This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/editors/transform/transform.c

5724 lines
131 KiB
C

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <float.h>
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#ifndef WIN32
#include <unistd.h>
#else
#include <io.h>
#endif
#include "MEM_guardedalloc.h"
#include "DNA_anim_types.h"
#include "DNA_armature_types.h"
#include "DNA_action_types.h" /* for some special action-editor settings */
#include "DNA_constraint_types.h"
#include "DNA_ipo_types.h" /* some silly ipo flag */
#include "DNA_listBase.h"
#include "DNA_meshdata_types.h"
#include "DNA_mesh_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h" /* PET modes */
#include "DNA_screen_types.h" /* area dimensions */
#include "DNA_texture_types.h"
#include "DNA_userdef_types.h"
#include "DNA_view3d_types.h"
#include "DNA_space_types.h"
#include "DNA_windowmanager_types.h"
#include "RNA_access.h"
//#include "BIF_editview.h" /* arrows_move_cursor */
#include "BIF_gl.h"
#include "BIF_glutil.h"
//#include "BIF_mywindow.h"
//#include "BIF_resources.h"
//#include "BIF_screen.h"
//#include "BIF_space.h" /* undo */
//#include "BIF_toets.h" /* persptoetsen */
//#include "BIF_mywindow.h" /* warp_pointer */
//#include "BIF_toolbox.h" /* notice */
//#include "BIF_editmesh.h"
//#include "BIF_editsima.h"
//#include "BIF_editparticle.h"
#include "BKE_action.h"
#include "BKE_nla.h"
//#include "BKE_bad_level_calls.h"/* popmenu and error */
#include "BKE_bmesh.h"
#include "BKE_context.h"
#include "BKE_constraint.h"
#include "BKE_global.h"
#include "BKE_particle.h"
#include "BKE_pointcache.h"
#include "BKE_utildefines.h"
#include "BKE_context.h"
#include "BKE_unit.h"
//#include "BSE_view.h"
#include "ED_image.h"
#include "ED_keyframing.h"
#include "ED_screen.h"
#include "ED_space_api.h"
#include "ED_markers.h"
#include "ED_util.h"
#include "ED_view3d.h"
#include "ED_mesh.h"
#include "UI_view2d.h"
#include "WM_types.h"
#include "WM_api.h"
#include "BLI_math.h"
#include "BLI_blenlib.h"
#include "BLI_editVert.h"
#include "BLI_ghash.h"
#include "BLI_linklist.h"
#include "PIL_time.h" /* sleep */
#include "UI_resources.h"
//#include "blendef.h"
//
//#include "mydevice.h"
#include "transform.h"
/* ************************** SPACE DEPENDANT CODE **************************** */
void setTransformViewMatrices(TransInfo *t)
{
if(t->spacetype==SPACE_VIEW3D && t->ar->regiontype == RGN_TYPE_WINDOW) {
RegionView3D *rv3d = t->ar->regiondata;
copy_m4_m4(t->viewmat, rv3d->viewmat);
copy_m4_m4(t->viewinv, rv3d->viewinv);
copy_m4_m4(t->persmat, rv3d->persmat);
copy_m4_m4(t->persinv, rv3d->persinv);
t->persp = rv3d->persp;
}
else {
unit_m4(t->viewmat);
unit_m4(t->viewinv);
unit_m4(t->persmat);
unit_m4(t->persinv);
t->persp = RV3D_ORTHO;
}
calculateCenter2D(t);
}
void convertViewVec(TransInfo *t, float *vec, short dx, short dy)
{
if (t->spacetype==SPACE_VIEW3D) {
if (t->ar->regiontype == RGN_TYPE_WINDOW)
{
window_to_3d_delta(t->ar, vec, dx, dy);
}
}
else if(t->spacetype==SPACE_IMAGE) {
View2D *v2d = t->view;
float divx, divy, aspx, aspy;
ED_space_image_uv_aspect(t->sa->spacedata.first, &aspx, &aspy);
divx= v2d->mask.xmax-v2d->mask.xmin;
divy= v2d->mask.ymax-v2d->mask.ymin;
vec[0]= aspx*(v2d->cur.xmax-v2d->cur.xmin)*(dx)/divx;
vec[1]= aspy*(v2d->cur.ymax-v2d->cur.ymin)*(dy)/divy;
vec[2]= 0.0f;
}
else if(ELEM(t->spacetype, SPACE_IPO, SPACE_NLA)) {
View2D *v2d = t->view;
float divx, divy;
divx= v2d->mask.xmax-v2d->mask.xmin;
divy= v2d->mask.ymax-v2d->mask.ymin;
vec[0]= (v2d->cur.xmax-v2d->cur.xmin)*(dx) / (divx);
vec[1]= (v2d->cur.ymax-v2d->cur.ymin)*(dy) / (divy);
vec[2]= 0.0f;
}
else if(t->spacetype==SPACE_NODE) {
View2D *v2d = &t->ar->v2d;
float divx, divy;
divx= v2d->mask.xmax-v2d->mask.xmin;
divy= v2d->mask.ymax-v2d->mask.ymin;
vec[0]= (v2d->cur.xmax-v2d->cur.xmin)*(dx)/divx;
vec[1]= (v2d->cur.ymax-v2d->cur.ymin)*(dy)/divy;
vec[2]= 0.0f;
}
else if(t->spacetype==SPACE_SEQ) {
View2D *v2d = &t->ar->v2d;
float divx, divy;
divx= v2d->mask.xmax-v2d->mask.xmin;
divy= v2d->mask.ymax-v2d->mask.ymin;
vec[0]= (v2d->cur.xmax-v2d->cur.xmin)*(dx)/divx;
vec[1]= (v2d->cur.ymax-v2d->cur.ymin)*(dy)/divy;
vec[2]= 0.0f;
}
}
void projectIntView(TransInfo *t, float *vec, int *adr)
{
if (t->spacetype==SPACE_VIEW3D) {
if(t->ar->regiontype == RGN_TYPE_WINDOW)
project_int_noclip(t->ar, vec, adr);
}
else if(t->spacetype==SPACE_IMAGE) {
float aspx, aspy, v[2];
ED_space_image_uv_aspect(t->sa->spacedata.first, &aspx, &aspy);
v[0]= vec[0]/aspx;
v[1]= vec[1]/aspy;
UI_view2d_to_region_no_clip(t->view, v[0], v[1], adr, adr+1);
}
else if(ELEM(t->spacetype, SPACE_IPO, SPACE_NLA)) {
int out[2] = {0, 0};
UI_view2d_view_to_region((View2D *)t->view, vec[0], vec[1], out, out+1);
adr[0]= out[0];
adr[1]= out[1];
}
else if(t->spacetype==SPACE_SEQ) { /* XXX not tested yet, but should work */
int out[2] = {0, 0};
UI_view2d_view_to_region((View2D *)t->view, vec[0], vec[1], out, out+1);
adr[0]= out[0];
adr[1]= out[1];
}
}
void projectFloatView(TransInfo *t, float *vec, float *adr)
{
if (t->spacetype==SPACE_VIEW3D) {
if(t->ar->regiontype == RGN_TYPE_WINDOW)
project_float_noclip(t->ar, vec, adr);
}
else if(t->spacetype==SPACE_IMAGE) {
int a[2];
projectIntView(t, vec, a);
adr[0]= a[0];
adr[1]= a[1];
}
else if(ELEM(t->spacetype, SPACE_IPO, SPACE_NLA)) {
int a[2];
projectIntView(t, vec, a);
adr[0]= a[0];
adr[1]= a[1];
}
}
void applyAspectRatio(TransInfo *t, float *vec)
{
SpaceImage *sima= t->sa->spacedata.first;
if ((t->spacetype==SPACE_IMAGE) && (t->mode==TFM_TRANSLATION)) {
float aspx, aspy;
if((sima->flag & SI_COORDFLOATS)==0) {
int width, height;
ED_space_image_size(sima, &width, &height);
vec[0] *= width;
vec[1] *= height;
}
ED_space_image_uv_aspect(sima, &aspx, &aspy);
vec[0] /= aspx;
vec[1] /= aspy;
}
}
void removeAspectRatio(TransInfo *t, float *vec)
{
SpaceImage *sima= t->sa->spacedata.first;
if ((t->spacetype==SPACE_IMAGE) && (t->mode==TFM_TRANSLATION)) {
float aspx, aspy;
if((sima->flag & SI_COORDFLOATS)==0) {
int width, height;
ED_space_image_size(sima, &width, &height);
vec[0] /= width;
vec[1] /= height;
}
ED_space_image_uv_aspect(sima, &aspx, &aspy);
vec[0] *= aspx;
vec[1] *= aspy;
}
}
static void viewRedrawForce(bContext *C, TransInfo *t)
{
if (t->spacetype == SPACE_VIEW3D)
{
/* Do we need more refined tags? */
WM_event_add_notifier(C, NC_OBJECT|ND_TRANSFORM, NULL);
/* for realtime animation record - send notifiers recognised by animation editors */
if ((t->animtimer) && IS_AUTOKEY_ON(t->scene))
WM_event_add_notifier(C, NC_OBJECT|ND_KEYS, NULL);
}
else if (t->spacetype == SPACE_ACTION) {
//SpaceAction *saction= (SpaceAction *)t->sa->spacedata.first;
WM_event_add_notifier(C, NC_ANIMATION|ND_KEYFRAME_EDIT, NULL);
}
else if (t->spacetype == SPACE_IPO) {
//SpaceIpo *sipo= (SpaceIpo *)t->sa->spacedata.first;
WM_event_add_notifier(C, NC_ANIMATION|ND_KEYFRAME_EDIT, NULL);
}
else if (t->spacetype == SPACE_NLA) {
WM_event_add_notifier(C, NC_ANIMATION|ND_NLA_EDIT, NULL);
}
else if(t->spacetype == SPACE_NODE)
{
//ED_area_tag_redraw(t->sa);
WM_event_add_notifier(C, NC_SPACE|ND_SPACE_NODE_VIEW, NULL);
}
else if(t->spacetype == SPACE_SEQ)
{
WM_event_add_notifier(C, NC_SCENE|ND_SEQUENCER, NULL);
}
else if (t->spacetype==SPACE_IMAGE) {
// XXX how to deal with lock?
SpaceImage *sima= (SpaceImage*)t->sa->spacedata.first;
if(sima->lock) WM_event_add_notifier(C, NC_GEOM|ND_DATA, t->obedit->data);
else ED_area_tag_redraw(t->sa);
}
}
static void viewRedrawPost(TransInfo *t)
{
ED_area_headerprint(t->sa, NULL);
#if 0 // TRANSFORM_FIX_ME
if(t->spacetype==SPACE_VIEW3D) {
allqueue(REDRAWBUTSOBJECT, 0);
allqueue(REDRAWVIEW3D, 0);
}
else if(t->spacetype==SPACE_IMAGE) {
allqueue(REDRAWIMAGE, 0);
allqueue(REDRAWVIEW3D, 0);
}
else if(ELEM3(t->spacetype, SPACE_ACTION, SPACE_NLA, SPACE_IPO)) {
allqueue(REDRAWVIEW3D, 0);
allqueue(REDRAWACTION, 0);
allqueue(REDRAWNLA, 0);
allqueue(REDRAWIPO, 0);
allqueue(REDRAWTIME, 0);
allqueue(REDRAWBUTSOBJECT, 0);
}
scrarea_queue_headredraw(curarea);
#endif
}
/* ************************** TRANSFORMATIONS **************************** */
void BIF_selectOrientation() {
#if 0 // TRANSFORM_FIX_ME
short val;
char *str_menu = BIF_menustringTransformOrientation("Orientation");
val= pupmenu(str_menu);
MEM_freeN(str_menu);
if(val >= 0) {
G.vd->twmode = val;
}
#endif
}
static void view_editmove(unsigned short event)
{
#if 0 // TRANSFORM_FIX_ME
int refresh = 0;
/* Regular: Zoom in */
/* Shift: Scroll up */
/* Ctrl: Scroll right */
/* Alt-Shift: Rotate up */
/* Alt-Ctrl: Rotate right */
/* only work in 3D window for now
* In the end, will have to send to event to a 2D window handler instead
*/
if (Trans.flag & T_2D_EDIT)
return;
switch(event) {
case WHEELUPMOUSE:
if( G.qual & LR_SHIFTKEY ) {
if( G.qual & LR_ALTKEY ) {
G.qual &= ~LR_SHIFTKEY;
persptoetsen(PAD2);
G.qual |= LR_SHIFTKEY;
} else {
persptoetsen(PAD2);
}
} else if( G.qual & LR_CTRLKEY ) {
if( G.qual & LR_ALTKEY ) {
G.qual &= ~LR_CTRLKEY;
persptoetsen(PAD4);
G.qual |= LR_CTRLKEY;
} else {
persptoetsen(PAD4);
}
} else if(U.uiflag & USER_WHEELZOOMDIR)
persptoetsen(PADMINUS);
else
persptoetsen(PADPLUSKEY);
refresh = 1;
break;
case WHEELDOWNMOUSE:
if( G.qual & LR_SHIFTKEY ) {
if( G.qual & LR_ALTKEY ) {
G.qual &= ~LR_SHIFTKEY;
persptoetsen(PAD8);
G.qual |= LR_SHIFTKEY;
} else {
persptoetsen(PAD8);
}
} else if( G.qual & LR_CTRLKEY ) {
if( G.qual & LR_ALTKEY ) {
G.qual &= ~LR_CTRLKEY;
persptoetsen(PAD6);
G.qual |= LR_CTRLKEY;
} else {
persptoetsen(PAD6);
}
} else if(U.uiflag & USER_WHEELZOOMDIR)
persptoetsen(PADPLUSKEY);
else
persptoetsen(PADMINUS);
refresh = 1;
break;
}
if (refresh)
setTransformViewMatrices(&Trans);
#endif
}
#if 0
static char *transform_to_undostr(TransInfo *t)
{
switch (t->mode) {
case TFM_TRANSLATION:
return "Translate";
case TFM_ROTATION:
return "Rotate";
case TFM_RESIZE:
return "Scale";
case TFM_TOSPHERE:
return "To Sphere";
case TFM_SHEAR:
return "Shear";
case TFM_WARP:
return "Warp";
case TFM_SHRINKFATTEN:
return "Shrink/Fatten";
case TFM_TILT:
return "Tilt";
case TFM_TRACKBALL:
return "Trackball";
case TFM_PUSHPULL:
return "Push/Pull";
case TFM_BEVEL:
return "Bevel";
case TFM_BWEIGHT:
return "Bevel Weight";
case TFM_CREASE:
return "Crease";
case TFM_BONESIZE:
return "Bone Width";
case TFM_BONE_ENVELOPE:
return "Bone Envelope";
case TFM_TIME_TRANSLATE:
return "Translate Anim. Data";
case TFM_TIME_SCALE:
return "Scale Anim. Data";
case TFM_TIME_SLIDE:
return "Time Slide";
case TFM_BAKE_TIME:
return "Key Time";
case TFM_MIRROR:
return "Mirror";
}
return "Transform";
}
#endif
/* ************************************************* */
/* NOTE: these defines are saved in keymap files, do not change values but just add new ones */
#define TFM_MODAL_CANCEL 1
#define TFM_MODAL_CONFIRM 2
#define TFM_MODAL_TRANSLATE 3
#define TFM_MODAL_ROTATE 4
#define TFM_MODAL_RESIZE 5
#define TFM_MODAL_SNAP_GEARS 6
#define TFM_MODAL_SNAP_GEARS_OFF 7
#define TFM_MODAL_SNAP_GEARS_TOGGLE 8
/* called in transform_ops.c, on each regeneration of keymaps */
void transform_modal_keymap(wmKeyConfig *keyconf)
{
static EnumPropertyItem modal_items[] = {
{TFM_MODAL_CANCEL, "CANCEL", 0, "Cancel", ""},
{TFM_MODAL_CONFIRM, "CONFIRM", 0, "Confirm", ""},
{TFM_MODAL_TRANSLATE, "TRANSLATE", 0, "Translate", ""},
{TFM_MODAL_ROTATE, "ROTATE", 0, "Rotate", ""},
{TFM_MODAL_RESIZE, "RESIZE", 0, "Resize", ""},
{TFM_MODAL_SNAP_GEARS, "SNAP_GEARS", 0, "Snap On", ""},
{TFM_MODAL_SNAP_GEARS_OFF, "SNAP_GEARS_OFF", 0, "Snap Off", ""},
{TFM_MODAL_SNAP_GEARS_TOGGLE, "SNAP_GEARS_TOGGLE", 0, "Snap Toggle", ""},
{0, NULL, 0, NULL, NULL}};
wmKeyMap *keymap= WM_modalkeymap_get(keyconf, "Transform Modal Map");
/* this function is called for each spacetype, only needs to add map once */
if(keymap) return;
keymap= WM_modalkeymap_add(keyconf, "Transform Modal Map", modal_items);
/* items for modal map */
WM_modalkeymap_add_item(keymap, ESCKEY, KM_PRESS, KM_ANY, 0, TFM_MODAL_CANCEL);
WM_modalkeymap_add_item(keymap, LEFTMOUSE, KM_PRESS, KM_ANY, 0, TFM_MODAL_CONFIRM);
WM_modalkeymap_add_item(keymap, RETKEY, KM_PRESS, KM_ANY, 0, TFM_MODAL_CONFIRM);
WM_modalkeymap_add_item(keymap, PADENTER, KM_PRESS, KM_ANY, 0, TFM_MODAL_CONFIRM);
WM_modalkeymap_add_item(keymap, GKEY, KM_PRESS, 0, 0, TFM_MODAL_TRANSLATE);
WM_modalkeymap_add_item(keymap, RKEY, KM_PRESS, 0, 0, TFM_MODAL_ROTATE);
WM_modalkeymap_add_item(keymap, SKEY, KM_PRESS, 0, 0, TFM_MODAL_RESIZE);
WM_modalkeymap_add_item(keymap, LEFTCTRLKEY, KM_PRESS, KM_ANY, 0, TFM_MODAL_SNAP_GEARS_TOGGLE);
/* assign map to operators */
WM_modalkeymap_assign(keymap, "TFM_OT_transform");
WM_modalkeymap_assign(keymap, "TFM_OT_translate");
WM_modalkeymap_assign(keymap, "TFM_OT_rotate");
WM_modalkeymap_assign(keymap, "TFM_OT_tosphere");
WM_modalkeymap_assign(keymap, "TFM_OT_resize");
WM_modalkeymap_assign(keymap, "TFM_OT_shear");
WM_modalkeymap_assign(keymap, "TFM_OT_warp");
WM_modalkeymap_assign(keymap, "TFM_OT_shrink_fatten");
WM_modalkeymap_assign(keymap, "TFM_OT_tilt");
WM_modalkeymap_assign(keymap, "TFM_OT_trackball");
WM_modalkeymap_assign(keymap, "TFM_OT_mirror");
