This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/bmesh/operators/utils.c

1301 lines
32 KiB
C

#include "MEM_guardedalloc.h"
#include "BKE_customdata.h"
#include "DNA_listBase.h"
#include "DNA_customdata_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include <string.h>
#include "BKE_utildefines.h"
#include "BKE_mesh.h"
#include "BKE_global.h"
#include "BKE_DerivedMesh.h"
#include "BKE_cdderivedmesh.h"
#include "BLI_editVert.h"
#include "mesh_intern.h"
#include "ED_mesh.h"
#include "BLI_math.h"
#include "BLI_array.h"
#include "BLI_blenlib.h"
#include "BLI_edgehash.h"
#include "BLI_heap.h"
#include "bmesh.h"
/*
* UTILS.C
*
* utility bmesh operators, e.g. transform,
* translate, rotate, scale, etc.
*
*/
void bmesh_makevert_exec(BMesh *bm, BMOperator *op)
{
float vec[3];
BMO_Get_Vec(op, "co", vec);
BMO_SetFlag(bm, BM_Make_Vert(bm, vec, NULL), 1);
BMO_Flag_To_Slot(bm, op, "newvertout", 1, BM_VERT);
}
void bmesh_transform_exec(BMesh *bm, BMOperator *op)
{
BMOIter iter;
BMVert *v;
float mat[4][4];
BMO_Get_Mat4(op, "mat", mat);
BMO_ITER(v, &iter, bm, op, "verts", BM_VERT) {
mul_m4_v3(mat, v->co);
}
}
void bmesh_translate_exec(BMesh *bm, BMOperator *op)
{
float mat[4][4], vec[3];
BMO_Get_Vec(op, "vec", vec);
unit_m4(mat);
VECCOPY(mat[3], vec);
BMO_CallOpf(bm, "transform mat=%m4 verts=%s", mat, op, "verts");
}
void bmesh_scale_exec(BMesh *bm, BMOperator *op)
{
float mat[3][3], vec[3];
BMO_Get_Vec(op, "vec", vec);
unit_m3(mat);
mat[0][0] = vec[0];
mat[1][1] = vec[1];
mat[2][2] = vec[2];
BMO_CallOpf(bm, "transform mat=%m3 verts=%s", mat, op, "verts");
}
void bmesh_rotate_exec(BMesh *bm, BMOperator *op)
{
float vec[3];
BMO_Get_Vec(op, "cent", vec);
/*there has to be a proper matrix way to do this, but
this is how editmesh did it and I'm too tired to think
through the math right now.*/
mul_v3_fl(vec, -1);
BMO_CallOpf(bm, "translate verts=%s vec=%v", op, "verts", vec);
BMO_CallOpf(bm, "transform mat=%s verts=%s", op, "mat", op, "verts");
mul_v3_fl(vec, -1);
BMO_CallOpf(bm, "translate verts=%s vec=%v", op, "verts", vec);
}
void bmesh_reversefaces_exec(BMesh *bm, BMOperator *op)
{
BMOIter siter;
BMFace *f;
BMO_ITER(f, &siter, bm, op, "faces", BM_FACE) {
BM_flip_normal(bm, f);
}
}
void bmesh_edgerotate_exec(BMesh *bm, BMOperator *op)
{
BMOIter siter;
BMEdge *e, *e2;
int ccw = BMO_Get_Int(op, "ccw");
BMO_ITER(e, &siter, bm, op, "edges", BM_EDGE) {
if (!(e2 = BM_Rotate_Edge(bm, e, ccw))) {
BMO_RaiseError(bm, op, BMERR_INVALID_SELECTION, "Could not rotate edge");
return;
}
BMO_SetFlag(bm, e2, 1);
}
BMO_Flag_To_Slot(bm, op, "edgeout", 1, BM_EDGE);
}
#define SEL_FLAG 1
#define SEL_ORIG 2
static void bmesh_regionextend_extend(BMesh *bm, BMOperator *op, int usefaces)
{
BMVert *v;
BMEdge *e;
BMIter eiter;
BMOIter siter;
if (!usefaces) {
BMO_ITER(v, &siter, bm, op, "geom", BM_VERT) {
BM_ITER(e, &eiter, bm, BM_EDGES_OF_VERT, v) {
if (!BMO_TestFlag(bm, e, SEL_ORIG))
break;
}
if (e) {
BM_ITER(e, &eiter, bm, BM_EDGES_OF_VERT, v) {
BMO_SetFlag(bm, e, SEL_FLAG);
BMO_SetFlag(bm, BM_OtherEdgeVert(e, v), SEL_FLAG);
}
}
}
} else {
BMIter liter, fiter;
BMFace *f, *f2;
BMLoop *l;
BMO_ITER(f, &siter, bm, op, "geom", BM_FACE) {
BM_ITER(l, &liter, bm, BM_LOOPS_OF_FACE, f) {
BM_ITER(f2, &fiter, bm, BM_FACES_OF_EDGE, l->e) {
if (!BMO_TestFlag(bm, f2, SEL_ORIG))
BMO_SetFlag(bm, f2, SEL_FLAG);
}
}
}
}
}
static void bmesh_regionextend_constrict(BMesh *bm, BMOperator *op, int usefaces)
{
BMVert *v;
BMEdge *e;
BMIter eiter;
BMOIter siter;
if (!usefaces) {
BMO_ITER(v, &siter, bm, op, "geom", BM_VERT) {
BM_ITER(e, &eiter, bm, BM_EDGES_OF_VERT, v) {
