->contigPtr);
 | |
| 	else if(self->colSize == 3 && self->rowSize == 3)
 | |
| 		copy_m3_m3(mat, (float (*)[3])self->contigPtr);
 | |
| 	else {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix.median_scale: inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
|     
 | |
| 	return PyFloat_FromDouble(mat3_to_scale(mat));
 | |
| }
 | |
| 
 | |
| static PyObject *Matrix_getIsNegative(MatrixObject *self, void *UNUSED(closure))
 | |
| {
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*must be 3-4 cols, 3-4 rows, square matrix*/
 | |
| 	if(self->colSize == 4 && self->rowSize == 4)
 | |
| 		return PyBool_FromLong(is_negative_m4((float (*)[4])self->contigPtr));
 | |
| 	else if(self->colSize == 3 && self->rowSize == 3)
 | |
| 		return PyBool_FromLong(is_negative_m3((float (*)[3])self->contigPtr));
 | |
| 	else {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Matrix.is_negative: inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* Python attributes get/set structure:                                      */
 | |
| /*****************************************************************************/
 | |
| static PyGetSetDef Matrix_getseters[] = {
 | |
| 	{"row_size", (getter)Matrix_getRowSize, (setter)NULL, "The row size of the matrix (readonly).\n\n:type: int", NULL},
 | |
| 	{"col_size", (getter)Matrix_getColSize, (setter)NULL, "The column size of the matrix (readonly).\n\n:type: int", NULL},
 | |
| 	{"median_scale", (getter)Matrix_getMedianScale, (setter)NULL, "The average scale applied to each axis (readonly).\n\n:type: float", NULL},
 | |
| 	{"is_negative", (getter)Matrix_getIsNegative, (setter)NULL, "True if this matrix results in a negative scale, 3x3 and 4x4 only, (readonly).\n\n:type: bool", NULL},
 | |
| 	{"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, BaseMathObject_Wrapped_doc, NULL},
 | |
| 	{"owner",(getter)BaseMathObject_getOwner, (setter)NULL, BaseMathObject_Owner_doc, NULL},
 | |
| 	{NULL,NULL,NULL,NULL,NULL}  /* Sentinel */
 | |
| };
 | |
| 
 | |
| /*-----------------------METHOD DEFINITIONS ----------------------*/
 | |
| static struct PyMethodDef Matrix_methods[] = {
 | |
| 	{"zero", (PyCFunction) Matrix_Zero, METH_NOARGS, Matrix_Zero_doc},
 | |
| 	{"identity", (PyCFunction) Matrix_Identity, METH_NOARGS, Matrix_Identity_doc},
 | |
| 	{"transpose", (PyCFunction) Matrix_Transpose, METH_NOARGS, Matrix_Transpose_doc},
 | |
| 	{"determinant", (PyCFunction) Matrix_Determinant, METH_NOARGS, Matrix_Determinant_doc},
 | |
| 	{"invert", (PyCFunction) Matrix_Invert, METH_NOARGS, Matrix_Invert_doc},
 | |
| 	{"translation_part", (PyCFunction) Matrix_TranslationPart, METH_NOARGS, Matrix_TranslationPart_doc},
 | |
| 	{"rotation_part", (PyCFunction) Matrix_RotationPart, METH_NOARGS, Matrix_RotationPart_doc},
 | |
| 	{"scale_part", (PyCFunction) Matrix_scalePart, METH_NOARGS, Matrix_scalePart_doc},
 | |
| 	{"decompose", (PyCFunction) Matrix_decompose, METH_NOARGS, Matrix_decompose_doc},
 | |
| 	{"resize4x4", (PyCFunction) Matrix_Resize4x4, METH_NOARGS, Matrix_Resize4x4_doc},
 | |
| 	{"to_4x4", (PyCFunction) Matrix_to_4x4, METH_NOARGS, Matrix_to_4x4_doc},
 | |
| 	{"to_3x3", (PyCFunction) Matrix_to_3x3, METH_NOARGS, Matrix_to_3x3_doc},