WM_modalkeymap_assign(keymap, "TFM_OT_edge_slide");
}
void transformEvent(TransInfo *t, wmEvent *event)
{
float mati[3][3] = {{1.0f, 0.0f, 0.0f}, {0.0f, 1.0f, 0.0f}, {0.0f, 0.0f, 1.0f}};
char cmode = constraintModeToChar(t);
t->redraw |= handleMouseInput(t, &t->mouse, event);
if (event->type == MOUSEMOVE)
{
t->mval[0] = event->x - t->ar->winrct.xmin;
t->mval[1] = event->y - t->ar->winrct.ymin;
t->redraw = 1;
if (t->state == TRANS_STARTING) {
t->state = TRANS_RUNNING;
}
applyMouseInput(t, &t->mouse, t->mval, t->values);
}
/* handle modal keymap first */
if (event->type == EVT_MODAL_MAP) {
switch (event->val) {
case TFM_MODAL_CANCEL:
t->state = TRANS_CANCEL;
break;
case TFM_MODAL_CONFIRM:
t->state = TRANS_CONFIRM;
break;
case TFM_MODAL_TRANSLATE:
/* only switch when... */
if( ELEM3(t->mode, TFM_ROTATION, TFM_RESIZE, TFM_TRACKBALL) ) {
resetTransRestrictions(t);
restoreTransObjects(t);
initTranslation(t);
initSnapping(t, NULL); // need to reinit after mode change
t->redraw = 1;
}
break;
case TFM_MODAL_ROTATE:
/* only switch when... */
if( ELEM4(t->mode, TFM_ROTATION, TFM_RESIZE, TFM_TRACKBALL, TFM_TRANSLATION) ) {
resetTransRestrictions(t);
if (t->mode == TFM_ROTATION) {
restoreTransObjects(t);
initTrackball(t);
}
else {
restoreTransObjects(t);
initRotation(t);
}
initSnapping(t, NULL); // need to reinit after mode change
t->redraw = 1;
}
break;
case TFM_MODAL_RESIZE:
/* only switch when... */
if( ELEM3(t->mode, TFM_ROTATION, TFM_TRANSLATION, TFM_TRACKBALL) ) {
resetTransRestrictions(t);
restoreTransObjects(t);
initResize(t);
initSnapping(t, NULL); // need to reinit after mode change
t->redraw = 1;
}
break;
case TFM_MODAL_SNAP_GEARS:
t->modifiers |= MOD_SNAP_GEARS;
t->redraw = 1;
break;
case TFM_MODAL_SNAP_GEARS_OFF:
t->modifiers &= ~MOD_SNAP_GEARS;
t->redraw = 1;
break;
case TFM_MODAL_SNAP_GEARS_TOGGLE:
t->modifiers ^= MOD_SNAP_GEARS;
t->redraw = 1;
break;
}
}
/* else do non-mapped events */
else if (event->val==KM_PRESS) {
switch (event->type){
case RIGHTMOUSE:
t->state = TRANS_CANCEL;
break;
/* enforce redraw of transform when modifiers are used */
case LEFTSHIFTKEY:
case RIGHTSHIFTKEY:
t->modifiers |= MOD_CONSTRAINT_PLANE;
t->redraw = 1;
break;
case SPACEKEY:
if ((t->spacetype==SPACE_VIEW3D) && event->alt) {
#if 0 // TRANSFORM_FIX_ME
short mval[2];
getmouseco_sc(mval);
BIF_selectOrientation();
calc_manipulator_stats(curarea);
copy_m3_m4(t->spacemtx, G.vd->twmat);
warp_pointer(mval[0], mval[1]);
#endif
}
else {
t->state = TRANS_CONFIRM;
}
break;
case MIDDLEMOUSE:
if ((t->flag & T_NO_CONSTRAINT)==0) {
/* exception for switching to dolly, or trackball, in camera view */
if (t->flag & T_CAMERA) {
if (t->mode==TFM_TRANSLATION)
setLocalConstraint(t, (CON_AXIS2), "along local Z");
else if (t->mode==TFM_ROTATION) {
restoreTransObjects(t);
initTrackball(t);
}
}
else {
t->modifiers |= MOD_CONSTRAINT_SELECT;
if (t->con.mode & CON_APPLY) {
stopConstraint(t);
}
else {
if (event->shift) {
initSelectConstraint(t, t->spacemtx);
}
else {
/* bit hackish... but it prevents mmb select to print the orientation from menu */
strcpy(t->spacename, "global");
initSelectConstraint(t, mati);
}
postSelectConstraint(t);
}
}
t->redraw = 1;
}
break;
case ESCKEY:
t->state = TRANS_CANCEL;
break;
case PADENTER:
case RETKEY:
t->state = TRANS_CONFIRM;
break;
case GKEY:
/* only switch when... */
if( ELEM3(t->mode, TFM_ROTATION, TFM_RESIZE, TFM_TRACKBALL) ) {
resetTransRestrictions(t);
restoreTransObjects(t);
initTranslation(t);
initSnapping(t, NULL); // need to reinit after mode change
t->redraw = 1;
}
break;
case SKEY:
/* only switch when... */
if( ELEM3(t->mode, TFM_ROTATION, TFM_TRANSLATION, TFM_TRACKBALL) ) {
resetTransRestrictions(t);
restoreTransObjects(t);
initResize(t);
initSnapping(t, NULL); // need to reinit after mode change
t->redraw = 1;
}
break;
case RKEY:
/* only switch when... */
if( ELEM4(t->mode, TFM_ROTATION, TFM_RESIZE, TFM_TRACKBALL, TFM_TRANSLATION) ) {
resetTransRestrictions(t);
if (t->mode == TFM_ROTATION) {
restoreTransObjects(t);
initTrackball(t);
}
else {
restoreTransObjects(t);
initRotation(t);
}
initSnapping(t, NULL); // need to reinit after mode change
t->redraw = 1;
}
break;
case CKEY:
if (event->alt) {
t->flag ^= T_PROP_CONNECTED;
sort_trans_data_dist(t);
calculatePropRatio(t);
t->redraw= 1;
}
else {
stopConstraint(t);
t->redraw = 1;
}
break;
case XKEY:
if ((t->flag & T_NO_CONSTRAINT)==0) {
if (cmode == 'X') {
if (t->flag & T_2D_EDIT) {
stopConstraint(t);
}
else {
if (t->con.mode & CON_USER) {
stopConstraint(t);
}
else {
short orientation = t->current_orientation != V3D_MANIP_GLOBAL ? t->current_orientation : V3D_MANIP_LOCAL;
if ((t->modifiers & MOD_CONSTRAINT_PLANE) == 0)
setUserConstraint(t, orientation, (CON_AXIS0), "along %s X");
else if (t->modifiers & MOD_CONSTRAINT_PLANE)
setUserConstraint(t, orientation, (CON_AXIS1|CON_AXIS2), "locking %s X");
}
}
}
else {
if (t->flag & T_2D_EDIT) {
setConstraint(t, mati, (CON_AXIS0), "along X axis");
}
else {
if ((t->modifiers & MOD_CONSTRAINT_PLANE) == 0)
setConstraint(t, mati, (CON_AXIS0), "along global X");
else if (t->modifiers & MOD_CONSTRAINT_PLANE)
setConstraint(t, mati, (CON_AXIS1|CON_AXIS2), "locking global X");
}
}
t->redraw = 1;
}
break;
case YKEY:
if ((t->flag & T_NO_CONSTRAINT)==0) {
if (cmode == 'Y') {
if (t->flag & T_2D_EDIT) {
stopConstraint(t);
}
else {
if (t->con.mode & CON_USER) {
stopConstraint(t);
}
else {
short orientation = t->current_orientation != V3D_MANIP_GLOBAL ? t->current_orientation : V3D_MANIP_LOCAL;
if ((t->modifiers & MOD_CONSTRAINT_PLANE) == 0)
setUserConstraint(t, orientation, (CON_AXIS1), "along %s Y");
else if (t->modifiers & MOD_CONSTRAINT_PLANE)
setUserConstraint(t, orientation, (CON_AXIS0|CON_AXIS2), "locking %s Y");
}
}
}
else {
if (t->flag & T_2D_EDIT) {
setConstraint(t, mati, (CON_AXIS1), "along Y axis");
}
else {
if ((t->modifiers & MOD_CONSTRAINT_PLANE) == 0)
setConstraint(t, mati, (CON_AXIS1), "along global Y");
else if (t->modifiers & MOD_CONSTRAINT_PLANE)
setConstraint(t, mati, (CON_AXIS0|CON_AXIS2), "locking global Y");
}
}
t->redraw = 1;
}
break;
case ZKEY:
if ((t->flag & T_NO_CONSTRAINT)==0) {
if (cmode == 'Z') {
if (t->con.mode & CON_USER) {
stopConstraint(t);
}
else {
short orientation = t->current_orientation != V3D_MANIP_GLOBAL ? t->current_orientation : V3D_MANIP_LOCAL;
if ((t->modifiers & MOD_CONSTRAINT_PLANE) == 0)
setUserConstraint(t, orientation, (CON_AXIS2), "along %s Z");
else if ((t->modifiers & MOD_CONSTRAINT_PLANE) && ((t->flag & T_2D_EDIT)==0))
setUserConstraint(t, orientation, (CON_AXIS0|CON_AXIS1), "locking %s Z");
}
}
else if ((t->flag & T_2D_EDIT)==0) {
if ((t->modifiers & MOD_CONSTRAINT_PLANE) == 0)
setConstraint(t, mati, (CON_AXIS2), "along global Z");
else if (t->modifiers & MOD_CONSTRAINT_PLANE)
setConstraint(t, mati, (CON_AXIS0|CON_AXIS1), "locking global Z");
}
t->redraw = 1;
}
break;
case OKEY:
if (t->flag & T_PROP_EDIT && event->shift) {
t->prop_mode = (t->prop_mode + 1) % 6;
calculatePropRatio(t);
t->redraw = 1;
}
break;
case PADPLUSKEY:
if(event->alt && t->flag & T_PROP_EDIT) {
t->prop_size *= 1.1f;
calculatePropRatio(t);
}
t->redraw= 1;
break;
case PAGEUPKEY:
case WHEELDOWNMOUSE:
if (t->flag & T_AUTOIK) {
transform_autoik_update(t, 1);
}
else if(t->flag & T_PROP_EDIT) {
t->prop_size*= 1.1f;
calculatePropRatio(t);
}
else view_editmove(event->type);
t->redraw= 1;
break;
case PADMINUS:
if(event->alt && t->flag & T_PROP_EDIT) {
t->prop_size*= 0.90909090f;
calculatePropRatio(t);
}
t->redraw= 1;
break;
case PAGEDOWNKEY:
case WHEELUPMOUSE:
if (t->flag & T_AUTOIK) {
transform_autoik_update(t, -1);
}
else if (t->flag & T_PROP_EDIT) {
t->prop_size*= 0.90909090f;
calculatePropRatio(t);
}
else view_editmove(event->type);
t->redraw= 1;
break;
// case NDOFMOTION:
// viewmoveNDOF(1);
// break;
}
// Numerical input events
t->redraw |= handleNumInput(&(t->num), event);
// NDof input events
switch(handleNDofInput(&(t->ndof), event))
{
case NDOF_CONFIRM:
if ((t->options & CTX_NDOF) == 0)
{
/* Confirm on normal transform only */
t->state = TRANS_CONFIRM;
}
break;
case NDOF_CANCEL:
if (t->options & CTX_NDOF)
{
/* Cancel on pure NDOF transform */
t->state = TRANS_CANCEL;
}
else
{
/* Otherwise, just redraw, NDof input was cancelled */
t->redraw = 1;
}
break;
case NDOF_NOMOVE:
if (t->options & CTX_NDOF)
{
/* Confirm on pure NDOF transform */
t->state = TRANS_CONFIRM;
}
break;
case NDOF_REFRESH:
t->redraw = 1;
break;
}
// Snapping events
t->redraw |= handleSnapping(t, event);
//arrows_move_cursor(event->type);
}
else if (event->val==KM_RELEASE) {
switch (event->type){
case LEFTSHIFTKEY:
case RIGHTSHIFTKEY:
t->modifiers &= ~MOD_CONSTRAINT_PLANE;
t->redraw = 1;
break;
case MIDDLEMOUSE:
if ((t->flag & T_NO_CONSTRAINT)==0) {
t->modifiers &= ~MOD_CONSTRAINT_SELECT;
postSelectConstraint(t);
t->redraw = 1;
}
break;
// case LEFTMOUSE:
// case RIGHTMOUSE:
// if(WM_modal_tweak_exit(event, t->event_type))
//// if (t->options & CTX_TWEAK)
// t->state = TRANS_CONFIRM;
// break;
}
/* confirm transform if launch key is released after mouse move */
/* XXX Keyrepeat bug in Xorg fucks this up, will test when fixed */
if (event->type == LEFTMOUSE /*t->launch_event*/ && t->state != TRANS_STARTING)
{
t->state = TRANS_CONFIRM;
}
}
// Per transform event, if present
if (t->handleEvent)
t->redraw |= t->handleEvent(t, event);
}
int calculateTransformCenter(bContext *C, wmEvent *event, int centerMode, float *vec)
{
TransInfo *t = MEM_callocN(sizeof(TransInfo), "TransInfo data");
int success = 1;
t->state = TRANS_RUNNING;
t->options = CTX_NONE;
t->mode = TFM_DUMMY;
initTransInfo(C, t, NULL, event); // internal data, mouse, vectors
createTransData(C, t); // make TransData structs from selection
t->around = centerMode; // override userdefined mode
if (t->total == 0) {
success = 0;
}
else {
success = 1;
calculateCenter(t);
// Copy center from constraint center. Transform center can be local
VECCOPY(vec, t->con.center);
}
/* aftertrans does insert ipos and action channels, and clears base flags, doesnt read transdata */
special_aftertrans_update(t);
postTrans(t);
MEM_freeN(t);
return success;
}
typedef enum {
UP,
DOWN,
LEFT,
RIGHT
} ArrowDirection;
static void drawArrow(ArrowDirection d, short offset, short length, short size)
{
switch(d)
{
case LEFT:
offset = -offset;
length = -length;
size = -size;
case RIGHT:
glBegin(GL_LINES);
glVertex2s( offset, 0);
glVertex2s( offset + length, 0);
glVertex2s( offset + length, 0);
glVertex2s( offset + length - size, -size);
glVertex2s( offset + length, 0);
glVertex2s( offset + length - size, size);
glEnd();
break;
case DOWN:
offset = -offset;
length = -length;
size = -size;
case UP:
glBegin(GL_LINES);
glVertex2s( 0, offset);
glVertex2s( 0, offset + length);
glVertex2s( 0, offset + length);
glVertex2s(-size, offset + length - size);
glVertex2s( 0, offset + length);
glVertex2s( size, offset + length - size);
glEnd();
break;
}
}
static void drawArrowHead(ArrowDirection d, short size)
{
switch(d)
{
case LEFT:
size = -size;
case RIGHT:
glBegin(GL_LINES);
glVertex2s( 0, 0);
glVertex2s( -size, -size);
glVertex2s( 0, 0);
glVertex2s( -size, size);
glEnd();
break;
case DOWN:
size = -size;
case UP:
glBegin(GL_LINES);
glVertex2s( 0, 0);
glVertex2s(-size, -size);
glVertex2s( 0, 0);
glVertex2s( size, -size);
glEnd();
break;
}
}
static void drawArc(float size, float angle_start, float angle_end, int segments)
{
float delta = (angle_end - angle_start) / segments;
float angle;
glBegin(GL_LINE_STRIP);
for( angle = angle_start; angle < angle_end; angle += delta)
{
glVertex2f( cosf(angle) * size, sinf(angle) * size);
}
glVertex2f( cosf(angle_end) * size, sinf(angle_end) * size);
glEnd();
}
void drawHelpline(const struct bContext *C, TransInfo *t)
{
if (t->helpline != HLP_NONE && !(t->flag & T_USES_MANIPULATOR))
{
float vecrot[3], cent[2];
VECCOPY(vecrot, t->center);
if(t->flag & T_EDIT) {
Object *ob= t->obedit;
if(ob) mul_m4_v3(ob->obmat, vecrot);
}
else if(t->flag & T_POSE) {
Object *ob=t->poseobj;
if(ob) mul_m4_v3(ob->obmat, vecrot);
}
projectFloatView(t, vecrot, cent); // no overflow in extreme cases
glPushMatrix();
switch(t->helpline)
{
case HLP_SPRING:
UI_ThemeColor(TH_WIRE);
setlinestyle(3);
glBegin(GL_LINE_STRIP);
glVertex2sv(t->mval);
glVertex2fv(cent);
glEnd();
glTranslatef(t->mval[0], t->mval[1], 0);
glRotatef(-180 / M_PI * atan2f(cent[0] - t->mval[0], cent[1] - t->mval[1]), 0, 0, 1);
setlinestyle(0);
glLineWidth(3.0);
drawArrow(UP, 5, 10, 5);
drawArrow(DOWN, 5, 10, 5);
glLineWidth(1.0);
break;
case HLP_HARROW:
UI_ThemeColor(TH_WIRE);
glTranslatef(t->mval[0], t->mval[1], 0);
glLineWidth(3.0);
drawArrow(RIGHT, 5, 10, 5);
drawArrow(LEFT, 5, 10, 5);
glLineWidth(1.0);
break;
case HLP_VARROW:
UI_ThemeColor(TH_WIRE);
glTranslatef(t->mval[0], t->mval[1], 0);
glLineWidth(3.0);
glBegin(GL_LINES);
drawArrow(UP, 5, 10, 5);
drawArrow(DOWN, 5, 10, 5);
glLineWidth(1.0);
break;
case HLP_ANGLE:
{
float dx = t->mval[0] - cent[0], dy = t->mval[1] - cent[1];
float angle = atan2f(dy, dx);
float dist = sqrtf(dx*dx + dy*dy);