if (!BMO_TestFlag(bm, e, SEL_ORIG))
break;
}
if (e) {
BMO_SetFlag(bm, v, SEL_FLAG);
BM_ITER(e, &eiter, bm, BM_EDGES_OF_VERT, v) {
BMO_SetFlag(bm, e, SEL_FLAG);
}
}
}
} else {
BMIter liter, fiter;
BMFace *f, *f2;
BMLoop *l;
BMO_ITER(f, &siter, bm, op, "geom", BM_FACE) {
BM_ITER(l, &liter, bm, BM_LOOPS_OF_FACE, f) {
BM_ITER(f2, &fiter, bm, BM_FACES_OF_EDGE, l->e) {
if (!BMO_TestFlag(bm, f2, SEL_ORIG)) {
BMO_SetFlag(bm, f, SEL_FLAG);
break;
}
}
}
}
}
}
void bmesh_regionextend_exec(BMesh *bm, BMOperator *op)
{
int usefaces = BMO_Get_Int(op, "usefaces");
int constrict = BMO_Get_Int(op, "constrict");
BMO_Flag_Buffer(bm, op, "geom", SEL_ORIG, BM_ALL);
if (constrict)
bmesh_regionextend_constrict(bm, op, usefaces);
else
bmesh_regionextend_extend(bm, op, usefaces);
BMO_Flag_To_Slot(bm, op, "geomout", SEL_FLAG, BM_ALL);
}
/********* righthand faces implementation ********/
#define FACE_VIS 1
#define FACE_FLAG 2
#define FACE_MARK 4
/* NOTE: these are the original righthandfaces comment in editmesh_mods.c,
copied here for reference.
*/
/* based at a select-connected to witness loose objects */
/* count per edge the amount of faces */
/* find the ultimate left, front, upper face (not manhattan dist!!) */
/* also evaluate both triangle cases in quad, since these can be non-flat */
/* put normal to the outside, and set the first direction flags in edges */
/* then check the object, and set directions / direction-flags: but only for edges with 1 or 2 faces */
/* this is in fact the 'select connected' */
/* in case (selected) faces were not done: start over with 'find the ultimate ...' */
/*note: this function uses recursion, which is a little unusual for a bmop
function, but acceptable I think.*/
void bmesh_righthandfaces_exec(BMesh *bm, BMOperator *op)
{
BMIter liter, liter2;
BMOIter siter;
BMFace *f, *startf, **fstack = NULL;
BLI_array_declare(fstack);
BMLoop *l, *l2;
float maxx, cent[3];
int i, maxi;
startf= NULL;
maxx= -1.0e10;
BMO_Flag_Buffer(bm, op, "faces", FACE_FLAG, BM_FACE);
/*find a starting face*/
BMO_ITER(f, &siter, bm, op, "faces", BM_FACE) {
if (BMO_TestFlag(bm, f, FACE_VIS))
continue;
if (!startf) startf = f;
BM_Compute_Face_Center(bm, f, cent);
cent[0] = cent[0]*cent[0] + cent[1]*cent[1] + cent[2]*cent[2];
if (cent[0] > maxx) {
maxx = cent[0];
startf = f;
}
}
if (!startf) return;
BM_Compute_Face_Center(bm, startf, cent);
/*make sure the starting face has the correct winding*/
if (cent[0]*startf->no[0] + cent[1]*startf->no[1] + cent[2]*startf->no[2] < 0.0)
BM_flip_normal(bm, startf);
/*now that we've found our starting face, make all connected faces
have the same winding. this is done recursively, using a manual
stack (if we use simple function recursion, we'd end up overloading
the stack on large meshes).*/
BLI_array_growone(fstack);
fstack[0] = startf;
BMO_SetFlag(bm, startf, FACE_VIS);
i = 0;
maxi = 1;
while (i >= 0) {
f = fstack[i];
i--;
BM_ITER(l, &liter, bm, BM_LOOPS_OF_FACE, f) {
BM_ITER(l2, &liter2, bm, BM_LOOPS_OF_LOOP, l) {
if (!BMO_TestFlag(bm, l2->f, FACE_FLAG) || l2 == l)
continue;
if (!BMO_TestFlag(bm, l2->f, FACE_VIS)) {
BMO_SetFlag(bm, l2->f, FACE_VIS);
i++;
if (l2->v == l->v)
BM_flip_normal(bm, l2->f);
if (i == maxi) {
BLI_array_growone(fstack);
maxi++;
}
fstack[i] = l2->f;
}
}
}
}
BLI_array_free(fstack);
/*check if we have faces yet to do. if so, recurse.*/
BMO_ITER(f, &siter, bm, op, "faces", BM_FACE) {
if (!BMO_TestFlag(bm, f, FACE_VIS)) {
bmesh_righthandfaces_exec(bm, op);
break;
}
}
}
void bmesh_vertexsmooth_exec(BMesh *bm, BMOperator *op)
{
BMOIter siter;
BMIter iter;
BMVert *v;
BMEdge *e;
BLI_array_declare(cos);