 | |
| 	{"to_euler", (PyCFunction) Matrix_toEuler, METH_VARARGS, Matrix_toEuler_doc},
 | |
| 	{"to_quat", (PyCFunction) Matrix_toQuat, METH_NOARGS, Matrix_toQuat_doc},
 | |
| 	{"copy", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
 | |
| 	{"__copy__", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
 | |
| 	
 | |
| 	/* class methods */
 | |
| 	{"Rotation", (PyCFunction) C_Matrix_Rotation, METH_VARARGS | METH_CLASS, C_Matrix_Rotation_doc},
 | |
| 	{"Scale", (PyCFunction) C_Matrix_Scale, METH_VARARGS | METH_CLASS, C_Matrix_Scale_doc},
 | |
| 	{"Shear", (PyCFunction) C_Matrix_Shear, METH_VARARGS | METH_CLASS, C_Matrix_Shear_doc},
 | |
| 	{"Translation", (PyCFunction) C_Matrix_Translation, METH_O | METH_CLASS, C_Matrix_Translation_doc},
 | |
| 	{"OrthoProjection", (PyCFunction) C_Matrix_OrthoProjection,  METH_VARARGS | METH_CLASS, C_Matrix_OrthoProjection_doc},
 | |
| 	{NULL, NULL, 0, NULL}
 | |
| };
 | |
| 
 | |
| /*------------------PY_OBECT DEFINITION--------------------------*/
 | |
| static char matrix_doc[] =
 | |
| "This object gives access to Matrices in Blender.";
 | |
| 
 | |
| PyTypeObject matrix_Type = {
 | |
| 	PyVarObject_HEAD_INIT(NULL, 0)
 | |
| 	"matrix",						/*tp_name*/
 | |
| 	sizeof(MatrixObject),			/*tp_basicsize*/
 | |
| 	0,								/*tp_itemsize*/
 | |
| 	(destructor)BaseMathObject_dealloc,		/*tp_dealloc*/
 | |
| 	0,								/*tp_print*/
 | |
| 	0,								/*tp_getattr*/
 | |
| 	0,								/*tp_setattr*/
 | |
| 	0,								/*tp_compare*/
 | |
| 	(reprfunc) Matrix_repr,			/*tp_repr*/
 | |
| 	&Matrix_NumMethods,				/*tp_as_number*/
 | |
| 	&Matrix_SeqMethods,				/*tp_as_sequence*/
 | |
| 	&Matrix_AsMapping,				/*tp_as_mapping*/
 | |
| 	0,								/*tp_hash*/
 | |
| 	0,								/*tp_call*/
 | |
| 	0,								/*tp_str*/
 | |
| 	0,								/*tp_getattro*/
 | |
| 	0,								/*tp_setattro*/
 | |
| 	0,								/*tp_as_buffer*/
 | |
| 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
 | |
| 	matrix_doc,						/*tp_doc*/
 | |
| 	0,								/*tp_traverse*/
 | |
| 	0,								/*tp_clear*/
 | |
| 	(richcmpfunc)Matrix_richcmpr,	/*tp_richcompare*/
 | |
| 	0,								/*tp_weaklistoffset*/
 | |
| 	0,								/*tp_iter*/
 | |
| 	0,								/*tp_iternext*/
 | |
| 	Matrix_methods,					/*tp_methods*/
 | |
| 	0,								/*tp_members*/
 | |
| 	Matrix_getseters,				/*tp_getset*/
 | |
| 	0,								/*tp_base*/
 | |
| 	0,								/*tp_dict*/
 | |
| 	0,								/*tp_descr_get*/
 | |
| 	0,								/*tp_descr_set*/
 | |
| 	0,								/*tp_dictoffset*/
 | |
| 	0,								/*tp_init*/
 | |
| 	0,								/*tp_alloc*/
 | |
| 	Matrix_new,						/*tp_new*/
 | |
| 	0,								/*tp_free*/
 | |
| 	0,								/*tp_is_gc*/
 | |
| 	0,								/*tp_bases*/
 | |
| 	0,								/*tp_mro*/
 | |
| 	0,								/*tp_cache*/
 | |
| 	0,								/*tp_subclasses*/
 | |
| 	0,								/*tp_weaklist*/
 | |
| 	0								/*tp_del*/
 | |
| };
 | |
| 
 | |
| /*------------------------newMatrixObject (internal)-------------
 | |
| creates a new matrix object
 | |
| self->matrix     self->contiguous_ptr (reference to data.xxx)
 | |
| 	   [0]------------->[0]
 | |
| 						[1]
 | |
| 						[2]
 | |
| 	   [1]------------->[3]
 | |
| 						[4]
 | |
| 						[5]
 | |
| 				 ....