float delta_angle = MIN2(15 / dist, M_PI/4);
float spacing_angle = MIN2(5 / dist, M_PI/12);
UI_ThemeColor(TH_WIRE);
setlinestyle(3);
glBegin(GL_LINE_STRIP);
glVertex2sv(t->mval);
glVertex2fv(cent);
glEnd();
glTranslatef(cent[0], cent[1], 0);
setlinestyle(0);
glLineWidth(3.0);
drawArc(dist, angle - delta_angle, angle - spacing_angle, 10);
drawArc(dist, angle + spacing_angle, angle + delta_angle, 10);
glPushMatrix();
glTranslatef(cosf(angle - delta_angle) * dist, sinf(angle - delta_angle) * dist, 0);
glRotatef(180 / M_PI * (angle - delta_angle), 0, 0, 1);
drawArrowHead(DOWN, 5);
glPopMatrix();
glTranslatef(cosf(angle + delta_angle) * dist, sinf(angle + delta_angle) * dist, 0);
glRotatef(180 / M_PI * (angle + delta_angle), 0, 0, 1);
drawArrowHead(UP, 5);
glLineWidth(1.0);
break;
}
case HLP_TRACKBALL:
{
char col[3], col2[3];
UI_GetThemeColor3ubv(TH_GRID, col);
glTranslatef(t->mval[0], t->mval[1], 0);
glLineWidth(3.0);
UI_make_axis_color(col, col2, 'x');
glColor3ubv((GLubyte *)col2);
drawArrow(RIGHT, 5, 10, 5);
drawArrow(LEFT, 5, 10, 5);
UI_make_axis_color(col, col2, 'y');
glColor3ubv((GLubyte *)col2);
drawArrow(UP, 5, 10, 5);
drawArrow(DOWN, 5, 10, 5);
glLineWidth(1.0);
break;
}
}
glPopMatrix();
}
}
void drawTransformView(const struct bContext *C, struct ARegion *ar, void *arg)
{
TransInfo *t = arg;
drawConstraint(C, t);
drawPropCircle(C, t);
drawSnapping(C, t);
}
void drawTransformPixel(const struct bContext *C, struct ARegion *ar, void *arg)
{
TransInfo *t = arg;
drawHelpline(C, t);
}
void saveTransform(bContext *C, TransInfo *t, wmOperator *op)
{
ToolSettings *ts = CTX_data_tool_settings(C);
int constraint_axis[3] = {0, 0, 0};
int proportional = 0;
if (RNA_struct_find_property(op->ptr, "value"))
{
if (t->flag & T_AUTOVALUES)
{
RNA_float_set_array(op->ptr, "value", t->auto_values);
}
else
{
RNA_float_set_array(op->ptr, "value", t->values);
}
}
/* XXX convert stupid flag to enum */
switch(t->flag & (T_PROP_EDIT|T_PROP_CONNECTED))
{
case (T_PROP_EDIT|T_PROP_CONNECTED):
proportional = 2;
break;
case T_PROP_EDIT:
proportional = 1;
break;
default:
proportional = 0;
}
// If modal, save settings back in scene if not set as operator argument
if (t->flag & T_MODAL)
{
/* save settings if not set in operator */
if (RNA_struct_find_property(op->ptr, "proportional") && !RNA_property_is_set(op->ptr, "proportional"))
{
ts->proportional = proportional;
}
if (RNA_struct_find_property(op->ptr, "proportional_size") && !RNA_property_is_set(op->ptr, "proportional_size"))
{
ts->proportional_size = t->prop_size;
}
if (RNA_struct_find_property(op->ptr, "proportional_editing_falloff") && !RNA_property_is_set(op->ptr, "proportional_editing_falloff"))
{
ts->prop_mode = t->prop_mode;
}
if(t->spacetype == SPACE_VIEW3D)
{
if (RNA_struct_find_property(op->ptr, "constraint_orientation") && !RNA_property_is_set(op->ptr, "constraint_orientation"))
{
View3D *v3d = t->view;
v3d->twmode = t->current_orientation;
}
}
}
if (RNA_struct_find_property(op->ptr, "proportional"))
{
RNA_enum_set(op->ptr, "proportional", proportional);
RNA_enum_set(op->ptr, "proportional_editing_falloff", t->prop_mode);
RNA_float_set(op->ptr, "proportional_size", t->prop_size);
}
if (RNA_struct_find_property(op->ptr, "mirror"))
{
RNA_boolean_set(op->ptr, "mirror", t->flag & T_MIRROR);
}
if (RNA_struct_find_property(op->ptr, "constraint_axis"))
{
RNA_enum_set(op->ptr, "constraint_orientation", t->current_orientation);
if (t->con.mode & CON_APPLY)
{
if (t->con.mode & CON_AXIS0) {
constraint_axis[0] = 1;
}
if (t->con.mode & CON_AXIS1) {
constraint_axis[1] = 1;
}
if (t->con.mode & CON_AXIS2) {
constraint_axis[2] = 1;
}
}
RNA_boolean_set_array(op->ptr, "constraint_axis", constraint_axis);
}
}
int initTransform(bContext *C, TransInfo *t, wmOperator *op, wmEvent *event, int mode)
{
int options = 0;
/* added initialize, for external calls to set stuff in TransInfo, like undo string */
t->state = TRANS_STARTING;
t->options = options;
t->mode = mode;
t->launch_event = event ? event->type : -1;
if (!initTransInfo(C, t, op, event)) // internal data, mouse, vectors
{
return 0;
}
if(t->spacetype == SPACE_VIEW3D)
{
//calc_manipulator_stats(curarea);
initTransformOrientation(C, t);
t->draw_handle_view = ED_region_draw_cb_activate(t->ar->type, drawTransformView, t, REGION_DRAW_POST_VIEW);
t->draw_handle_pixel = ED_region_draw_cb_activate(t->ar->type, drawTransformPixel, t, REGION_DRAW_POST_PIXEL);
}
else if(t->spacetype == SPACE_IMAGE) {
unit_m3(t->spacemtx);
t->draw_handle_view = ED_region_draw_cb_activate(t->ar->type, drawTransformView, t, REGION_DRAW_POST_VIEW);
t->draw_handle_pixel = ED_region_draw_cb_activate(t->ar->type, drawTransformPixel, t, REGION_DRAW_POST_PIXEL);
}
else
unit_m3(t->spacemtx);
createTransData(C, t); // make TransData structs from selection
if (t->total == 0) {
postTrans(t);
return 0;
}
initSnapping(t, op); // Initialize snapping data AFTER mode flags
/* EVIL! posemode code can switch translation to rotate when 1 bone is selected. will be removed (ton) */
/* EVIL2: we gave as argument also texture space context bit... was cleared */
/* EVIL3: extend mode for animation editors also switches modes... but is best way to avoid duplicate code */
mode = t->mode;
calculatePropRatio(t);
calculateCenter(t);
initMouseInput(t, &t->mouse, t->center2d, t->imval);
switch (mode) {
case TFM_TRANSLATION:
initTranslation(t);
break;
case TFM_ROTATION:
initRotation(t);
break;
case TFM_RESIZE:
initResize(t);
break;
case TFM_TOSPHERE:
initToSphere(t);
break;
case TFM_SHEAR:
initShear(t);
break;
case TFM_WARP:
initWarp(t);
break;
case TFM_SHRINKFATTEN:
initShrinkFatten(t);
break;
case TFM_TILT:
initTilt(t);
break;
case TFM_CURVE_SHRINKFATTEN:
initCurveShrinkFatten(t);
break;
case TFM_TRACKBALL:
initTrackball(t);
break;
case TFM_PUSHPULL:
initPushPull(t);
break;
case TFM_CREASE:
initCrease(t);
break;
case TFM_BONESIZE:
{ /* used for both B-Bone width (bonesize) as for deform-dist (envelope) */
bArmature *arm= t->poseobj->data;
if(arm->drawtype==ARM_ENVELOPE)
initBoneEnvelope(t);
else
initBoneSize(t);
}
break;
case TFM_BONE_ENVELOPE:
initBoneEnvelope(t);
break;
case TFM_EDGE_SLIDE:
initEdgeSlide(t);
break;
case TFM_BONE_ROLL:
initBoneRoll(t);
break;
case TFM_TIME_TRANSLATE:
initTimeTranslate(t);
break;
case TFM_TIME_SLIDE:
initTimeSlide(t);
break;
case TFM_TIME_SCALE:
initTimeScale(t);
break;
case TFM_TIME_EXTEND:
/* now that transdata has been made, do like for TFM_TIME_TRANSLATE (for most Animation
* Editors because they have only 1D transforms for time values) or TFM_TRANSLATION
* (for Graph/NLA Editors only since they uses 'standard' transforms to get 2D movement)
* depending on which editor this was called from
*/
if ELEM(t->spacetype, SPACE_IPO, SPACE_NLA)
initTranslation(t);
else
initTimeTranslate(t);
break;
case TFM_BAKE_TIME:
initBakeTime(t);
break;
case TFM_MIRROR:
initMirror(t);
break;
case TFM_BEVEL:
initBevel(t);
break;
case TFM_BWEIGHT:
initBevelWeight(t);
break;
case TFM_ALIGN:
initAlign(t);
break;
}
/* overwrite initial values if operator supplied a non-null vector */
if (RNA_property_is_set(op->ptr, "value"))
{
float values[4];
RNA_float_get_array(op->ptr, "value", values);
QUATCOPY(t->values, values);
QUATCOPY(t->auto_values, values);
t->flag |= T_AUTOVALUES;
}
/* Constraint init from operator */
if (RNA_struct_find_property(op->ptr, "constraint_axis") && RNA_property_is_set(op->ptr, "constraint_axis"))
{
int constraint_axis[3];
RNA_boolean_get_array(op->ptr, "constraint_axis", constraint_axis);
if (constraint_axis[0] || constraint_axis[1] || constraint_axis[2])
{
t->con.mode |= CON_APPLY;
if (constraint_axis[0]) {
t->con.mode |= CON_AXIS0;
}
if (constraint_axis[1]) {
t->con.mode |= CON_AXIS1;
}
if (constraint_axis[2]) {
t->con.mode |= CON_AXIS2;
}
setUserConstraint(t, t->current_orientation, t->con.mode, "%s");
}
}
return 1;
}
void transformApply(bContext *C, TransInfo *t)
{
if (t->redraw)
{
if (t->modifiers & MOD_CONSTRAINT_SELECT)
t->con.mode |= CON_SELECT;
selectConstraint(t);
if (t->transform) {
t->transform(t, t->mval); // calls recalcData()
viewRedrawForce(C, t);
}
t->redraw = 0;
}
/* If auto confirm is on, break after one pass */
if (t->options & CTX_AUTOCONFIRM)
{
t->state = TRANS_CONFIRM;
}
if (BKE_ptcache_get_continue_physics())
{
// TRANSFORM_FIX_ME
//do_screenhandlers(G.curscreen);
t->redraw = 1;
}
}
int transformEnd(bContext *C, TransInfo *t)
{
int exit_code = OPERATOR_RUNNING_MODAL;
if (t->state != TRANS_STARTING && t->state != TRANS_RUNNING)
{
/* handle restoring objects */
if(t->state == TRANS_CANCEL)
{
exit_code = OPERATOR_CANCELLED;
restoreTransObjects(t); // calls recalcData()
}
else
{
exit_code = OPERATOR_FINISHED;
}
/* aftertrans does insert keyframes, and clears base flags, doesnt read transdata */
special_aftertrans_update(t);
/* free data */
postTrans(t);
/* send events out for redraws */
viewRedrawPost(t);
/* Undo as last, certainly after special_trans_update! */
if(t->state == TRANS_CANCEL) {
// if(t->undostr) ED_undo_push(C, t->undostr);
}
else {
// if(t->undostr) ED_undo_push(C, t->undostr);
// else ED_undo_push(C, transform_to_undostr(t));
}
t->undostr= NULL;
viewRedrawForce(C, t);
}
return exit_code;
}
/* ************************** TRANSFORM LOCKS **************************** */
static void protectedTransBits(short protectflag, float *vec)
{
if(protectflag & OB_LOCK_LOCX)
vec[0]= 0.0f;
if(protectflag & OB_LOCK_LOCY)
vec[1]= 0.0f;
if(protectflag & OB_LOCK_LOCZ)
vec[2]= 0.0f;
}
static void protectedSizeBits(short protectflag, float *size)
{
if(protectflag & OB_LOCK_SCALEX)
size[0]= 1.0f;
if(protectflag & OB_LOCK_SCALEY)
size[1]= 1.0f;
if(protectflag & OB_LOCK_SCALEZ)
size[2]= 1.0f;
}
static void protectedRotateBits(short protectflag, float *eul, float *oldeul)
{
if(protectflag & OB_LOCK_ROTX)
eul[0]= oldeul[0];
if(protectflag & OB_LOCK_ROTY)
eul[1]= oldeul[1];
if(protectflag & OB_LOCK_ROTZ)
eul[2]= oldeul[2];
}
/* this function only does the delta rotation */
/* axis-angle is usually internally stored as quats... */
static void protectedAxisAngleBits(short protectflag, float axis[3], float *angle, float oldAxis[3], float oldAngle)
{
/* check that protection flags are set */
if ((protectflag & (OB_LOCK_ROTX|OB_LOCK_ROTY|OB_LOCK_ROTZ|OB_LOCK_ROTW)) == 0)
return;
if (protectflag & OB_LOCK_ROT4D) {
/* axis-angle getting limited as 4D entities that they are... */
if (protectflag & OB_LOCK_ROTW)
*angle= oldAngle;
if (protectflag & OB_LOCK_ROTX)
axis[0]= oldAxis[0];
if (protectflag & OB_LOCK_ROTY)
axis[1]= oldAxis[1];
if (protectflag & OB_LOCK_ROTZ)
axis[2]= oldAxis[2];
}
else {
/* axis-angle get limited with euler... */
float eul[3], oldeul[3];
axis_angle_to_eulO( eul, EULER_ORDER_DEFAULT,axis, *angle);
axis_angle_to_eulO( oldeul, EULER_ORDER_DEFAULT,oldAxis, oldAngle);
if (protectflag & OB_LOCK_ROTX)
eul[0]= oldeul[0];
if (protectflag & OB_LOCK_ROTY)
eul[1]= oldeul[1];
if (protectflag & OB_LOCK_ROTZ)
eul[2]= oldeul[2];
eulO_to_axis_angle( axis, angle,eul, EULER_ORDER_DEFAULT);
/* when converting to axis-angle, we need a special exception for the case when there is no axis */
if (IS_EQ(axis[0], axis[1]) && IS_EQ(axis[1], axis[2])) {
/* for now, rotate around y-axis then (so that it simply becomes the roll) */
axis[1]= 1.0f;
}
}
}
/* this function only does the delta rotation */
static void protectedQuaternionBits(short protectflag, float *quat, float *oldquat)
{
/* check that protection flags are set */
if ((protectflag & (OB_LOCK_ROTX|OB_LOCK_ROTY|OB_LOCK_ROTZ|OB_LOCK_ROTW)) == 0)
return;
if (protectflag & OB_LOCK_ROT4D) {
/* quaternions getting limited as 4D entities that they are... */
if (protectflag & OB_LOCK_ROTW)
quat[0]= oldquat[0];
if (protectflag & OB_LOCK_ROTX)
quat[1]= oldquat[1];
if (protectflag & OB_LOCK_ROTY)
quat[2]= oldquat[2];
if (protectflag & OB_LOCK_ROTZ)
quat[3]= oldquat[3];
}
else {
/* quaternions get limited with euler... (compatability mode) */
float eul[3], oldeul[3], quat1[4];
QUATCOPY(quat1, quat);
quat_to_eul( eul,quat);
quat_to_eul( oldeul,oldquat);
if (protectflag & OB_LOCK_ROTX)
eul[0]= oldeul[0];
if (protectflag & OB_LOCK_ROTY)
eul[1]= oldeul[1];
if (protectflag & OB_LOCK_ROTZ)
eul[2]= oldeul[2];
eul_to_quat( quat,eul);
/* quaternions flip w sign to accumulate rotations correctly */
if ( (quat1[0]<0.0f && quat[0]>0.0f) || (quat1[0]>0.0f && quat[0]<0.0f) ) {
mul_qt_fl(quat, -1.0f);
}
}
}
/* ******************* TRANSFORM LIMITS ********************** */
static void constraintTransLim(TransInfo *t, TransData *td)
{
if (td->con) {
bConstraintTypeInfo *cti= get_constraint_typeinfo(CONSTRAINT_TYPE_LOCLIMIT);
bConstraintOb cob;
bConstraint *con;
/* Make a temporary bConstraintOb for using these limit constraints
* - they only care that cob->matrix is correctly set ;-)
* - current space should be local
*/
memset(&cob, 0, sizeof(bConstraintOb));
unit_m4(cob.matrix);
VECCOPY(cob.matrix[3], td->loc);
/* Evaluate valid constraints */
for (con= td->con; con; con= con->next) {
float tmat[4][4];
/* only consider constraint if enabled */