float (*cos)[3] = NULL;
float *co, *co2, clipdist = BMO_Get_Float(op, "clipdist");
int i, j, clipx, clipy, clipz;
clipx = BMO_Get_Int(op, "mirror_clip_x");
clipy = BMO_Get_Int(op, "mirror_clip_y");
clipz = BMO_Get_Int(op, "mirror_clip_z");
i = 0;
BMO_ITER(v, &siter, bm, op, "verts", BM_VERT) {
BLI_array_growone(cos);
co = cos[i];
j = 0;
BM_ITER(e, &iter, bm, BM_EDGES_OF_VERT, v) {
co2 = BM_OtherEdgeVert(e, v)->co;
VECADD(co, co, co2);
j += 1;
}
if (!j) {
VECCOPY(co, v->co);
i++;
continue;
}
co[0] /= (float)j;
co[1] /= (float)j;
co[2] /= (float)j;
co[0] = v->co[0]*0.5 + co[0]*0.5;
co[1] = v->co[1]*0.5 + co[1]*0.5;
co[2] = v->co[2]*0.5 + co[2]*0.5;
if (clipx && fabs(v->co[0]) < clipdist)
co[0] = 0.0f;
if (clipy && fabs(v->co[1]) < clipdist)
co[1] = 0.0f;
if (clipz && fabs(v->co[2]) < clipdist)
co[2] = 0.0f;
i++;
}
i = 0;
BMO_ITER(v, &siter, bm, op, "verts", BM_VERT) {
VECCOPY(v->co, cos[i]);
i++;
}
BLI_array_free(cos);
}
/*
** compute the centroid of an ngon
**
** NOTE: This should probably go to bmesh_polygon.c and replace the function that compute its center
** basing on bounding box
*/
static void ngon_center(float *v, BMesh *bm, BMFace *f)
{
BMIter liter;
BMLoop *l;
v[0] = v[1] = v[2] = 0;
BM_ITER(l, &liter, bm, BM_LOOPS_OF_FACE, f) {
add_v3_v3v3(v, v, l->v->co);
}
if( f->len )
{
v[0] /= f->len;
v[1] /= f->len;
v[2] /= f->len;
}
}
/*
** compute the perimeter of an ngon
**
** NOTE: This should probably go to bmesh_polygon.c
*/
static float ngon_perimeter(BMesh *bm, BMFace *f)
{
BMIter liter;
BMLoop *l;
int num_verts = 0;
float v[3], sv[3];
float perimeter = 0.0f;
BM_ITER(l, &liter, bm, BM_LOOPS_OF_FACE, f) {
if( num_verts == 0 ) {
sv[0] = v[0] = l->v->co[0];
sv[1] = v[1] = l->v->co[1];
sv[2] = v[2] = l->v->co[2];
num_verts++;
} else {
perimeter += len_v3v3(v, l->v->co);
v[0] = l->v->co[0];
v[1] = l->v->co[1];
v[2] = l->v->co[2];
num_verts++;
}
}
perimeter += len_v3v3(v, sv);
return perimeter;
}
/*
** compute the fake surface of an ngon
** This is done by decomposing the ngon into triangles who share the centroid of the ngon
** while this method is far from being exact, it should garantee an invariance.
**
** NOTE: This should probably go to bmesh_polygon.c
*/
static float ngon_fake_area(BMesh *bm, BMFace *f)
{
BMIter liter;
BMLoop *l;
int num_verts = 0;
float v[3], sv[3], c[3];
float area = 0.0f;
ngon_center(c, bm, f);
BM_ITER(l, &liter, bm, BM_LOOPS_OF_FACE, f) {
if( num_verts == 0 ) {
sv[0] = v[0] = l->v->co[0];
sv[1] = v[1] = l->v->co[1];
sv[2] = v[2] = l->v->co[2];
num_verts++;
} else {
area += area_tri_v3(v, c, l->v->co);
v[0] = l->v->co[0];
v[1] = l->v->co[1];
v[2] = l->v->co[2];
num_verts++;
}
}
area += area_tri_v3(v, c, sv);
return area;
}
/*
** extra face data (computed data)
*/
typedef struct tmp_face_ext {
BMFace *f; /* the face */
float c[3]; /* center */
union {
float area; /* area */
float perim; /* perimeter */
float d; /* 4th component of plane (the first three being the normal) */
struct Image *t; /* image pointer */
};
} tmp_face_ext;
/*
** Select similar faces, the choices are in the enum in source/blender/bmesh/bmesh_operators.h
** We select either similar faces based on material, image, area, perimeter, normal, or the coplanar faces
*/
void bmesh_similarfaces_exec(BMesh *bm, BMOperator *op)
{
BMIter fm_iter;
BMFace *fs, *fm;
BMOIter fs_iter;
int num_sels = 0, num_total = 0, i = 0, idx = 0;
float angle = 0.0f;
tmp_face_ext *f_ext = NULL;
int *indices = NULL;
float t_no[3]; /* temporary normal */
int type = BMO_Get_Int(op, "type");
float thresh = BMO_Get_Float(op, "thresh");
num_total = BM_Count_Element(bm, BM_FACE);