 | |
| self->matrix[1][1] = self->contigPtr[4] */
 | |
| 
 | |
| /*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
 | |
|  (i.e. it was allocated elsewhere by MEM_mallocN())
 | |
|   pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
 | |
|  (i.e. it must be created here with PyMEM_malloc())*/
 | |
| PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type, PyTypeObject *base_type)
 | |
| {
 | |
| 	MatrixObject *self;
 | |
| 	int x, row, col;
 | |
| 
 | |
| 	/*matrix objects can be any 2-4row x 2-4col matrix*/
 | |
| 	if(rowSize < 2 || rowSize > 4 || colSize < 2 || colSize > 4){
 | |
| 		PyErr_SetString(PyExc_RuntimeError, "matrix(): row and column sizes must be between 2 and 4");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(base_type)	self = (MatrixObject *)base_type->tp_alloc(base_type, 0);
 | |
| 	else			self = PyObject_NEW(MatrixObject, &matrix_Type);
 | |
| 
 | |
| 	self->rowSize = rowSize;
 | |
| 	self->colSize = colSize;
 | |
| 	
 | |
| 	/* init callbacks as NULL */
 | |
| 	self->cb_user= NULL;
 | |
| 	self->cb_type= self->cb_subtype= 0;
 | |
| 
 | |
| 	if(type == Py_WRAP){
 | |
| 		self->contigPtr = mat;
 | |
| 		/*pointer array points to contigous memory*/
 | |
| 		for(x = 0; x < rowSize; x++) {
 | |
| 			self->matrix[x] = self->contigPtr + (x * colSize);
 | |
| 		}
 | |
| 		self->wrapped = Py_WRAP;
 | |
| 	}else if (type == Py_NEW){
 | |
| 		self->contigPtr = PyMem_Malloc(rowSize * colSize * sizeof(float));
 | |
| 		if(self->contigPtr == NULL) { /*allocation failure*/
 | |
| 			PyErr_SetString( PyExc_MemoryError, "matrix(): problem allocating pointer space\n");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		/*pointer array points to contigous memory*/
 | |
| 		for(x = 0; x < rowSize; x++) {
 | |
| 			self->matrix[x] = self->contigPtr + (x * colSize);
 | |
| 		}
 | |
| 		/*parse*/
 | |
| 		if(mat) {	/*if a float array passed*/
 | |
| 			for(row = 0; row < rowSize; row++) {
 | |
| 				for(col = 0; col < colSize; col++) {
 | |
| 					self->matrix[row][col] = mat[(row * colSize) + col];
 | |
| 				}
 | |
| 			}
 | |
| 		} else if (rowSize == colSize ) { /*or if no arguments are passed return identity matrix for square matrices */
 | |
| 			Matrix_Identity(self);
 | |
| 			Py_DECREF(self);
 | |
| 		}
 | |
| 		self->wrapped = Py_NEW;
 | |
| 	}else{ /*bad type*/
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return (PyObject *) self;
 | |
| }
 | |
| 
 | |
| PyObject *newMatrixObject_cb(PyObject *cb_user, int rowSize, int colSize, int cb_type, int cb_subtype)
 | |
| {
 | |
| 	MatrixObject *self= (MatrixObject *)newMatrixObject(NULL, rowSize, colSize, Py_NEW, NULL);
 | |
| 	if(self) {
 | |
| 		Py_INCREF(cb_user);
 | |
| 		self->cb_user=			cb_user;
 | |
| 		self->cb_type=			(unsigned char)cb_type;
 | |
| 		self->cb_subtype=		(unsigned char)cb_subtype;
 | |
| 	}
 | |
| 	return (PyObject *) self;
 | |
| }
 | |
| 
 | |
| //----------------column_vector_multiplication (internal)---------
 | |
| //COLUMN VECTOR Multiplication (Matrix X Vector)
 | |
| // [1][4][7]   [a]
 | |
| // [2][5][8] * [b]
 | |
| // [3][6][9]   [c]
 | |
| //vector/matrix multiplication IS NOT COMMUTATIVE!!!!
 | |
| static PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec)
 | |
| {
 | |
| 	float vecNew[4], vecCopy[4];
 | |
| 	double dot = 0.0f;
 | |
| 	int x, y, z = 0;
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(mat) || !BaseMath_ReadCallback(vec))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	if(mat->rowSize != vec->size){
 | |
| 		if(mat->rowSize == 4 && vec->size != 3){
 | |
| 			PyErr_SetString(PyExc_AttributeError, "matrix * vector: matrix row size and vector size must be the same");
 | |
| 			return NULL;
 | |
| 		}else{
 | |
| 			vecCopy[3] = 1.0f;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for(x = 0; x < vec->size; x++){
 | |
| 		vecCopy[x] = vec->vec[x];
 | |
| 	}
 | |
| 	vecNew[3] = 1.0f;
 | |
| 
 | |
| 	for(x = 0; x < mat->colSize; x++) {
 | |
| 		for(y = 0; y < mat->rowSize; y++) {
 | |
| 			dot += mat->matrix[y][x] * vecCopy[y];
 | |
| 		}
 | |
| 		vecNew[z++] = (float)dot;
 | |
| 		dot = 0.0f;
 | |
| 	}
 | |
| 	return newVectorObject(vecNew, vec->size, Py_NEW, NULL);
 | |
| }
 |