if (con->flag & CONSTRAINT_DISABLE) continue;
if (con->enforce == 0.0f) continue;
/* only use it if it's tagged for this purpose (and the right type) */
if (con->type == CONSTRAINT_TYPE_LOCLIMIT) {
bLocLimitConstraint *data= con->data;
if ((data->flag2 & LIMIT_TRANSFORM)==0)
continue;
/* do space conversions */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->mtx (this should be ok) */
copy_m4_m4(tmat, cob.matrix);
mul_m4_m3m4(cob.matrix, td->mtx, tmat);
}
else if (con->ownspace != CONSTRAINT_SPACE_LOCAL) {
/* skip... incompatable spacetype */
continue;
}
/* do constraint */
cti->evaluate_constraint(con, &cob, NULL);
/* convert spaces again */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->mtx (this should be ok) */
copy_m4_m4(tmat, cob.matrix);
mul_m4_m3m4(cob.matrix, td->smtx, tmat);
}
}
}
/* copy results from cob->matrix */
VECCOPY(td->loc, cob.matrix[3]);
}
}
static void constraintRotLim(TransInfo *t, TransData *td)
{
if (td->con) {
bConstraintTypeInfo *cti= get_constraint_typeinfo(CONSTRAINT_TYPE_ROTLIMIT);
bConstraintOb cob;
bConstraint *con;
/* Make a temporary bConstraintOb for using these limit constraints
* - they only care that cob->matrix is correctly set ;-)
* - current space should be local
*/
memset(&cob, 0, sizeof(bConstraintOb));
if (td->rotOrder == ROT_MODE_QUAT) {
/* quats */
if (td->ext)
quat_to_mat4( cob.matrix,td->ext->quat);
else
return;
}
else if (td->rotOrder == ROT_MODE_AXISANGLE) {
/* axis angle */
if (td->ext)
axis_angle_to_mat4( cob.matrix,&td->ext->quat[1], td->ext->quat[0]);
else
return;
}
else {
/* eulers */
if (td->ext)
eulO_to_mat4( cob.matrix,td->ext->rot, td->rotOrder);
else
return;
}
/* Evaluate valid constraints */
for (con= td->con; con; con= con->next) {
/* only consider constraint if enabled */
if (con->flag & CONSTRAINT_DISABLE) continue;
if (con->enforce == 0.0f) continue;
/* we're only interested in Limit-Rotation constraints */
if (con->type == CONSTRAINT_TYPE_ROTLIMIT) {
bRotLimitConstraint *data= con->data;
float tmat[4][4];
/* only use it if it's tagged for this purpose */
if ((data->flag2 & LIMIT_TRANSFORM)==0)
continue;
/* do space conversions */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->mtx (this should be ok) */
copy_m4_m4(tmat, cob.matrix);
mul_m4_m3m4(cob.matrix, td->mtx, tmat);
}
else if (con->ownspace != CONSTRAINT_SPACE_LOCAL) {
/* skip... incompatable spacetype */
continue;
}
/* do constraint */
cti->evaluate_constraint(con, &cob, NULL);
/* convert spaces again */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->mtx (this should be ok) */
copy_m4_m4(tmat, cob.matrix);
mul_m4_m3m4(cob.matrix, td->smtx, tmat);
}
}
}
/* copy results from cob->matrix */
if (td->rotOrder == ROT_MODE_QUAT) {
/* quats */
mat4_to_quat( td->ext->quat,cob.matrix);
}
else if (td->rotOrder == ROT_MODE_AXISANGLE) {
/* axis angle */
mat4_to_axis_angle( &td->ext->quat[1], &td->ext->quat[0],cob.matrix);
}
else {
/* eulers */
mat4_to_eulO( td->ext->rot, td->rotOrder,cob.matrix);
}
}
}
static void constraintSizeLim(TransInfo *t, TransData *td)
{
if (td->con && td->ext) {
bConstraintTypeInfo *cti= get_constraint_typeinfo(CONSTRAINT_TYPE_SIZELIMIT);
bConstraintOb cob;
bConstraint *con;
/* Make a temporary bConstraintOb for using these limit constraints
* - they only care that cob->matrix is correctly set ;-)
* - current space should be local
*/
memset(&cob, 0, sizeof(bConstraintOb));
if ((td->flag & TD_SINGLESIZE) && !(t->con.mode & CON_APPLY)) {
/* scale val and reset size */
return; // TODO: fix this case
}
else {
/* Reset val if SINGLESIZE but using a constraint */
if (td->flag & TD_SINGLESIZE)
return;
size_to_mat4( cob.matrix,td->ext->size);
}
/* Evaluate valid constraints */
for (con= td->con; con; con= con->next) {
/* only consider constraint if enabled */
if (con->flag & CONSTRAINT_DISABLE) continue;
if (con->enforce == 0.0f) continue;
/* we're only interested in Limit-Scale constraints */
if (con->type == CONSTRAINT_TYPE_SIZELIMIT) {
bSizeLimitConstraint *data= con->data;
float tmat[4][4];
/* only use it if it's tagged for this purpose */
if ((data->flag2 & LIMIT_TRANSFORM)==0)
continue;
/* do space conversions */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->mtx (this should be ok) */
copy_m4_m4(tmat, cob.matrix);
mul_m4_m3m4(cob.matrix, td->mtx, tmat);
}
else if (con->ownspace != CONSTRAINT_SPACE_LOCAL) {
/* skip... incompatable spacetype */
continue;
}
/* do constraint */
cti->evaluate_constraint(con, &cob, NULL);
/* convert spaces again */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->mtx (this should be ok) */
copy_m4_m4(tmat, cob.matrix);
mul_m4_m3m4(cob.matrix, td->smtx, tmat);
}
}
}
/* copy results from cob->matrix */
if ((td->flag & TD_SINGLESIZE) && !(t->con.mode & CON_APPLY)) {
/* scale val and reset size */
return; // TODO: fix this case
}
else {
/* Reset val if SINGLESIZE but using a constraint */
if (td->flag & TD_SINGLESIZE)
return;
mat4_to_size( td->ext->size,cob.matrix);
}
}
}
/* ************************** WARP *************************** */
void initWarp(TransInfo *t)
{
float max[3], min[3];
int i;
t->mode = TFM_WARP;
t->transform = Warp;
t->handleEvent = handleEventWarp;
initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_RATIO);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 5.0f;
t->snap[2] = 1.0f;
t->flag |= T_NO_CONSTRAINT;
/* we need min/max in view space */
for(i = 0; i < t->total; i++) {
float center[3];
VECCOPY(center, t->data[i].center);
mul_m3_v3(t->data[i].mtx, center);
mul_m4_v3(t->viewmat, center);
sub_v3_v3v3(center, center, t->viewmat[3]);
if (i)
minmax_v3_v3v3(min, max, center);
else {
VECCOPY(max, center);
VECCOPY(min, center);
}
}
t->center[0]= (min[0]+max[0])/2.0f;
t->center[1]= (min[1]+max[1])/2.0f;
t->center[2]= (min[2]+max[2])/2.0f;
if (max[0] == min[0]) max[0] += 0.1; /* not optimal, but flipping is better than invalid garbage (i.e. division by zero!) */
t->val= (max[0]-min[0])/2.0f; /* t->val is X dimension projected boundbox */
}
int handleEventWarp(TransInfo *t, wmEvent *event)
{
int status = 0;
if (event->type == MIDDLEMOUSE && event->val==KM_PRESS)
{
// Use customData pointer to signal warp direction
if (t->customData == 0)
t->customData = (void*)1;
else
t->customData = 0;
status = 1;
}
return status;
}
int Warp(TransInfo *t, short mval[2])
{
TransData *td = t->data;
float vec[3], circumfac, dist, phi0, co, si, *curs, cursor[3], gcursor[3];
int i;
char str[50];
curs= give_cursor(t->scene, t->view);
/*
* gcursor is the one used for helpline.
* It has to be in the same space as the drawing loop
* (that means it needs to be in the object's space when in edit mode and
* in global space in object mode)
*
* cursor is used for calculations.
* It needs to be in view space, but we need to take object's offset
* into account if in Edit mode.
*/
VECCOPY(cursor, curs);
VECCOPY(gcursor, cursor);
if (t->flag & T_EDIT) {
sub_v3_v3v3(cursor, cursor, t->obedit->obmat[3]);
sub_v3_v3v3(gcursor, gcursor, t->obedit->obmat[3]);
mul_m3_v3(t->data->smtx, gcursor);
}
mul_m4_v3(t->viewmat, cursor);
sub_v3_v3v3(cursor, cursor, t->viewmat[3]);
/* amount of degrees for warp */
circumfac = 360.0f * t->values[0];
if (t->customData) /* non-null value indicates reversed input */
{
circumfac *= -1;
}
snapGrid(t, &circumfac);
applyNumInput(&t->num, &circumfac);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
sprintf(str, "Warp: %s", c);
}
else {
/* default header print */
sprintf(str, "Warp: %.3f", circumfac);
}
circumfac*= (float)(-M_PI/360.0);
for(i = 0; i < t->total; i++, td++) {
float loc[3];
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
/* translate point to center, rotate in such a way that outline==distance */
VECCOPY(vec, td->iloc);
mul_m3_v3(td->mtx, vec);
mul_m4_v3(t->viewmat, vec);
sub_v3_v3v3(vec, vec, t->viewmat[3]);
dist= vec[0]-cursor[0];
/* t->val is X dimension projected boundbox */
phi0= (circumfac*dist/t->val);
vec[1]= (vec[1]-cursor[1]);
co= (float)cos(phi0);
si= (float)sin(phi0);
loc[0]= -si*vec[1]+cursor[0];
loc[1]= co*vec[1]+cursor[1];
loc[2]= vec[2];
mul_m4_v3(t->viewinv, loc);
sub_v3_v3v3(loc, loc, t->viewinv[3]);
mul_m3_v3(td->smtx, loc);
sub_v3_v3v3(loc, loc, td->iloc);
mul_v3_fl(loc, td->factor);
add_v3_v3v3(td->loc, td->iloc, loc);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** SHEAR *************************** */
void initShear(TransInfo *t)
{
t->mode = TFM_SHEAR;
t->transform = Shear;
t->handleEvent = handleEventShear;
initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_ABSOLUTE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->flag |= T_NO_CONSTRAINT;
}
int handleEventShear(TransInfo *t, wmEvent *event)
{
int status = 0;
if (event->type == MIDDLEMOUSE && event->val==KM_PRESS)
{
// Use customData pointer to signal Shear direction
if (t->customData == 0)
{
initMouseInputMode(t, &t->mouse, INPUT_VERTICAL_ABSOLUTE);
t->customData = (void*)1;
}
else
{
initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_ABSOLUTE);
t->customData = 0;
}
status = 1;
}
return status;
}
int Shear(TransInfo *t, short mval[2])
{
TransData *td = t->data;
float vec[3];
float smat[3][3], tmat[3][3], totmat[3][3], persmat[3][3], persinv[3][3];
float value;
int i;
char str[50];
copy_m3_m4(persmat, t->viewmat);
invert_m3_m3(persinv, persmat);
value = 0.05f * t->values[0];
snapGrid(t, &value);
applyNumInput(&t->num, &value);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
sprintf(str, "Shear: %s %s", c, t->proptext);
}
else {
/* default header print */
sprintf(str, "Shear: %.3f %s", value, t->proptext);
}
unit_m3(smat);
// Custom data signals shear direction
if (t->customData == 0)
smat[1][0] = value;
else
smat[0][1] = value;
mul_m3_m3m3(tmat, smat, persmat);
mul_m3_m3m3(totmat, persinv, tmat);
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (t->obedit) {
float mat3[3][3];
mul_m3_m3m3(mat3, totmat, td->mtx);
mul_m3_m3m3(tmat, td->smtx, mat3);
}
else {
copy_m3_m3(tmat, totmat);
}
sub_v3_v3v3(vec, td->center, t->center);
mul_m3_v3(tmat, vec);
add_v3_v3v3(vec, vec, t->center);
sub_v3_v3v3(vec, vec, td->center);
mul_v3_fl(vec, td->factor);
add_v3_v3v3(td->loc, td->iloc, vec);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** RESIZE *************************** */
void initResize(TransInfo *t)
{
t->mode = TFM_RESIZE;
t->transform = Resize;
initMouseInputMode(t, &t->mouse, INPUT_SPRING_FLIP);
t->flag |= T_NULL_ONE;
t->num.flag |= NUM_NULL_ONE;
t->num.flag |= NUM_AFFECT_ALL;
if (!t->obedit) {
t->flag |= T_NO_ZERO;
t->num.flag |= NUM_NO_ZERO;
}
t->idx_max = 2;
t->num.idx_max = 2;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
}
static void headerResize(TransInfo *t, float vec[3], char *str) {
char tvec[60];
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec);
}
else {
sprintf(&tvec[0], "%.4f", vec[0]);
sprintf(&tvec[20], "%.4f", vec[1]);
sprintf(&tvec[40], "%.4f", vec[2]);
}
if (t->con.mode & CON_APPLY) {
switch(t->num.idx_max) {
case 0:
sprintf(str, "Scale: %s%s %s", &tvec[0], t->con.text, t->proptext);
break;
case 1:
sprintf(str, "Scale: %s : %s%s %s", &tvec[0], &tvec[20], t->con.text, t->proptext);
break;
case 2:
sprintf(str, "Scale: %s : %s : %s%s %s", &tvec[0], &tvec[20], &tvec[40], t->con.text, t->proptext);
}
}
else {
if (t->flag & T_2D_EDIT)
sprintf(str, "Scale X: %s Y: %s%s %s", &tvec[0], &tvec[20], t->con.text, t->proptext);
else
sprintf(str, "Scale X: %s Y: %s Z: %s%s %s", &tvec[0], &tvec[20], &tvec[40], t->con.text, t->proptext);
}
}
#define SIGN(a) (a<-FLT_EPSILON?1:a>FLT_EPSILON?2:3)
#define VECSIGNFLIP(a, b) ((SIGN(a[0]) & SIGN(b[0]))==0 || (SIGN(a[1]) & SIGN(b[1]))==0 || (SIGN(a[2]) & SIGN(b[2]))==0)
/* smat is reference matrix, only scaled */
static void TransMat3ToSize( float mat[][3], float smat[][3], float *size)
{
float vec[3];
copy_v3_v3(vec, mat[0]);
size[0]= normalize_v3(vec);
copy_v3_v3(vec, mat[1]);
size[1]= normalize_v3(vec);
copy_v3_v3(vec, mat[2]);
size[2]= normalize_v3(vec);
/* first tried with dotproduct... but the sign flip is crucial */
if( VECSIGNFLIP(mat[0], smat[0]) ) size[0]= -size[0];
if( VECSIGNFLIP(mat[1], smat[1]) ) size[1]= -size[1];
if( VECSIGNFLIP(mat[2], smat[2]) ) size[2]= -size[2];
}
static void ElementResize(TransInfo *t, TransData *td, float mat[3][3]) {
float tmat[3][3], smat[3][3], center[3];
float vec[3];
if (t->flag & T_EDIT) {
mul_m3_m3m3(smat, mat, td->mtx);
mul_m3_m3m3(tmat, td->smtx, smat);
}
else {
copy_m3_m3(tmat, mat);
}
if (t->con.applySize) {
t->con.applySize(t, td, tmat);
}
/* local constraint shouldn't alter center */
if (t->around == V3D_LOCAL) {
if (t->flag & T_OBJECT) {
VECCOPY(center, td->center);
}
else if (t->flag & T_EDIT) {
if(t->around==V3D_LOCAL && (t->settings->selectmode & SCE_SELECT_FACE)) {
VECCOPY(center, td->center);
}
else {
VECCOPY(center, t->center);
}
}
else {
VECCOPY(center, t->center);
}
}
else {
VECCOPY(center, t->center);
}
if (td->ext) {
float fsize[3];
if (t->flag & (T_OBJECT|T_TEXTURE|T_POSE)) {
float obsizemat[3][3];
// Reorient the size mat to fit the oriented object.