/*
** The first thing to do is to iterate through all the the selected items and mark them since
** they will be in the selection anyway.
** This will increase performance, (especially when the number of originaly selected faces is high)
** so the overall complexity will be less than $O(mn)$ where is the total number of selected faces,
** and n is the total number of faces
*/
BMO_ITER(fs, &fs_iter, bm, op, "faces", BM_FACE) {
if (!BMO_TestFlag(bm, fs, FACE_MARK)) { /* is this really needed ? */
BMO_SetFlag(bm, fs, FACE_MARK);
num_sels++;
}
}
/* allocate memory for the selected faces indices and for all temporary faces */
indices = (int*)MEM_callocN(sizeof(int) * num_sels, "face indices util.c");
f_ext = (tmp_face_ext*)MEM_callocN(sizeof(tmp_face_ext) * num_total, "f_ext util.c");
/* loop through all the faces and fill the faces/indices structure */
BM_ITER(fm, &fm_iter, bm, BM_FACES_OF_MESH, NULL) {
f_ext[i].f = fm;
if (BMO_TestFlag(bm, fm, FACE_MARK)) {
indices[idx] = i;
idx++;
}
i++;
}
/*
** Save us some computation burden: In case of perimeter/area/coplanar selection we compute
** only once.
*/
if( type == SIMFACE_PERIMETER || type == SIMFACE_AREA || type == SIMFACE_COPLANAR || type == SIMFACE_IMAGE ) {
for( i = 0; i < num_total; i++ ) {
switch( type ) {
case SIMFACE_PERIMETER:
/* set the perimeter */
f_ext[i].perim = ngon_perimeter(bm, f_ext[i].f);
break;
case SIMFACE_COPLANAR:
/* compute the center of the polygon */
ngon_center(f_ext[i].c, bm, f_ext[i].f);
/* normalize the polygon normal */
copy_v3_v3(t_no, f_ext[i].f->no);
normalize_v3(t_no);
/* compute the plane distance */
f_ext[i].d = dot_v3v3(t_no, f_ext[i].c);
break;
case SIMFACE_AREA:
f_ext[i].area = ngon_fake_area(bm, f_ext[i].f);
break;
case SIMFACE_IMAGE:
f_ext[i].t = NULL;
if( CustomData_has_layer(&(bm->pdata), CD_MTEXPOLY) ) {
MTexPoly *mtpoly = CustomData_bmesh_get(&bm->pdata, f_ext[i].f->head.data, CD_MTEXPOLY);
f_ext[i].t = mtpoly->tpage;
}
break;
}
}
}
/* now select the rest (if any) */
for( i = 0; i < num_total; i++ ) {
fm = f_ext[i].f;
if( !BMO_TestFlag(bm, fm, FACE_MARK) && !BM_TestHFlag(fm, BM_HIDDEN) ) {
int cont = 1;
for( idx = 0; idx < num_sels && cont == 1; idx++ ) {
fs = f_ext[indices[idx]].f;
switch( type ) {
case SIMFACE_MATERIAL:
if( fm->mat_nr == fs->mat_nr ) {
BMO_SetFlag(bm, fm, FACE_MARK);
cont = 0;
}
break;
case SIMFACE_IMAGE:
if( f_ext[i].t == f_ext[indices[idx]].t ) {
BMO_SetFlag(bm, fm, FACE_MARK);
cont = 0;
}
break;
case SIMFACE_NORMAL:
angle = RAD2DEG(angle_v2v2(fs->no, fm->no)); /* if the angle between the normals -> 0 */
if( angle / 180.0 <= thresh ) {
BMO_SetFlag(bm, fm, FACE_MARK);
cont = 0;
}
break;
case SIMFACE_COPLANAR:
angle = RAD2DEG(angle_v2v2(fs->no, fm->no)); /* angle -> 0 */
if( angle / 180.0 <= thresh ) { /* and dot product difference -> 0 */
if( fabs(f_ext[i].d - f_ext[indices[idx]].d) <= thresh ) {
BMO_SetFlag(bm, fm, FACE_MARK);
cont = 0;
}
}
break;
case SIMFACE_AREA:
if( fabs(f_ext[i].area - f_ext[indices[idx]].area) <= thresh ) {
BMO_SetFlag(bm, fm, FACE_MARK);
cont = 0;
}
break;
case SIMFACE_PERIMETER:
if( fabs(f_ext[i].perim - f_ext[indices[idx]].perim) <= thresh ) {
BMO_SetFlag(bm, fm, FACE_MARK);
cont = 0;
}
break;
}
}
}
}
MEM_freeN(f_ext);
MEM_freeN(indices);
/* transfer all marked faces to the output slot */
BMO_Flag_To_Slot(bm, op, "faceout", FACE_MARK, BM_FACE);
}
/******************************************************************************
** Similar Edges
******************************************************************************/
#define EDGE_MARK 1
/*
** compute the angle of an edge (i.e. the angle between two faces)
*/
static float edge_angle(BMesh *bm, BMEdge *e)
{
BMIter fiter;
BMFace *f;
int num_faces = 0;
float n1[3], n2[3];
float angle = 0.0f;
BM_ITER(f, &fiter, bm, BM_FACES_OF_EDGE, e) {
if( num_faces == 0 ) {
n1[0] = f->no[0];
n1[1] = f->no[1];
n1[2] = f->no[2];
num_faces++;
} else {
n2[0] = f->no[0];
n2[1] = f->no[1];
n2[2] = f->no[2];
num_faces++;
}
}
angle = angle_v2v2(n1, n2);
return angle;
}
/*
** extra edge information
*/
typedef struct tmp_edge_ext {
BMEdge *e;
union {
float dir[3];
float angle; /* angle between the faces*/
};
union {
float length; /* edge length */
int faces; /* faces count */
};
} tmp_edge_ext;