mul_m3_m3m3(obsizemat, tmat, td->axismtx);
//print_m3("obsizemat", obsizemat);
TransMat3ToSize(obsizemat, td->axismtx, fsize);
//print_v3("fsize", fsize);
}
else {
mat3_to_size( fsize,tmat);
}
protectedSizeBits(td->protectflag, fsize);
if ((t->flag & T_V3D_ALIGN)==0) { // align mode doesn't resize objects itself
if((td->flag & TD_SINGLESIZE) && !(t->con.mode & CON_APPLY)){
/* scale val and reset size */
*td->val = td->ival * (1 + (fsize[0] - 1) * td->factor);
td->ext->size[0] = td->ext->isize[0];
td->ext->size[1] = td->ext->isize[1];
td->ext->size[2] = td->ext->isize[2];
}
else {
/* Reset val if SINGLESIZE but using a constraint */
if (td->flag & TD_SINGLESIZE)
*td->val = td->ival;
td->ext->size[0] = td->ext->isize[0] * (1 + (fsize[0] - 1) * td->factor);
td->ext->size[1] = td->ext->isize[1] * (1 + (fsize[1] - 1) * td->factor);
td->ext->size[2] = td->ext->isize[2] * (1 + (fsize[2] - 1) * td->factor);
}
}
constraintSizeLim(t, td);
}
/* For individual element center, Editmode need to use iloc */
if (t->flag & T_POINTS)
sub_v3_v3v3(vec, td->iloc, center);
else
sub_v3_v3v3(vec, td->center, center);
mul_m3_v3(tmat, vec);
add_v3_v3v3(vec, vec, center);
if (t->flag & T_POINTS)
sub_v3_v3v3(vec, vec, td->iloc);
else
sub_v3_v3v3(vec, vec, td->center);
mul_v3_fl(vec, td->factor);
if (t->flag & (T_OBJECT|T_POSE)) {
mul_m3_v3(td->smtx, vec);
}
protectedTransBits(td->protectflag, vec);
add_v3_v3v3(td->loc, td->iloc, vec);
constraintTransLim(t, td);
}
int Resize(TransInfo *t, short mval[2])
{
TransData *td;
float size[3], mat[3][3];
float ratio;
int i;
char str[200];
/* for manipulator, center handle, the scaling can't be done relative to center */
if( (t->flag & T_USES_MANIPULATOR) && t->con.mode==0)
{
ratio = 1.0f - ((t->imval[0] - mval[0]) + (t->imval[1] - mval[1]))/100.0f;
}
else
{
ratio = t->values[0];
}
size[0] = size[1] = size[2] = ratio;
snapGrid(t, size);
if (hasNumInput(&t->num)) {
applyNumInput(&t->num, size);
constraintNumInput(t, size);
}
applySnapping(t, size);
if (t->flag & T_AUTOVALUES)
{
VECCOPY(size, t->auto_values);
}
VECCOPY(t->values, size);
size_to_mat3( mat,size);
if (t->con.applySize) {
t->con.applySize(t, NULL, mat);
}
copy_m3_m3(t->mat, mat); // used in manipulator
headerResize(t, size, str);
for(i = 0, td=t->data; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
ElementResize(t, td, mat);
}
/* evil hack - redo resize if cliping needed */
if (t->flag & T_CLIP_UV && clipUVTransform(t, size, 1)) {
size_to_mat3( mat,size);
if (t->con.applySize)
t->con.applySize(t, NULL, mat);
for(i = 0, td=t->data; i < t->total; i++, td++)
ElementResize(t, td, mat);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** TOSPHERE *************************** */
void initToSphere(TransInfo *t)
{
TransData *td = t->data;
int i;
t->mode = TFM_TOSPHERE;
t->transform = ToSphere;
initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_RATIO);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->num.flag |= NUM_NULL_ONE | NUM_NO_NEGATIVE;
t->flag |= T_NO_CONSTRAINT;
// Calculate average radius
for(i = 0 ; i < t->total; i++, td++) {
t->val += len_v3v3(t->center, td->iloc);
}
t->val /= (float)t->total;
}
int ToSphere(TransInfo *t, short mval[2])
{
float vec[3];
float ratio, radius;
int i;
char str[64];
TransData *td = t->data;
ratio = t->values[0];
snapGrid(t, &ratio);
applyNumInput(&t->num, &ratio);
if (ratio < 0)
ratio = 0.0f;
else if (ratio > 1)
ratio = 1.0f;
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
sprintf(str, "To Sphere: %s %s", c, t->proptext);
}
else {
/* default header print */
sprintf(str, "To Sphere: %.4f %s", ratio, t->proptext);
}
for(i = 0 ; i < t->total; i++, td++) {
float tratio;
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
sub_v3_v3v3(vec, td->iloc, t->center);
radius = normalize_v3(vec);
tratio = ratio * td->factor;
mul_v3_fl(vec, radius * (1.0f - tratio) + t->val * tratio);
add_v3_v3v3(td->loc, t->center, vec);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** ROTATION *************************** */
void initRotation(TransInfo *t)
{
t->mode = TFM_ROTATION;
t->transform = Rotation;
initMouseInputMode(t, &t->mouse, INPUT_ANGLE);
t->ndof.axis = 16;
/* Scale down and flip input for rotation */
t->ndof.factor[0] = -0.2f;
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = (float)((5.0/180)*M_PI);
t->snap[2] = t->snap[1] * 0.2f;
if (t->flag & T_2D_EDIT)
t->flag |= T_NO_CONSTRAINT;
}
static void ElementRotation(TransInfo *t, TransData *td, float mat[3][3], short around) {
float vec[3], totmat[3][3], smat[3][3];
float eul[3], fmat[3][3], quat[4];
float *center = t->center;
/* local constraint shouldn't alter center */
if (around == V3D_LOCAL) {
if (t->flag & (T_OBJECT|T_POSE)) {
center = td->center;
}
else {
if(around==V3D_LOCAL && (t->settings->selectmode & SCE_SELECT_FACE)) {
center = td->center;
}
}
}
if (t->flag & T_POINTS) {
mul_m3_m3m3(totmat, mat, td->mtx);
mul_m3_m3m3(smat, td->smtx, totmat);
sub_v3_v3v3(vec, td->iloc, center);
mul_m3_v3(smat, vec);
add_v3_v3v3(td->loc, vec, center);
sub_v3_v3v3(vec,td->loc,td->iloc);
protectedTransBits(td->protectflag, vec);
add_v3_v3v3(td->loc, td->iloc, vec);
if(td->flag & TD_USEQUAT) {
mul_serie_m3(fmat, td->mtx, mat, td->smtx, 0, 0, 0, 0, 0);
mat3_to_quat( quat,fmat); // Actual transform
if(td->ext->quat){
mul_qt_qtqt(td->ext->quat, quat, td->ext->iquat);
/* is there a reason not to have this here? -jahka */
protectedQuaternionBits(td->protectflag, td->ext->quat, td->ext->iquat);
}
}
}
/**
* HACK WARNING
*
* This is some VERY ugly special case to deal with pose mode.
*
* The problem is that mtx and smtx include each bone orientation.
*
* That is needed to rotate each bone properly, HOWEVER, to calculate
* the translation component, we only need the actual armature object's
* matrix (and inverse). That is not all though. Once the proper translation
* has been computed, it has to be converted back into the bone's space.
*/
else if (t->flag & T_POSE) {
float pmtx[3][3], imtx[3][3];
// Extract and invert armature object matrix
copy_m3_m4(pmtx, t->poseobj->obmat);
invert_m3_m3(imtx, pmtx);
if ((td->flag & TD_NO_LOC) == 0)
{
sub_v3_v3v3(vec, td->center, center);
mul_m3_v3(pmtx, vec); // To Global space
mul_m3_v3(mat, vec); // Applying rotation
mul_m3_v3(imtx, vec); // To Local space
add_v3_v3v3(vec, vec, center);
/* vec now is the location where the object has to be */
sub_v3_v3v3(vec, vec, td->center); // Translation needed from the initial location
mul_m3_v3(pmtx, vec); // To Global space
mul_m3_v3(td->smtx, vec);// To Pose space
protectedTransBits(td->protectflag, vec);
add_v3_v3v3(td->loc, td->iloc, vec);
constraintTransLim(t, td);
}
/* rotation */
if ((t->flag & T_V3D_ALIGN)==0) { // align mode doesn't rotate objects itself
/* euler or quaternion/axis-angle? */
if (td->rotOrder == ROT_MODE_QUAT) {
mul_serie_m3(fmat, td->mtx, mat, td->smtx, 0, 0, 0, 0, 0);
mat3_to_quat( quat,fmat); // Actual transform
mul_qt_qtqt(td->ext->quat, quat, td->ext->iquat);
/* this function works on end result */
protectedQuaternionBits(td->protectflag, td->ext->quat, td->ext->iquat);
}
else if (td->rotOrder == ROT_MODE_AXISANGLE) {
/* calculate effect based on quats */
float iquat[4], tquat[4];
axis_angle_to_quat(iquat, td->ext->irotAxis, td->ext->irotAngle);
mul_serie_m3(fmat, td->mtx, mat, td->smtx, 0, 0, 0, 0, 0);
mat3_to_quat( quat,fmat); // Actual transform
mul_qt_qtqt(tquat, quat, iquat);
quat_to_axis_angle( td->ext->rotAxis, td->ext->rotAngle,tquat);
/* this function works on end result */
protectedAxisAngleBits(td->protectflag, td->ext->rotAxis, td->ext->rotAngle, td->ext->irotAxis, td->ext->irotAngle);
}
else {
float eulmat[3][3];
mul_m3_m3m3(totmat, mat, td->mtx);
mul_m3_m3m3(smat, td->smtx, totmat);
/* calculate the total rotatation in eulers */
VECCOPY(eul, td->ext->irot);
eulO_to_mat3( eulmat,eul, td->rotOrder);
/* mat = transform, obmat = bone rotation */
mul_m3_m3m3(fmat, smat, eulmat);
mat3_to_compatible_eulO( eul, td->ext->rot, td->rotOrder,fmat);
/* and apply (to end result only) */
protectedRotateBits(td->protectflag, eul, td->ext->irot);
VECCOPY(td->ext->rot, eul);
}
constraintRotLim(t, td);
}
}
else {
if ((td->flag & TD_NO_LOC) == 0)
{
/* translation */
sub_v3_v3v3(vec, td->center, center);
mul_m3_v3(mat, vec);
add_v3_v3v3(vec, vec, center);
/* vec now is the location where the object has to be */
sub_v3_v3v3(vec, vec, td->center);
mul_m3_v3(td->smtx, vec);
protectedTransBits(td->protectflag, vec);
add_v3_v3v3(td->loc, td->iloc, vec);
}
constraintTransLim(t, td);
/* rotation */
if ((t->flag & T_V3D_ALIGN)==0) { // align mode doesn't rotate objects itself
/* euler or quaternion? */
if ((td->rotOrder == ROT_MODE_QUAT) || (td->flag & TD_USEQUAT)) {
mul_serie_m3(fmat, td->mtx, mat, td->smtx, 0, 0, 0, 0, 0);
mat3_to_quat( quat,fmat); // Actual transform
mul_qt_qtqt(td->ext->quat, quat, td->ext->iquat);
/* this function works on end result */
protectedQuaternionBits(td->protectflag, td->ext->quat, td->ext->iquat);
}
else if (td->rotOrder == ROT_MODE_AXISANGLE) {
/* calculate effect based on quats */
float iquat[4], tquat[4];
axis_angle_to_quat(iquat, td->ext->irotAxis, td->ext->irotAngle);
mul_serie_m3(fmat, td->mtx, mat, td->smtx, 0, 0, 0, 0, 0);
mat3_to_quat( quat,fmat); // Actual transform
mul_qt_qtqt(tquat, quat, iquat);
quat_to_axis_angle( td->ext->rotAxis, td->ext->rotAngle,quat);
/* this function works on end result */
protectedAxisAngleBits(td->protectflag, td->ext->rotAxis, td->ext->rotAngle, td->ext->irotAxis, td->ext->irotAngle);
}
else {
float obmat[3][3];
mul_m3_m3m3(totmat, mat, td->mtx);
mul_m3_m3m3(smat, td->smtx, totmat);
/* calculate the total rotatation in eulers */
add_v3_v3v3(eul, td->ext->irot, td->ext->drot); /* we have to correct for delta rot */
eulO_to_mat3( obmat,eul, td->rotOrder);
/* mat = transform, obmat = object rotation */
mul_m3_m3m3(fmat, smat, obmat);
mat3_to_compatible_eulO( eul, td->ext->rot, td->rotOrder,fmat);
/* correct back for delta rot */
sub_v3_v3v3(eul, eul, td->ext->drot);
/* and apply */
protectedRotateBits(td->protectflag, eul, td->ext->irot);
VECCOPY(td->ext->rot, eul);
}
constraintRotLim(t, td);
}
}
}
static void applyRotation(TransInfo *t, float angle, float axis[3])
{
TransData *td = t->data;
float mat[3][3];
int i;
vec_rot_to_mat3( mat,axis, angle);
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (t->con.applyRot) {
t->con.applyRot(t, td, axis, NULL);
vec_rot_to_mat3( mat,axis, angle * td->factor);
}
else if (t->flag & T_PROP_EDIT) {
vec_rot_to_mat3( mat,axis, angle * td->factor);
}
ElementRotation(t, td, mat, t->around);
}
}
int Rotation(TransInfo *t, short mval[2])
{
char str[64];
float final;
float axis[3];
float mat[3][3];
VECCOPY(axis, t->viewinv[2]);
mul_v3_fl(axis, -1.0f);
normalize_v3(axis);
final = t->values[0];
applyNDofInput(&t->ndof, &final);
snapGrid(t, &final);
if (t->con.applyRot) {
t->con.applyRot(t, NULL, axis, &final);
}
applySnapping(t, &final);
if (hasNumInput(&t->num)) {
char c[20];
applyNumInput(&t->num, &final);
outputNumInput(&(t->num), c);
sprintf(str, "Rot: %s %s %s", &c[0], t->con.text, t->proptext);
/* Clamp between -180 and 180 */
while (final >= 180.0)
final -= 360.0;
while (final <= -180.0)
final += 360.0;
final *= (float)(M_PI / 180.0);
}
else {
sprintf(str, "Rot: %.2f%s %s", 180.0*final/M_PI, t->con.text, t->proptext);
}
vec_rot_to_mat3( mat,axis, final);
// TRANSFORM_FIX_ME
// t->values[0] = final; // used in manipulator
// copy_m3_m3(t->mat, mat); // used in manipulator
applyRotation(t, final, axis);
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** TRACKBALL *************************** */
void initTrackball(TransInfo *t)
{
t->mode = TFM_TRACKBALL;
t->transform = Trackball;
initMouseInputMode(t, &t->mouse, INPUT_TRACKBALL);
t->ndof.axis = 40;
/* Scale down input for rotation */
t->ndof.factor[0] = 0.2f;
t->ndof.factor[1] = 0.2f;
t->idx_max = 1;
t->num.idx_max = 1;
t->snap[0] = 0.0f;
t->snap[1] = (float)((5.0/180)*M_PI);
t->snap[2] = t->snap[1] * 0.2f;
t->flag |= T_NO_CONSTRAINT;
}
static void applyTrackball(TransInfo *t, float axis1[3], float axis2[3], float angles[2])
{
TransData *td = t->data;
float mat[3][3], smat[3][3], totmat[3][3];
int i;
vec_rot_to_mat3( smat,axis1, angles[0]);
vec_rot_to_mat3( totmat,axis2, angles[1]);
mul_m3_m3m3(mat, smat, totmat);
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (t->flag & T_PROP_EDIT) {
vec_rot_to_mat3( smat,axis1, td->factor * angles[0]);
vec_rot_to_mat3( totmat,axis2, td->factor * angles[1]);
mul_m3_m3m3(mat, smat, totmat);
}
ElementRotation(t, td, mat, t->around);
}
}
int Trackball(TransInfo *t, short mval[2])
{
char str[128];
float axis1[3], axis2[3];
float mat[3][3], totmat[3][3], smat[3][3];