/*
** select similar edges: the choices are in the enum in source/blender/bmesh/bmesh_operators.h
** choices are length, direction, face, ...
*/
void bmesh_similaredges_exec(BMesh *bm, BMOperator *op)
{
BMOIter es_iter; /* selected edges iterator */
BMIter e_iter; /* mesh edges iterator */
BMEdge *es; /* selected edge */
BMEdge *e; /* mesh edge */
int idx = 0, i = 0, f = 0;
int *indices = NULL;
tmp_edge_ext *e_ext = NULL;
float *angles = NULL;
float angle;
int num_sels = 0, num_total = 0;
int type = BMO_Get_Int(op, "type");
float thresh = BMO_Get_Float(op, "thresh");
num_total = BM_Count_Element(bm, BM_EDGE);
/* iterate through all selected edges and mark them */
BMO_ITER(es, &es_iter, bm, op, "edges", BM_EDGE) {
BMO_SetFlag(bm, es, EDGE_MARK);
num_sels++;
}
/* allocate memory for the selected edges indices and for all temporary edges */
indices = (int*)MEM_callocN(sizeof(int) * num_sels, "indices util.c");
e_ext = (tmp_edge_ext*)MEM_callocN(sizeof(tmp_edge_ext) * num_total, "e_ext util.c");
/* loop through all the edges and fill the edges/indices structure */
BM_ITER(e, &e_iter, bm, BM_EDGES_OF_MESH, NULL) {
e_ext[i].e = e;
if (BMO_TestFlag(bm, e, EDGE_MARK)) {
indices[idx] = i;
idx++;
}
i++;
}
/* save us some computation time by doing heavy computation once */
if( type == SIMEDGE_LENGTH || type == SIMEDGE_FACE || type == SIMEDGE_DIR ||
type == SIMEDGE_FACE_ANGLE ) {
for( i = 0; i < num_total; i++ ) {
switch( type ) {
case SIMEDGE_LENGTH: /* compute the length of the edge */
e_ext[i].length = len_v3v3(e_ext[i].e->v1->co, e_ext[i].e->v2->co);
break;
case SIMEDGE_DIR: /* compute the direction */
sub_v3_v3v3(e_ext[i].dir, e_ext[i].e->v1->co, e_ext[i].e->v2->co);
break;
case SIMEDGE_FACE: /* count the faces around the edge */
e_ext[i].faces = BM_Edge_FaceCount(e_ext[i].e);
break;
case SIMEDGE_FACE_ANGLE:
e_ext[i].faces = BM_Edge_FaceCount(e_ext[i].e);
if( e_ext[i].faces == 2 )
e_ext[i].angle = edge_angle(bm, e_ext[i].e);
break;
}
}
}
/* select the edges if any */
for( i = 0; i < num_total; i++ ) {
e = e_ext[i].e;
if( !BMO_TestFlag(bm, e, EDGE_MARK) && !BM_TestHFlag(e, BM_HIDDEN) ) {
int cont = 1;
for( idx = 0; idx < num_sels && cont == 1; idx++ ) {
es = e_ext[indices[idx]].e;
switch( type ) {
case SIMEDGE_LENGTH:
if( fabs(e_ext[i].length - e_ext[indices[idx]].length) <= thresh ) {
BMO_SetFlag(bm, e, EDGE_MARK);
cont = 0;
}
break;
case SIMEDGE_DIR:
/* compute the angle between the two edges */
angle = RAD2DEG(angle_v2v2(e_ext[i].dir, e_ext[indices[idx]].dir));
if( angle > 90.0 ) /* use the smallest angle between the edges */
angle = fabs(angle - 180.0f);
if( angle / 90.0 <= thresh ) {
BMO_SetFlag(bm, e, EDGE_MARK);
cont = 0;
}
break;
case SIMEDGE_FACE:
if( e_ext[i].faces == e_ext[indices[idx]].faces ) {
BMO_SetFlag(bm, e, EDGE_MARK);
cont = 0;
}
break;
case SIMEDGE_FACE_ANGLE:
if( e_ext[i].faces == 2 ) {
if( e_ext[indices[idx]].faces == 2 ) {
if( fabs(e_ext[i].angle - e_ext[indices[idx]].angle) <= thresh ) {
BMO_SetFlag(bm, e, EDGE_MARK);
cont = 0;
}
}
} else cont = 0;
break;
case SIMEDGE_CREASE:
if( fabs(e->crease - es->crease) <= thresh ) {
BMO_SetFlag(bm, e, EDGE_MARK);
cont = 0;
}
break;
case SIMEDGE_SEAM:
if( BM_TestHFlag(e, BM_SEAM) == BM_TestHFlag(es, BM_SEAM) ) {
BMO_SetFlag(bm, e, EDGE_MARK);
cont = 0;
}
break;
case SIMEDGE_SHARP:
if( BM_TestHFlag(e, BM_SHARP) == BM_TestHFlag(es, BM_SHARP) ) {
BMO_SetFlag(bm, e, EDGE_MARK);
cont = 0;
}
break;
}
}
}
}
MEM_freeN(e_ext);
MEM_freeN(indices);
/* transfer all marked edges to the output slot */
BMO_Flag_To_Slot(bm, op, "edgeout", EDGE_MARK, BM_EDGE);
}
/******************************************************************************
** Similar Vertices
******************************************************************************/
#define VERT_MARK 1
typedef struct tmp_vert_ext {
BMVert *v;
union {
int num_faces; /* adjacent faces */
MDeformVert *dvert; /* deform vertex */
};
} tmp_vert_ext;
/*
** select similar vertices: the choices are in the enum in source/blender/bmesh/bmesh_operators.h
** choices are normal, face, vertex group...
*/
void bmesh_similarverts_exec(BMesh *bm, BMOperator *op)
{
BMOIter vs_iter; /* selected verts iterator */
BMIter v_iter; /* mesh verts iterator */
BMVert *vs; /* selected vertex */
BMVert *v; /* mesh vertex */
tmp_vert_ext *v_ext = NULL;
int *indices = NULL;
int num_total = 0, num_sels = 0, i = 0, idx = 0;
int type = BMO_Get_Int(op, "type");
float thresh = BMO_Get_Float(op, "thresh");
num_total = BM_Count_Element(bm, BM_VERT);
/* iterate through all selected edges and mark them */
BMO_ITER(vs, &vs_iter, bm, op, "verts", BM_VERT) {
BMO_SetFlag(bm, vs, VERT_MARK);
num_sels++;
}
/* allocate memory for the selected vertices indices and for all temporary vertices */
indices = (int*)MEM_mallocN(sizeof(int) * num_sels, "vertex indices");
v_ext = (tmp_vert_ext*)MEM_mallocN(sizeof(tmp_vert_ext) * num_total, "vertex extra");
/* loop through all the vertices and fill the vertices/indices structure */
BM_ITER(v, &v_iter, bm, BM_VERTS_OF_MESH, NULL) {
v_ext[i].v = v;
if (BMO_TestFlag(bm, v, VERT_MARK)) {
indices[idx] = i;
idx++;
}
switch( type ) {
case SIMVERT_FACE:
/* calling BM_Vert_FaceCount every time is time consumming, so call it only once per vertex */
v_ext[i].num_faces = BM_Vert_FaceCount(v);
break;
case SIMVERT_VGROUP:
if( CustomData_has_layer(&(bm->vdata),CD_MDEFORMVERT) ) {
v_ext[i].dvert = CustomData_bmesh_get(&bm->vdata, v_ext[i].v->head.data, CD_MDEFORMVERT);
} else v_ext[i].dvert = NULL;
break;
}
i++;
}
/* select the vertices if any */
for( i = 0; i < num_total; i++ ) {
v = v_ext[i].v;
if( !BMO_TestFlag(bm, v, VERT_MARK) && !BM_TestHFlag(v, BM_HIDDEN) ) {
int cont = 1;
for( idx = 0; idx < num_sels && cont == 1; idx++ ) {
vs = v_ext[indices[idx]].v;
switch( type ) {
case SIMVERT_NORMAL:
/* compare the angle between the normals */
if( RAD2DEG(angle_v2v2(v->no, vs->no) / 180.0 <= thresh )) {
BMO_SetFlag(bm, v, VERT_MARK);
cont = 0;
}
break;
case SIMVERT_FACE:
/* number of adjacent faces */
if( v_ext[i].num_faces == v_ext[indices[idx]].num_faces ) {
BMO_SetFlag(bm, v, VERT_MARK);
cont = 0;
}
break;
case SIMVERT_VGROUP:
if( v_ext[i].dvert != NULL && v_ext[indices[idx]].dvert != NULL ) {
int v1, v2;
for( v1 = 0; v1 < v_ext[i].dvert->totweight && cont == 1; v1++ ) {
for( v2 = 0; v2 < v_ext[indices[idx]].dvert->totweight; v2++ ) {
if( v_ext[i].dvert->dw[v1].def_nr == v_ext[indices[idx]].dvert->dw[v2].def_nr ) {
BMO_SetFlag(bm, v, VERT_MARK);
cont = 0;
break;
}
}
}
}
break;
}
}
}
}
MEM_freeN(indices);
MEM_freeN(v_ext);
BMO_Flag_To_Slot(bm, op, "vertout", VERT_MARK, BM_VERT);
}
/******************************************************************************
** Cycle UVs for a face
******************************************************************************/
void bmesh_rotateuvs_exec(BMesh *bm, BMOperator *op)
{
BMOIter fs_iter; /* selected faces iterator */
BMFace *fs; /* current face */
BMIter l_iter; /* iteration loop */
int n;
int dir = BMO_Get_Int(op, "dir");
BMO_ITER(fs, &fs_iter, bm, op, "faces", BM_FACE) {
if( CustomData_has_layer(&(bm->ldata), CD_MLOOPUV) ) {
if( dir == DIRECTION_CW ) { /* same loops direction */
BMLoop *lf; /* current face loops */
MLoopUV *f_luv; /* first face loop uv */
float p_uv[2]; /* previous uvs */
float t_uv[2]; /* tmp uvs */
int n = 0;
BM_ITER(lf, &l_iter, bm, BM_LOOPS_OF_FACE, fs) {
/* current loop uv is the previous loop uv */
MLoopUV *luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPUV);
if( n == 0 ) {
f_luv = luv;
p_uv[0] = luv->uv[0];
p_uv[1] = luv->uv[1];
} else {
t_uv[0] = luv->uv[0];
t_uv[1] = luv->uv[1];
luv->uv[0] = p_uv[0];
luv->uv[1] = p_uv[1];