float phi[2];
VECCOPY(axis1, t->persinv[0]);
VECCOPY(axis2, t->persinv[1]);
normalize_v3(axis1);
normalize_v3(axis2);
phi[0] = t->values[0];
phi[1] = t->values[1];
applyNDofInput(&t->ndof, phi);
snapGrid(t, phi);
if (hasNumInput(&t->num)) {
char c[40];
applyNumInput(&t->num, phi);
outputNumInput(&(t->num), c);
sprintf(str, "Trackball: %s %s %s", &c[0], &c[20], t->proptext);
phi[0] *= (float)(M_PI / 180.0);
phi[1] *= (float)(M_PI / 180.0);
}
else {
sprintf(str, "Trackball: %.2f %.2f %s", 180.0*phi[0]/M_PI, 180.0*phi[1]/M_PI, t->proptext);
}
vec_rot_to_mat3( smat,axis1, phi[0]);
vec_rot_to_mat3( totmat,axis2, phi[1]);
mul_m3_m3m3(mat, smat, totmat);
// TRANSFORM_FIX_ME
//copy_m3_m3(t->mat, mat); // used in manipulator
applyTrackball(t, axis1, axis2, phi);
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** TRANSLATION *************************** */
void initTranslation(TransInfo *t)
{
t->mode = TFM_TRANSLATION;
t->transform = Translation;
initMouseInputMode(t, &t->mouse, INPUT_VECTOR);
t->idx_max = (t->flag & T_2D_EDIT)? 1: 2;
t->num.flag = 0;
t->num.idx_max = t->idx_max;
t->ndof.axis = (t->flag & T_2D_EDIT)? 1|2: 1|2|4;
if(t->spacetype == SPACE_VIEW3D) {
View3D *v3d = t->view;
t->snap[0] = 0.0f;
t->snap[1] = v3d->gridview * 1.0f;
t->snap[2] = t->snap[1] * 0.1f;
}
else if(t->spacetype == SPACE_IMAGE) {
t->snap[0] = 0.0f;
t->snap[1] = 0.125f;
t->snap[2] = 0.0625f;
}
else {
t->snap[0] = 0.0f;
t->snap[1] = t->snap[2] = 1.0f;
}
}
static void headerTranslation(TransInfo *t, float vec[3], char *str) {
char tvec[60];
char distvec[20];
char autoik[20];
float dist;
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec);
dist = len_v3(t->num.val);
}
else {
float dvec[3];
VECCOPY(dvec, vec);
applyAspectRatio(t, dvec);
dist = len_v3(vec);
if(t->scene->unit.system) {
int i, do_split= t->scene->unit.flag & USER_UNIT_OPT_SPLIT ? 1:0;
for(i=0; i<3; i++)
bUnit_AsString(&tvec[i*20], 20, dvec[i]*t->scene->unit.scale_length, 4, t->scene->unit.system, B_UNIT_LENGTH, do_split, 1);
}
else {
sprintf(&tvec[0], "%.4f", dvec[0]);
sprintf(&tvec[20], "%.4f", dvec[1]);
sprintf(&tvec[40], "%.4f", dvec[2]);
}
}
if(t->scene->unit.system)
bUnit_AsString(distvec, sizeof(distvec), dist*t->scene->unit.scale_length, 4, t->scene->unit.system, B_UNIT_LENGTH, t->scene->unit.flag & USER_UNIT_OPT_SPLIT, 0);
else if( dist > 1e10 || dist < -1e10 ) /* prevent string buffer overflow */
sprintf(distvec, "%.4e", dist);
else
sprintf(distvec, "%.4f", dist);
if(t->flag & T_AUTOIK) {
short chainlen= t->settings->autoik_chainlen;
if(chainlen)
sprintf(autoik, "AutoIK-Len: %d", chainlen);
else
strcpy(autoik, "");
}
else
strcpy(autoik, "");
if (t->con.mode & CON_APPLY) {
switch(t->num.idx_max) {
case 0:
sprintf(str, "D: %s (%s)%s %s %s", &tvec[0], distvec, t->con.text, t->proptext, &autoik[0]);
break;
case 1:
sprintf(str, "D: %s D: %s (%s)%s %s %s", &tvec[0], &tvec[20], distvec, t->con.text, t->proptext, &autoik[0]);
break;
case 2:
sprintf(str, "D: %s D: %s D: %s (%s)%s %s %s", &tvec[0], &tvec[20], &tvec[40], distvec, t->con.text, t->proptext, &autoik[0]);
}
}
else {
if(t->flag & T_2D_EDIT)
sprintf(str, "Dx: %s Dy: %s (%s)%s %s", &tvec[0], &tvec[20], distvec, t->con.text, t->proptext);
else
sprintf(str, "Dx: %s Dy: %s Dz: %s (%s)%s %s %s", &tvec[0], &tvec[20], &tvec[40], distvec, t->con.text, t->proptext, &autoik[0]);
}
}
static void applyTranslation(TransInfo *t, float vec[3]) {
TransData *td = t->data;
float tvec[3];
int i;
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
/* handle snapping rotation before doing the translation */
if (usingSnappingNormal(t))
{
if (validSnappingNormal(t))
{
float *original_normal = td->axismtx[2];
float axis[3];
float quat[4];
float mat[3][3];
float angle;
cross_v3_v3v3(axis, original_normal, t->tsnap.snapNormal);
angle = saacos(dot_v3v3(original_normal, t->tsnap.snapNormal));
axis_angle_to_quat(quat, axis, angle);
quat_to_mat3( mat,quat);
ElementRotation(t, td, mat, V3D_LOCAL);
}
else
{
float mat[3][3];
unit_m3(mat);
ElementRotation(t, td, mat, V3D_LOCAL);
}
}
if (t->con.applyVec) {
float pvec[3];
t->con.applyVec(t, td, vec, tvec, pvec);
}
else {
VECCOPY(tvec, vec);
}
mul_m3_v3(td->smtx, tvec);
mul_v3_fl(tvec, td->factor);
protectedTransBits(td->protectflag, tvec);
add_v3_v3v3(td->loc, td->iloc, tvec);
constraintTransLim(t, td);
}
}
/* uses t->vec to store actual translation in */
int Translation(TransInfo *t, short mval[2])
{
float tvec[3];
char str[250];
if (t->con.mode & CON_APPLY) {
float pvec[3] = {0.0f, 0.0f, 0.0f};
applySnapping(t, t->values);
t->con.applyVec(t, NULL, t->values, tvec, pvec);
VECCOPY(t->values, tvec);
headerTranslation(t, pvec, str);
}
else {
applyNDofInput(&t->ndof, t->values);
snapGrid(t, t->values);
applyNumInput(&t->num, t->values);
if (hasNumInput(&t->num))
{
removeAspectRatio(t, t->values);
}
applySnapping(t, t->values);
headerTranslation(t, t->values, str);
}
applyTranslation(t, t->values);
/* evil hack - redo translation if clipping needed */
if (t->flag & T_CLIP_UV && clipUVTransform(t, t->values, 0))
applyTranslation(t, t->values);
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** SHRINK/FATTEN *************************** */
void initShrinkFatten(TransInfo *t)
{
// If not in mesh edit mode, fallback to Resize
if (t->obedit==NULL || t->obedit->type != OB_MESH) {
initResize(t);
}
else {
t->mode = TFM_SHRINKFATTEN;
t->transform = ShrinkFatten;
initMouseInputMode(t, &t->mouse, INPUT_VERTICAL_ABSOLUTE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 1.0f;
t->snap[2] = t->snap[1] * 0.1f;
t->flag |= T_NO_CONSTRAINT;
}
}
int ShrinkFatten(TransInfo *t, short mval[2])
{
float vec[3];
float distance;
int i;
char str[64];
TransData *td = t->data;
distance = -t->values[0];
snapGrid(t, &distance);
applyNumInput(&t->num, &distance);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
sprintf(str, "Shrink/Fatten: %s %s", c, t->proptext);
}
else {
/* default header print */
sprintf(str, "Shrink/Fatten: %.4f %s", distance, t->proptext);
}
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
VECCOPY(vec, td->axismtx[2]);
mul_v3_fl(vec, distance);
mul_v3_fl(vec, td->factor);
add_v3_v3v3(td->loc, td->iloc, vec);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** TILT *************************** */
void initTilt(TransInfo *t)
{
t->mode = TFM_TILT;
t->transform = Tilt;
initMouseInputMode(t, &t->mouse, INPUT_ANGLE);
t->ndof.axis = 16;
/* Scale down and flip input for rotation */
t->ndof.factor[0] = -0.2f;
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = (float)((5.0/180)*M_PI);
t->snap[2] = t->snap[1] * 0.2f;
t->flag |= T_NO_CONSTRAINT;
}
int Tilt(TransInfo *t, short mval[2])
{
TransData *td = t->data;
int i;
char str[50];
float final;
final = t->values[0];
applyNDofInput(&t->ndof, &final);
snapGrid(t, &final);
if (hasNumInput(&t->num)) {
char c[20];
applyNumInput(&t->num, &final);
outputNumInput(&(t->num), c);
sprintf(str, "Tilt: %s %s", &c[0], t->proptext);
final *= (float)(M_PI / 180.0);
}
else {
sprintf(str, "Tilt: %.2f %s", 180.0*final/M_PI, t->proptext);
}
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (td->val) {
*td->val = td->ival + final * td->factor;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ******************** Curve Shrink/Fatten *************** */
void initCurveShrinkFatten(TransInfo *t)
{
t->mode = TFM_CURVE_SHRINKFATTEN;
t->transform = CurveShrinkFatten;
initMouseInputMode(t, &t->mouse, INPUT_SPRING);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->flag |= T_NO_CONSTRAINT;
}
int CurveShrinkFatten(TransInfo *t, short mval[2])
{
TransData *td = t->data;
float ratio;
int i;
char str[50];
ratio = t->values[0];
snapGrid(t, &ratio);
applyNumInput(&t->num, &ratio);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
sprintf(str, "Shrink/Fatten: %s", c);
}
else {
sprintf(str, "Shrink/Fatten: %3f", ratio);
}
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if(td->val) {
//*td->val= ratio;
*td->val= td->ival*ratio;
if (*td->val <= 0.0f) *td->val = 0.0001f;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** PUSH/PULL *************************** */
void initPushPull(TransInfo *t)
{
t->mode = TFM_PUSHPULL;
t->transform = PushPull;
initMouseInputMode(t, &t->mouse, INPUT_VERTICAL_ABSOLUTE);
t->ndof.axis = 4;
/* Flip direction */
t->ndof.factor[0] = -1.0f;
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 1.0f;
t->snap[2] = t->snap[1] * 0.1f;
}
int PushPull(TransInfo *t, short mval[2])
{
float vec[3], axis[3];
float distance;
int i;
char str[128];
TransData *td = t->data;
distance = t->values[0];
applyNDofInput(&t->ndof, &distance);
snapGrid(t, &distance);
applyNumInput(&t->num, &distance);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
sprintf(str, "Push/Pull: %s%s %s", c, t->con.text, t->proptext);
}
else {
/* default header print */
sprintf(str, "Push/Pull: %.4f%s %s", distance, t->con.text, t->proptext);
}
if (t->con.applyRot && t->con.mode & CON_APPLY) {
t->con.applyRot(t, NULL, axis, NULL);
}
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
sub_v3_v3v3(vec, t->center, td->center);
if (t->con.applyRot && t->con.mode & CON_APPLY) {
t->con.applyRot(t, td, axis, NULL);
if (isLockConstraint(t)) {
float dvec[3];
project_v3_v3v3(dvec, vec, axis);
sub_v3_v3v3(vec, vec, dvec);
}
else {
project_v3_v3v3(vec, vec, axis);
}
}
normalize_v3(vec);
mul_v3_fl(vec, distance);
mul_v3_fl(vec, td->factor);
add_v3_v3v3(td->loc, td->iloc, vec);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** BEVEL **************************** */
void initBevel(TransInfo *t)
{
t->transform = Bevel;
t->handleEvent = handleEventBevel;
initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_ABSOLUTE);
t->mode = TFM_BEVEL;
t->flag |= T_NO_CONSTRAINT;
t->num.flag |= NUM_NO_NEGATIVE;
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
/* DON'T KNOW WHY THIS IS NEEDED */
if (G.editBMesh->imval[0] == 0 && G.editBMesh->imval[1] == 0) {
/* save the initial mouse co */
G.editBMesh->imval[0] = t->imval[0];
G.editBMesh->imval[1] = t->imval[1];
}
else {
/* restore the mouse co from a previous call to initTransform() */
t->imval[0] = G.editBMesh->imval[0];
t->imval[1] = G.editBMesh->imval[1];
}
}
int handleEventBevel(TransInfo *t, wmEvent *event)
{
if (event->val==KM_PRESS) {
if(!G.editBMesh) return 0;
switch (event->type) {
case MIDDLEMOUSE:
G.editBMesh->options ^= BME_BEVEL_VERT;
t->state = TRANS_CANCEL;
return 1;
//case PADPLUSKEY:
// G.editBMesh->options ^= BME_BEVEL_RES;
// G.editBMesh->res += 1;
// if (G.editBMesh->res > 4) {
// G.editBMesh->res = 4;
// }
// t->state = TRANS_CANCEL;
// return 1;
//case PADMINUS:
// G.editBMesh->options ^= BME_BEVEL_RES;
// G.editBMesh->res -= 1;
// if (G.editBMesh->res < 0) {
// G.editBMesh->res = 0;
// }
// t->state = TRANS_CANCEL;
// return 1;
default:
return 0;
}
}
return 0;
}
int Bevel(TransInfo *t, short mval[2])
{
float distance,d;
int i;
char str[128];
char *mode;
TransData *td = t->data;
mode = (G.editBMesh->options & BME_BEVEL_VERT) ? "verts only" : "normal";
distance = t->values[0] / 4; /* 4 just seemed a nice value to me, nothing special */
distance = fabs(distance);
snapGrid(t, &distance);
applyNumInput(&t->num, &distance);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
sprintf(str, "Bevel - Dist: %s, Mode: %s (MMB to toggle))", c, mode);
}
else {
/* default header print */
sprintf(str, "Bevel - Dist: %.4f, Mode: %s (MMB to toggle))", distance, mode);
}
if (distance < 0) distance = -distance;
for(i = 0 ; i < t->total; i++, td++) {
if (td->axismtx[1][0] > 0 && distance > td->axismtx[1][0]) {
d = td->axismtx[1][0];
}
else {
d = distance;
}
VECADDFAC(td->loc,td->center,td->axismtx[0],(*td->val)*d);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** BEVEL WEIGHT *************************** */
void initBevelWeight(TransInfo *t)
{
t->mode = TFM_BWEIGHT;
t->transform = BevelWeight;
initMouseInputMode(t, &t->mouse, INPUT_SPRING);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->flag |= T_NO_CONSTRAINT;
}
int BevelWeight(TransInfo *t, short mval[2])
{
TransData *td = t->data;
float weight;
int i;
char str[50];
weight = t->values[0];
weight -= 1.0f;
if (weight > 1.0f) weight = 1.0f;
snapGrid(t, &weight);
applyNumInput(&t->num, &weight);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
if (weight >= 0.0f)
sprintf(str, "Bevel Weight: +%s %s", c, t->proptext);
else
sprintf(str, "Bevel Weight: %s %s", c, t->proptext);
}
else {
/* default header print */
if (weight >= 0.0f)
sprintf(str, "Bevel Weight: +%.3f %s", weight, t->proptext);
else
sprintf(str, "Bevel Weight: %.3f %s", weight, t->proptext);
}
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->val) {
*td->val = td->ival + weight * td->factor;
if (*td->val < 0.0f) *td->val = 0.0f;
if (*td->val > 1.0f) *td->val = 1.0f;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** CREASE *************************** */
void initCrease(TransInfo *t)
{
t->mode = TFM_CREASE;
t->transform = Crease;
initMouseInputMode(t, &t->mouse, INPUT_SPRING);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->flag |= T_NO_CONSTRAINT;
}
int Crease(TransInfo *t, short mval[2])
{
TransData *td = t->data;
float crease;
int i;
char str[50];
crease = t->values[0];
crease -= 1.0f;
if (crease > 1.0f) crease = 1.0f;
snapGrid(t, &crease);
applyNumInput(&t->num, &crease);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
if (crease >= 0.0f)
sprintf(str, "Crease: +%s %s", c, t->proptext);
else
sprintf(str, "Crease: %s %s", c, t->proptext);
}
else {
/* default header print */
if (crease >= 0.0f)
sprintf(str, "Crease: +%.3f %s", crease, t->proptext);
else
sprintf(str, "Crease: %.3f %s", crease, t->proptext);
}
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (td->val) {
*td->val = td->ival + crease * td->factor;
if (*td->val < 0.0f) *td->val = 0.0f;
if (*td->val > 1.0f) *td->val = 1.0f;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ******************** EditBone (B-bone) width scaling *************** */
void initBoneSize(TransInfo *t)
{
t->mode = TFM_BONESIZE;
t->transform = BoneSize;
initMouseInputMode(t, &t->mouse, INPUT_SPRING_FLIP);
t->idx_max = 2;
t->num.idx_max = 2;
t->num.flag |= NUM_NULL_ONE;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
}
static void headerBoneSize(TransInfo *t, float vec[3], char *str) {
char tvec[60];
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec);
}
else {
sprintf(&tvec[0], "%.4f", vec[0]);
sprintf(&tvec[20], "%.4f", vec[1]);
sprintf(&tvec[40], "%.4f", vec[2]);
}
/* hmm... perhaps the y-axis values don't need to be shown? */
if (t->con.mode & CON_APPLY) {
if (t->num.idx_max == 0)
sprintf(str, "ScaleB: %s%s %s", &tvec[0], t->con.text, t->proptext);
else
sprintf(str, "ScaleB: %s : %s : %s%s %s", &tvec[0], &tvec[20], &tvec[40], t->con.text, t->proptext);
}
else {
sprintf(str, "ScaleB X: %s Y: %s Z: %s%s %s", &tvec[0], &tvec[20], &tvec[40], t->con.text, t->proptext);
}
}
static void ElementBoneSize(TransInfo *t, TransData *td, float mat[3][3])
{
float tmat[3][3], smat[3][3], oldy;
float sizemat[3][3];
mul_m3_m3m3(smat, mat, td->mtx);
mul_m3_m3m3(tmat, td->smtx, smat);
if (t->con.applySize) {
t->con.applySize(t, td, tmat);
}
/* we've tucked the scale in loc */
oldy= td->iloc[1];
size_to_mat3( sizemat,td->iloc);
mul_m3_m3m3(tmat, tmat, sizemat);
mat3_to_size( td->loc,tmat);
td->loc[1]= oldy;
}
int BoneSize(TransInfo *t, short mval[2])
{
TransData *td = t->data;
float size[3], mat[3][3];
float ratio;
int i;
char str[60];
// TRANSFORM_FIX_ME MOVE TO MOUSE INPUT
/* for manipulator, center handle, the scaling can't be done relative to center */
if( (t->flag & T_USES_MANIPULATOR) && t->con.mode==0)
{
ratio = 1.0f - ((t->imval[0] - mval[0]) + (t->imval[1] - mval[1]))/100.0f;
}
else
{
ratio = t->values[0];
}
size[0] = size[1] = size[2] = ratio;
snapGrid(t, size);
if (hasNumInput(&t->num)) {
applyNumInput(&t->num, size);
constraintNumInput(t, size);
}
size_to_mat3( mat,size);
if (t->con.applySize) {
t->con.applySize(t, NULL, mat);
}
copy_m3_m3(t->mat, mat); // used in manipulator
headerBoneSize(t, size, str);
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
ElementBoneSize(t, td, mat);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ******************** EditBone envelope *************** */
void initBoneEnvelope(TransInfo *t)
{
t->mode = TFM_BONE_ENVELOPE;
t->transform = BoneEnvelope;
initMouseInputMode(t, &t->mouse, INPUT_SPRING);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->flag |= T_NO_CONSTRAINT;
}
int BoneEnvelope(TransInfo *t, short mval[2])
{
TransData *td = t->data;
float ratio;
int i;
char str[50];
ratio = t->values[0];
snapGrid(t, &ratio);
applyNumInput(&t->num, &ratio);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
sprintf(str, "Envelope: %s", c);
}
else {
sprintf(str, "Envelope: %3f", ratio);
}
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (td->val) {
/* if the old/original value was 0.0f, then just use ratio */
if (td->ival)
*td->val= td->ival*ratio;
else
*td->val= ratio;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ******************** Edge Slide *************** */
#if 0
static int createSlideVerts(TransInfo *t) {
#else
static BMEdge *get_other_edge(BMesh *bm, BMVert *v, BMEdge *e)
{
BMIter iter;
BMEdge *e2;
BM_ITER(e2, &iter, bm, BM_EDGES_OF_VERT, v) {
if (BM_TestHFlag(e2, BM_SELECT) && e2 != e)
return e2;
}
return NULL;
}
static BMLoop *get_next_loop(BMesh *bm, BMVert *v, BMLoop *l,
BMEdge *olde, BMEdge *nexte, float vec[3])
{
BMLoop *firstl;
float a[3] = {0.0f, 0.0f, 0.0f}, n[3] = {0.0f, 0.0f, 0.0f};
int i=0;
firstl = l;
do {
l = BM_OtherFaceLoop(l->e, l->f, v);
if (l->radial.next->data == l)
return NULL;
if (l->e == nexte) {
if (i) {
mul_v3_fl(a, 1.0f / (float)i);
} else {
float f1[3], f2[3], f3[3], n[3];
sub_v3_v3v3(f1, BM_OtherEdgeVert(olde, v)->co, v->co);
sub_v3_v3v3(f2, BM_OtherEdgeVert(nexte, v)->co, v->co);
cross_v3_v3v3(f3, f1, l->f->no);
cross_v3_v3v3(a, f2, l->f->no);
mul_v3_fl(a, -1.0f);
add_v3_v3(a, f3);
mul_v3_fl(a, 0.5f);
}
VECCOPY(vec, a);
return l;
} else {
sub_v3_v3v3(n, BM_OtherEdgeVert(l->e, l->v)->co, l->v->co);
add_v3_v3v3(a, a, n);
i += 1;
}
if (BM_OtherFaceLoop(l->e, l->f, v)->e == nexte) {
if (i)
mul_v3_fl(a, 1.0f / (float)i);
VECCOPY(vec, a);
return BM_OtherFaceLoop(l->e, l->f, v);
}
l = l->radial.next->data;
} while (l != firstl);
if (i)
mul_v3_fl(a, 1.0f / (float)i);
VECCOPY(vec, a);
return NULL;
}
static int createSlideVerts(TransInfo *t)
{
Mesh *me = t->obedit->data;
BMEditMesh *em = me->edit_btmesh;
BMesh *bm = em->bm;
BMIter iter, iter2;
BMEdge *e, *e1, *e2;
BMVert *v, *v2, *first;
BMLoop *l, *l1, *l2;
TransDataSlideVert *tempsv, *sv;
GHash **uvarray= NULL;
SlideData *sld = MEM_callocN(sizeof(*sld), "sld");
TransDataSlideUv *slideuvs=NULL, *suv=NULL, *suv_last=NULL;
RegionView3D *v3d = t->ar->regiondata;
float projectMat[4][4];
float start[3] = {0.0f, 0.0f, 0.0f}, end[3] = {0.0f, 0.0f, 0.0f};
float vec[3], vec2[3];
float totvec=0.0;
int uvlay_tot= CustomData_number_of_layers(&em->bm->pdata, CD_MTFACE);
int uvlay_idx, numsel, i, j;
if (!v3d) {
/*ok, let's try to survive this*/
unit_m4(projectMat);
} else {
view3d_get_object_project_mat(v3d, t->obedit, projectMat);
}
/*ensure valid selection*/
BM_ITER(v, &iter, em->bm, BM_VERTS_OF_MESH, NULL) {
if (BM_TestHFlag(v, BM_SELECT)) {
numsel = 0;
BM_ITER(e, &iter2, em->bm, BM_EDGES_OF_VERT, v) {
if (BM_TestHFlag(e, BM_SELECT)) {
/*BMESH_TODO: this is probably very evil,
set v->edge to a selected edge*/
v->edge = e;
numsel++;
}
}
if (numsel > 2) {
return 0; //invalid edge selection
}
}
}
BM_ITER(e, &iter, em->bm, BM_EDGES_OF_MESH, NULL) {
if (BM_TestHFlag(e, BM_SELECT)) {
if (BM_Edge_FaceCount(e) > 2 || BM_Edge_FaceCount(e) == 0)
return 0; //can't handle more then 2 faces around an edge
}
}
j = 0;
BM_ITER(v, &iter, em->bm, BM_VERTS_OF_MESH, NULL) {
if (BM_TestHFlag(v, BM_SELECT)) {
BMINDEX_SET(v, 1);
j += 1;
} else BMINDEX_SET(v, 0);
}
if (!j)
return 0;
tempsv = MEM_callocN(sizeof(TransDataSlideVert)*j, "tempsv");
j = 0;
while (1) {
v = NULL;
BM_ITER(v, &iter, em->bm, BM_VERTS_OF_MESH, NULL) {
if (BMINDEX_GET(v))
break;
}
if (!v)
break;
BMINDEX_SET(v, 0);
if (!v->edge)
continue;
first = v;
/*walk along the edge loop*/
e = v->edge;
/*first, rewind*/
numsel = 0;
do {
BMINDEX_SET(v, 0);
e = get_other_edge(bm, v, e);
if (!e) {
e = v->edge;
break;
}
numsel += 1;
if (!BMINDEX_GET(BM_OtherEdgeVert(e, v)))
break;
v = BM_OtherEdgeVert(e, v);
} while (e != first->edge);
l1 = l2 = l = NULL;
l1 = e->loop;
l2 = e->loop->radial.next->data;
l = BM_OtherFaceLoop(l1->e, l1->f, v);
sub_v3_v3v3(vec, BM_OtherEdgeVert(l->e, v)->co, v->co);
if (l2 != l1) {
l = BM_OtherFaceLoop(l2->e, l2->f, v);
sub_v3_v3v3(vec2, BM_OtherEdgeVert(l->e, v)->co, v->co);
} else {
l2 = NULL;
}
/*iterate over the loop*/
first = v;
j = 0;
do {
TransDataSlideVert *sv = tempsv + j;
sv->v = v;
sv->origvert = *v;
VECCOPY(sv->upvec, vec);
if (l2)
VECCOPY(sv->downvec, vec2);
l = BM_OtherFaceLoop(l1->e, l1->f, v);
sv->up = BM_OtherEdgeVert(l->e, v);
if (l2) {
l = BM_OtherFaceLoop(l2->e, l2->f, v);
sv->down = BM_OtherEdgeVert(l->e, v);
}
v2=v, v = BM_OtherEdgeVert(e, v);
e1 = e;
e = get_other_edge(bm, v, e);
if (!e) {
sv = tempsv + j + 1;
sv->v = v;
sv->origvert = *v;
l = BM_OtherFaceLoop(l1->e, l1->f, v);
sv->up = BM_OtherEdgeVert(l->e, v);
if (l2) {
l = BM_OtherFaceLoop(l2->e, l2->f, v);
sv->down = BM_OtherEdgeVert(l->e, v);
}
BMINDEX_SET(v, 0);
BMINDEX_SET(v2, 0);
j += 2;
break;
}
l1 = get_next_loop(bm, v, l1, e1, e, vec);
l2 = l2 ? get_next_loop(bm, v, l2, e1, e, vec2) : NULL;
j += 1;
BMINDEX_SET(v, 0);
BMINDEX_SET(v2, 0);
} while (e != first->edge && l1);
}
//EDBM_clear_flag_all(em, BM_SELECT);
sld->sv = tempsv;
sld->totsv = j;
sld->start[0] = t->mval[0] - 40;
sld->start[1] = t->mval[1];
sld->end[0] = t->mval[0] + 40;
sld->end[1] = t->mval[1];
t->customData = sld;
return 1;
#endif
#if 0
Mesh *me = t->obedit->data;
BMEditMesh *em = me->edit_btmesh;
EditFace *efa;
EditEdge *eed,*first=NULL,*last=NULL, *temp = NULL;
EditVert *ev, *nearest = NULL;
LinkNode *edgelist = NULL, *vertlist=NULL, *look;
GHash *vertgh;
TransDataSlideVert *tempsv;
float vertdist; // XXX, projectMat[4][4];
int i, j, numsel, numadded=0, timesthrough = 0, vertsel=0;
/* UV correction vars */
GHash **uvarray= NULL;
SlideData *sld = MEM_callocN(sizeof(*sld), "sld");
int uvlay_tot= CustomData_number_of_layers(&em->fdata, CD_MTFACE);
int uvlay_idx;
TransDataSlideUv *slideuvs=NULL, *suv=NULL, *suv_last=NULL;
RegionView3D *v3d = t->ar->regiondata;
float projectMat[4][4];
float start[3] = {0.0f, 0.0f, 0.0f}, end[3] = {0.0f, 0.0f, 0.0f};
float vec[3];
float totvec=0.0;
if (!v3d) {
/*ok, let's try to survive this*/
unit_m4(projectMat);
} else {
view3d_get_object_project_mat(v3d, t->obedit, projectMat);
}
numsel =0;
// Get number of selected edges and clear some flags
for(eed=em->edges.first;eed;eed=eed->next) {
eed->f1 = 0;
eed->f2 = 0;
if(eed->f & SELECT) numsel++;
}
for(ev=em->verts.first;ev;ev=ev->next) {
ev->f1 = 0;
}
//Make sure each edge only has 2 faces
// make sure loop doesn't cross face
for(efa=em->faces.first;efa;efa=efa->next) {
int ct = 0;
if(efa->e1->f & SELECT) {
ct++;
efa->e1->f1++;
if(efa->e1->f1 > 2) {
//BKE_report(op->reports, RPT_ERROR, "3+ face edge");
return 0;
}
}
if(efa->e2->f & SELECT) {
ct++;
efa->e2->f1++;
if(efa->e2->f1 > 2) {
//BKE_report(op->reports, RPT_ERROR, "3+ face edge");
return 0;
}
}
if(efa->e3->f & SELECT) {
ct++;
efa->e3->f1++;
if(efa->e3->f1 > 2) {
//BKE_report(op->reports, RPT_ERROR, "3+ face edge");
return 0;
}
}
if(efa->e4 && efa->e4->f & SELECT) {
ct++;
efa->e4->f1++;
if(efa->e4->f1 > 2) {
//BKE_report(op->reports, RPT_ERROR, "3+ face edge");
return 0;
}
}
// Make sure loop is not 2 edges of same face
if(ct > 1) {
//BKE_report(op->reports, RPT_ERROR, "Loop crosses itself");
return 0;
}
}
// Get # of selected verts
for(ev=em->verts.first;ev;ev=ev->next) {
if(ev->f & SELECT) vertsel++;
}
// Test for multiple segments
if(vertsel > numsel+1) {
//BKE_report(op->reports, RPT_ERROR, "Please choose a single edge loop");
return 0;
}
// Get the edgeloop in order - mark f1 with SELECT once added
for(eed=em->edges.first;eed;eed=eed->next) {
if((eed->f & SELECT) && !(eed->f1 & SELECT)) {
// If this is the first edge added, just put it in
if(!edgelist) {
BLI_linklist_prepend(&edgelist,eed);
numadded++;
first = eed;
last = eed;
eed->f1 = SELECT;
} else {
if(editedge_getSharedVert(eed, last)) {
BLI_linklist_append(&edgelist,eed);
eed->f1 = SELECT;
numadded++;
last = eed;
} else if(editedge_getSharedVert(eed, first)) {
BLI_linklist_prepend(&edgelist,eed);
eed->f1 = SELECT;
numadded++;
first = eed;
}
}
}
if(eed->next == NULL && numadded != numsel) {
eed=em->edges.first;
timesthrough++;
}
// It looks like there was an unexpected case - Hopefully should not happen
if(timesthrough >= numsel*2) {
BLI_linklist_free(edgelist,NULL);
//BKE_report(op->reports, RPT_ERROR, "Could not order loop");
return 0;
}
}
// Put the verts in order in a linklist
look = edgelist;
while(look) {
eed = look->link;
if(!vertlist) {
if(look->next) {
temp = look->next->link;
//This is the first entry takes care of extra vert
if(eed->v1 != temp->v1 && eed->v1 != temp->v2) {
BLI_linklist_append(&vertlist,eed->v1);
eed->v1->f1 = 1;
} else {
BLI_linklist_append(&vertlist,eed->v2);
eed->v2->f1 = 1;
}
} else {
//This is the case that we only have 1 edge
BLI_linklist_append(&vertlist,eed->v1);
eed->v1->f1 = 1;
}
}
// for all the entries
if(eed->v1->f1 != 1) {