p_uv[0] = t_uv[0];
p_uv[1] = t_uv[1];
}
n++;
}
f_luv->uv[0] = p_uv[0];
f_luv->uv[1] = p_uv[1];
} else if( dir == DIRECTION_CCW ) { /* counter loop direction */
BMLoop *lf; /* current face loops */
MLoopUV *p_luv; /*previous loop uv */
MLoopUV *luv;
float t_uv[2]; /* current uvs */
int n = 0;
BM_ITER(lf, &l_iter, bm, BM_LOOPS_OF_FACE, fs) {
/* previous loop uv is the current loop uv */
luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPUV);
if( n == 0 ) {
p_luv = luv;
t_uv[0] = luv->uv[0];
t_uv[1] = luv->uv[1];
} else {
p_luv->uv[0] = luv->uv[0];
p_luv->uv[1] = luv->uv[1];
p_luv = luv;
}
n++;
}
luv->uv[0] = t_uv[0];
luv->uv[1] = t_uv[1];
}
}
}
}
/******************************************************************************
** Reverse UVs for a face
******************************************************************************/
void bmesh_reverseuvs_exec(BMesh *bm, BMOperator *op)
{
BMOIter fs_iter; /* selected faces iterator */
BMFace *fs; /* current face */
BMIter l_iter; /* iteration loop */
BLI_array_declare(uvs);
float (*uvs)[2] = NULL;
int max_vert_count = 0;
BMO_ITER(fs, &fs_iter, bm, op, "faces", BM_FACE) {
if( CustomData_has_layer(&(bm->ldata), CD_MLOOPUV) ) {
BMLoop *lf; /* current face loops */
MLoopUV *f_luv; /* first face loop uv */
int num_verts = fs->len;
int i = 0;
BLI_array_empty(uvs);
BM_ITER(lf, &l_iter, bm, BM_LOOPS_OF_FACE, fs) {
MLoopUV *luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPUV);
/* current loop uv is the previous loop uv */
BLI_array_growone(uvs);
uvs[i][0] = luv->uv[0];
uvs[i][1] = luv->uv[1];
i++;
}
/* now that we have the uvs in the array, reverse! */
i = 0;
BM_ITER(lf, &l_iter, bm, BM_LOOPS_OF_FACE, fs) {
/* current loop uv is the previous loop uv */
MLoopUV *luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPUV);
luv->uv[0] = uvs[(fs->len - i - 1)][0];
luv->uv[1] = uvs[(fs->len - i - 1)][1];
i++;
}
}
}
BLI_array_free(uvs);
}
/******************************************************************************
** Cycle colors for a face
******************************************************************************/
void bmesh_rotatecolors_exec(BMesh *bm, BMOperator *op)
{
BMOIter fs_iter; /* selected faces iterator */
BMFace *fs; /* current face */
BMIter l_iter; /* iteration loop */
int n;
int dir = BMO_Get_Int(op, "dir");
BMO_ITER(fs, &fs_iter, bm, op, "faces", BM_FACE) {
if( CustomData_has_layer(&(bm->ldata), CD_MLOOPCOL) ) {
if( dir == DIRECTION_CW ) { /* same loops direction */
BMLoop *lf; /* current face loops */
MLoopCol *f_lcol; /* first face loop color */
MLoopCol p_col; /* previous color */
MLoopCol t_col; /* tmp color */
int n = 0;
BM_ITER(lf, &l_iter, bm, BM_LOOPS_OF_FACE, fs) {
/* current loop color is the previous loop color */
MLoopCol *luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPCOL);
if( n == 0 ) {
f_lcol = luv;
p_col = *luv;
} else {
t_col = *luv;
*luv = p_col;
p_col = t_col;
}
n++;
}
*f_lcol = p_col;
} else if( dir == DIRECTION_CCW ) { /* counter loop direction */
BMLoop *lf; /* current face loops */
MLoopCol *p_lcol; /*previous loop color */
MLoopCol *lcol;
MLoopCol t_col; /* current color */
int n = 0;
BM_ITER(lf, &l_iter, bm, BM_LOOPS_OF_FACE, fs) {
/* previous loop color is the current loop color */
lcol = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPCOL);
if( n == 0 ) {
p_lcol = lcol;
t_col = *lcol;
} else {
*p_lcol = *lcol;
p_lcol = lcol;
}
n++;
}
*lcol = t_col;
}
}
}
}
/******************************************************************************
** Reverse colors for a face
******************************************************************************/
void bmesh_reversecolors_exec(BMesh *bm, BMOperator *op)
{
BMOIter fs_iter; /* selected faces iterator */
BMFace *fs; /* current face */
BMIter l_iter; /* iteration loop */
BLI_array_declare(cols);
MLoopCol *cols = NULL;
int max_vert_count = 0;
BMO_ITER(fs, &fs_iter, bm, op, "faces", BM_FACE) {
if( CustomData_has_layer(&(bm->ldata), CD_MLOOPCOL) ) {
BMLoop *lf; /* current face loops */
MLoopCol *f_lcol; /* first face loop color */
int num_verts = fs->len;
int i = 0;
BLI_array_empty(cols);
BM_ITER(lf, &l_iter, bm, BM_LOOPS_OF_FACE, fs) {
MLoopCol *lcol = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPCOL);
/* current loop uv is the previous loop color */
BLI_array_growone(cols);
cols[i] = *lcol;
i++;
}
/* now that we have the uvs in the array, reverse! */
i = 0;
BM_ITER(lf, &l_iter, bm, BM_LOOPS_OF_FACE, fs) {
/* current loop uv is the previous loop color */
MLoopCol *lcol = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPCOL);
*lcol = cols[(fs->len - i - 1)];
i++;
}
}
}
BLI_array_free(cols);
}
/******************************************************************************
** shortest vertex path select
******************************************************************************/
typedef struct element_node {
BMVert *v; /* vertex */
BMVert *parent; /* node parent id */
float weight; /* node weight */
HeapNode *hn; /* heap node */
} element_node;
void bmesh_vertexshortestpath_exec(BMesh *bm, BMOperator *op)
{
BMOIter vs_iter, vs2_iter; /* selected verts iterator */
BMIter v_iter; /* mesh verts iterator */
BMVert *vs, *sv, *ev; /* starting vertex, ending vertex */
BMVert *v; /* mesh vertex */
Heap *h = NULL;
element_node *vert_list = NULL;
int num_total = 0, num_sels = 0, i = 0;
int type = BMO_Get_Int(op, "type");
BMO_ITER(vs, &vs_iter, bm, op, "startv", BM_VERT)
sv = vs;
BMO_ITER(vs, &vs_iter, bm, op, "endv", BM_VERT)
ev = vs;
num_total = BM_Count_Element(bm, BM_VERT);
/* allocate memory for the nodes */
vert_list = (element_node*)MEM_mallocN(sizeof(element_node) * num_total, "vertex nodes");
/* iterate through all the mesh vertices */
/* loop through all the vertices and fill the vertices/indices structure */
i = 0;
BM_ITER(v, &v_iter, bm, BM_VERTS_OF_MESH, NULL) {
vert_list[i].v = v;
vert_list[i].parent = NULL;
vert_list[i].weight = FLT_MAX;
BMINDEX_SET(v, i);
i++;
}
/*
** we now have everything we need, start Dijkstra path finding algorithm
*/
/* set the distance/weight of the start vertex to 0 */
vert_list[BMINDEX_GET(sv)].weight = 0.0f;
h = BLI_heap_new();
for( i = 0; i < num_total; i++ )
vert_list[i].hn = BLI_heap_insert(h, vert_list[i].weight, vert_list[i].v);
while( !BLI_heap_empty(h) ) {
BMEdge *e;
BMIter e_i;
float v_weight;
/* take the vertex with the lowest weight out of the heap */
BMVert *v = (BMVert*)BLI_heap_popmin(h);
if( vert_list[BMINDEX_GET(v)].weight == FLT_MAX ) /* this means that there is no path */
break;
v_weight = vert_list[BMINDEX_GET(v)].weight;
BM_ITER(e, &e_i, bm, BM_EDGES_OF_VERT, v) {
BMVert *u;
float e_weight = v_weight;
if( type == VPATH_SELECT_EDGE_LENGTH )
e_weight += len_v3v3(e->v1->co, e->v2->co);
else e_weight += 1.0f;
u = ( e->v1 == v ) ? e->v2 : e->v1;
if( e_weight < vert_list[BMINDEX_GET(u)].weight ) { /* is this path shorter ? */
/* add it if so */
vert_list[BMINDEX_GET(u)].parent = v;
vert_list[BMINDEX_GET(u)].weight = e_weight;
/* we should do a heap update node function!!! :-/ */
BLI_heap_remove(h, vert_list[BMINDEX_GET(u)].hn);
BLI_heap_insert(h, e_weight, u);
}
}
}
/* now we trace the path (if it exists) */
v = ev;
while( vert_list[BMINDEX_GET(v)].parent != NULL ) {
BMO_SetFlag(bm, v, VERT_MARK);
v = vert_list[BMINDEX_GET(v)].parent;
}
BLI_heap_free(h, NULL);
MEM_freeN(vert_list);
BMO_Flag_To_Slot(bm, op, "vertout", VERT_MARK, BM_VERT);
}