BLI_linklist_append(&vertlist,eed->v1);
eed->v1->f1 = 1;
} else if(eed->v2->f1 != 1) {
BLI_linklist_append(&vertlist,eed->v2);
eed->v2->f1 = 1;
}
look = look->next;
}
// populate the SlideVerts
vertgh = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp);
look = vertlist;
while(look) {
i=0;
j=0;
ev = look->link;
tempsv = (struct TransDataSlideVert*)MEM_mallocN(sizeof(struct TransDataSlideVert),"SlideVert");
tempsv->up = NULL;
tempsv->down = NULL;
tempsv->origvert.co[0] = ev->co[0];
tempsv->origvert.co[1] = ev->co[1];
tempsv->origvert.co[2] = ev->co[2];
tempsv->origvert.no[0] = ev->no[0];
tempsv->origvert.no[1] = ev->no[1];
tempsv->origvert.no[2] = ev->no[2];
// i is total edges that vert is on
// j is total selected edges that vert is on
for(eed=em->edges.first;eed;eed=eed->next) {
if(eed->v1 == ev || eed->v2 == ev) {
i++;
if(eed->f & SELECT) {
j++;
}
}
}
// If the vert is in the middle of an edge loop, it touches 2 selected edges and 2 unselected edges
if(i == 4 && j == 2) {
for(eed=em->edges.first;eed;eed=eed->next) {
if(editedge_containsVert(eed, ev)) {
if(!(eed->f & SELECT)) {
if(!tempsv->up) {
tempsv->up = eed;
} else if (!(tempsv->down)) {
tempsv->down = eed;
}
}
}
}
}
// If it is on the end of the loop, it touches 1 selected and as least 2 more unselected
if(i >= 3 && j == 1) {
for(eed=em->edges.first;eed;eed=eed->next) {
if(editedge_containsVert(eed, ev) && eed->f & SELECT) {
for(efa = em->faces.first;efa;efa=efa->next) {
if(editface_containsEdge(efa, eed)) {
if(editedge_containsVert(efa->e1, ev) && efa->e1 != eed) {
if(!tempsv->up) {
tempsv->up = efa->e1;
} else if (!(tempsv->down)) {
tempsv->down = efa->e1;
}
}
if(editedge_containsVert(efa->e2, ev) && efa->e2 != eed) {
if(!tempsv->up) {
tempsv->up = efa->e2;
} else if (!(tempsv->down)) {
tempsv->down = efa->e2;
}
}
if(editedge_containsVert(efa->e3, ev) && efa->e3 != eed) {
if(!tempsv->up) {
tempsv->up = efa->e3;
} else if (!(tempsv->down)) {
tempsv->down = efa->e3;
}
}
if(efa->e4) {
if(editedge_containsVert(efa->e4, ev) && efa->e4 != eed) {
if(!tempsv->up) {
tempsv->up = efa->e4;
} else if (!(tempsv->down)) {
tempsv->down = efa->e4;
}
}
}
}
}
}
}
}
if(i > 4 && j == 2) {
BLI_ghash_free(vertgh, NULL, (GHashValFreeFP)MEM_freeN);
BLI_linklist_free(vertlist,NULL);
BLI_linklist_free(edgelist,NULL);
return 0;
}
BLI_ghash_insert(vertgh,ev,tempsv);
look = look->next;
}
// make sure the UPs nad DOWNs are 'faceloops'
// Also find the nearest slidevert to the cursor
look = vertlist;
nearest = NULL;
vertdist = -1;
while(look) {
tempsv = BLI_ghash_lookup(vertgh,(EditVert*)look->link);
if(!tempsv->up || !tempsv->down) {
//BKE_report(op->reports, RPT_ERROR, "Missing rails");
BLI_ghash_free(vertgh, NULL, (GHashValFreeFP)MEM_freeN);
BLI_linklist_free(vertlist,NULL);
BLI_linklist_free(edgelist,NULL);
return 0;
}
if(me->drawflag & ME_DRAW_EDGELEN) {
if(!(tempsv->up->f & SELECT)) {
tempsv->up->f |= SELECT;
tempsv->up->f2 |= 16;
} else {
tempsv->up->f2 |= ~16;
}
if(!(tempsv->down->f & SELECT)) {
tempsv->down->f |= SELECT;
tempsv->down->f2 |= 16;
} else {
tempsv->down->f2 |= ~16;
}
}
if(look->next != NULL) {
TransDataSlideVert *sv;
ev = (EditVert*)look->next->link;
sv = BLI_ghash_lookup(vertgh, ev);
if(sv) {
float co[3], co2[3], vec[3];
ev = (EditVert*)look->link;
if(!sharesFace(em, tempsv->up,sv->up)) {
EditEdge *swap;
swap = sv->up;
sv->up = sv->down;
sv->down = swap;
}
if (v3d) {
view3d_project_float(t->ar, tempsv->up->v1->co, co, projectMat);
view3d_project_float(t->ar, tempsv->up->v2->co, co2, projectMat);
}
if (ev == tempsv->up->v1) {
sub_v3_v3v3(vec, co, co2);
} else {
sub_v3_v3v3(vec, co2, co);
}
add_v3_v3v3(start, start, vec);
if (v3d) {
view3d_project_float(t->ar, tempsv->down->v1->co, co, projectMat);
view3d_project_float(t->ar, tempsv->down->v2->co, co2, projectMat);
}
if (ev == tempsv->down->v1) {
sub_v3_v3v3(vec, co2, co);
} else {
sub_v3_v3v3(vec, co, co2);
}
add_v3_v3v3(end, end, vec);
totvec += 1.0f;
nearest = (EditVert*)look->link;
}
}
look = look->next;
}
add_v3_v3v3(start, start, end);
mul_v3_fl(start, 0.5*(1.0/totvec));
VECCOPY(vec, start);
start[0] = t->mval[0];
start[1] = t->mval[1];
add_v3_v3v3(end, start, vec);
sld->start[0] = (short) start[0];
sld->start[1] = (short) start[1];
sld->end[0] = (short) end[0];
sld->end[1] = (short) end[1];
if (uvlay_tot) { // XXX && (scene->toolsettings->uvcalc_flag & UVCALC_TRANSFORM_CORRECT)) {
int maxnum = 0;
uvarray = MEM_callocN( uvlay_tot * sizeof(GHash *), "SlideUVs Array");
sld->totuv = uvlay_tot;
suv_last = slideuvs = MEM_callocN( uvlay_tot * (numadded+1) * sizeof(TransDataSlideUv), "SlideUVs"); /* uvLayers * verts */
suv = NULL;
for (uvlay_idx=0; uvlay_idx<uvlay_tot; uvlay_idx++) {
uvarray[uvlay_idx] = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp);
for(ev=em->verts.first;ev;ev=ev->next) {
ev->tmp.l = 0;
}
look = vertlist;
while(look) {
float *uv_new;
tempsv = BLI_ghash_lookup(vertgh,(EditVert*)look->link);
ev = look->link;
suv = NULL;
for(efa = em->faces.first;efa;efa=efa->next) {
if (ev->tmp.l != -1) { /* test for self, in this case its invalid */
int k=-1; /* face corner */
/* Is this vert in the faces corner? */
if (efa->v1==ev) k=0;
else if (efa->v2==ev) k=1;
else if (efa->v3==ev) k=2;
else if (efa->v4 && efa->v4==ev) k=3;
if (k != -1) {
MTFace *tf = CustomData_em_get_n(&em->fdata, efa->data, CD_MTFACE, uvlay_idx);
EditVert *ev_up, *ev_down;
uv_new = tf->uv[k];
if (ev->tmp.l) {
if (fabs(suv->origuv[0]-uv_new[0]) > 0.0001 || fabs(suv->origuv[1]-uv_new[1])) {
ev->tmp.l = -1; /* Tag as invalid */
BLI_linklist_free(suv->fuv_list,NULL);
suv->fuv_list = NULL;
BLI_ghash_remove(uvarray[uvlay_idx],ev, NULL, NULL);
suv = NULL;
break;
}
} else {
ev->tmp.l = 1;
suv = suv_last;
suv->fuv_list = NULL;
suv->uv_up = suv->uv_down = NULL;
suv->origuv[0] = uv_new[0];
suv->origuv[1] = uv_new[1];
BLI_linklist_prepend(&suv->fuv_list, uv_new);
BLI_ghash_insert(uvarray[uvlay_idx],ev,suv);
suv_last++; /* advance to next slide UV */
maxnum++;
}
/* Now get the uvs along the up or down edge if we can */
if (suv) {
if (!suv->uv_up) {
ev_up = editedge_getOtherVert(tempsv->up,ev);
if (efa->v1==ev_up) suv->uv_up = tf->uv[0];
else if (efa->v2==ev_up) suv->uv_up = tf->uv[1];
else if (efa->v3==ev_up) suv->uv_up = tf->uv[2];
else if (efa->v4 && efa->v4==ev_up) suv->uv_up = tf->uv[3];
}
if (!suv->uv_down) { /* if the first face was apart of the up edge, it cant be apart of the down edge */
ev_down = editedge_getOtherVert(tempsv->down,ev);
if (efa->v1==ev_down) suv->uv_down = tf->uv[0];
else if (efa->v2==ev_down) suv->uv_down = tf->uv[1];
else if (efa->v3==ev_down) suv->uv_down = tf->uv[2];
else if (efa->v4 && efa->v4==ev_down) suv->uv_down = tf->uv[3];
}
/* Copy the pointers to the face UV's */
BLI_linklist_prepend(&suv->fuv_list, uv_new);
}
}
}
}
look = look->next;
}
} /* end uv layer loop */
} /* end uvlay_tot */
sld->uvhash = uvarray;
sld->slideuv = slideuvs;
sld->vhash = vertgh;
sld->nearest = nearest;
sld->vertlist = vertlist;
sld->edgelist = edgelist;
sld->suv_last = suv_last;
sld->uvlay_tot = uvlay_tot;
// we should have enough info now to slide
t->customData = sld;
return 1;
#endif
}
void freeSlideVerts(TransInfo *t)
{
#if 0
TransDataSlideUv *suv;
SlideData *sld = t->customData;
int uvlay_idx;
//BLI_ghash_free(edgesgh, freeGHash, NULL);
BLI_ghash_free(sld->vhash, NULL, (GHashValFreeFP)MEM_freeN);
BLI_linklist_free(sld->vertlist, NULL);
BLI_linklist_free(sld->edgelist, NULL);
if (sld->uvlay_tot) {
for (uvlay_idx=0; uvlay_idx<sld->uvlay_tot; uvlay_idx++) {
BLI_ghash_free(sld->uvhash[uvlay_idx], NULL, NULL);
}
suv = sld->suv_last-1;
while (suv >= sld->slideuv) {
if (suv->fuv_list) {
BLI_linklist_free(suv->fuv_list,NULL);
}
suv--;
}
MEM_freeN(sld->slideuv);
MEM_freeN(sld->uvhash);
}
MEM_freeN(sld);
t->customData = NULL;
#endif
}
void initEdgeSlide(TransInfo *t)
{
SlideData *sld;
t->mode = TFM_EDGE_SLIDE;
t->transform = EdgeSlide;
createSlideVerts(t);
sld = t->customData;
if (!sld)
return;
t->customFree = freeSlideVerts;
/* set custom point first if you want value to be initialized by init */
setCustomPoints(t, &t->mouse, sld->end, sld->start);
initMouseInputMode(t, &t->mouse, INPUT_CUSTOM_RATIO);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = (float)((5.0/180)*M_PI);
t->snap[2] = t->snap[1] * 0.2f;
t->flag |= T_NO_CONSTRAINT;
}
int doEdgeSlide(TransInfo *t, float perc)
{
SlideData *sld = t->customData;
TransDataSlideVert *svlist = sld->sv, *sv;
float vec[3];
int i;
sv = svlist;
for (i=0; i<sld->totsv; i++, sv++) {
if (perc > 0.0f) {
VECCOPY(vec, sv->upvec);
mul_v3_fl(vec, perc);
add_v3_v3v3(sv->v->co, sv->origvert.co, vec);
} else {
VECCOPY(vec, sv->downvec);
mul_v3_fl(vec, perc);
add_v3_v3v3(sv->v->co, sv->origvert.co, vec);
}
}
return 1;
#if 0
Mesh *me= t->obedit->data;
EditMesh *em = me->edit_mesh;
SlideData *sld = t->customData;
EditVert *ev, *nearest = sld->nearest;
EditVert *centerVert, *upVert, *downVert;
LinkNode *vertlist=sld->vertlist, *look;
GHash *vertgh = sld->vhash;
TransDataSlideVert *tempsv;
float len = 0.0f;
int prop=1, flip=0;
/* UV correction vars */
GHash **uvarray= sld->uvhash;
int uvlay_tot= CustomData_number_of_layers(&em->fdata, CD_MTFACE);
int uvlay_idx;
TransDataSlideUv *suv=sld->slideuv;
float uv_tmp[2];
LinkNode *fuv_link;
len = 0.0f;
tempsv = BLI_ghash_lookup(vertgh,nearest);
centerVert = editedge_getSharedVert(tempsv->up, tempsv->down);
upVert = editedge_getOtherVert(tempsv->up, centerVert);
downVert = editedge_getOtherVert(tempsv->down, centerVert);
len = MIN2(perc, len_v3v3(upVert->co,downVert->co));
len = MAX2(len, 0);
//Adjust Edgeloop
if(prop) {
look = vertlist;
while(look) {
EditVert *tempev;
ev = look->link;
tempsv = BLI_ghash_lookup(vertgh,ev);
tempev = editedge_getOtherVert((perc>=0)?tempsv->up:tempsv->down, ev);
interp_v3_v3v3(ev->co, tempsv->origvert.co, tempev->co, fabs(perc));
if (uvlay_tot) { // XXX scene->toolsettings->uvcalc_flag & UVCALC_TRANSFORM_CORRECT) {
for (uvlay_idx=0; uvlay_idx<uvlay_tot; uvlay_idx++) {
suv = BLI_ghash_lookup( uvarray[uvlay_idx], ev );
if (suv && suv->fuv_list && suv->uv_up && suv->uv_down) {
interp_v2_v2v2(uv_tmp, suv->origuv, (perc>=0)?suv->uv_up:suv->uv_down, fabs(perc));
fuv_link = suv->fuv_list;
while (fuv_link) {
VECCOPY2D(((float *)fuv_link->link), uv_tmp);
fuv_link = fuv_link->next;
}
}
}
}
look = look->next;
}
}
else {
//Non prop code
look = vertlist;
while(look) {
float newlen;
ev = look->link;
tempsv = BLI_ghash_lookup(vertgh,ev);
newlen = (len / len_v3v3(editedge_getOtherVert(tempsv->up,ev)->co,editedge_getOtherVert(tempsv->down,ev)->co));
if(newlen > 1.0) {newlen = 1.0;}
if(newlen < 0.0) {newlen = 0.0;}
if(flip == 0) {
interp_v3_v3v3(ev->co, editedge_getOtherVert(tempsv->down,ev)->co, editedge_getOtherVert(tempsv->up,ev)->co, fabs(newlen));
if (uvlay_tot) { // XXX scene->toolsettings->uvcalc_flag & UVCALC_TRANSFORM_CORRECT) {
/* dont do anything if no UVs */
for (uvlay_idx=0; uvlay_idx<uvlay_tot; uvlay_idx++) {
suv = BLI_ghash_lookup( uvarray[uvlay_idx], ev );
if (suv && suv->fuv_list && suv->uv_up && suv->uv_down) {
interp_v2_v2v2(uv_tmp, suv->uv_down, suv->uv_up, fabs(newlen));
fuv_link = suv->fuv_list;
while (fuv_link) {
VECCOPY2D(((float *)fuv_link->link), uv_tmp);
fuv_link = fuv_link->next;
}
}
}
}
} else{
interp_v3_v3v3(ev->co, editedge_getOtherVert(tempsv->up,ev)->co, editedge_getOtherVert(tempsv->down,ev)->co, fabs(newlen));
if (uvlay_tot) { // XXX scene->toolsettings->uvcalc_flag & UVCALC_TRANSFORM_CORRECT) {
/* dont do anything if no UVs */
for (uvlay_idx=0; uvlay_idx<uvlay_tot; uvlay_idx++) {
suv = BLI_ghash_lookup( uvarray[uvlay_idx], ev );
if (suv && suv->fuv_list && suv->uv_up && suv->uv_down) {
interp_v2_v2v2(uv_tmp, suv->uv_up, suv->uv_down, fabs(newlen));
fuv_link = suv->fuv_list;
while (fuv_link) {
VECCOPY2D(((float *)fuv_link->link), uv_tmp);
fuv_link = fuv_link->next;
}
}
}
}
}
look = look->next;
}
}
return 1;
#endif
}
int EdgeSlide(TransInfo *t, short mval[2])
{
char str[50];
float final;
final = t->values[0];
snapGrid(t, &final);
if (hasNumInput(&t->num)) {
char c[20];
applyNumInput(&t->num, &final);
outputNumInput(&(t->num), c);
sprintf(str, "Edge Slide Percent: %s", &c[0]);
}
else {
sprintf(str, "Edge Slide Percent: %.2f", final);
}
CLAMP(final, -1.0f, 1.0f);
/*do stuff here*/
if (t->customData)
doEdgeSlide(t, final);
else {
strcpy(str, "Invalid Edge Selection");
t->state = TRANS_CANCEL;
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ******************** EditBone roll *************** */
void initBoneRoll(TransInfo *t)
{
t->mode = TFM_BONE_ROLL;
t->transform = BoneRoll;
initMouseInputMode(t, &t->mouse, INPUT_ANGLE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = (float)((5.0/180)*M_PI);
t->snap[2] = t->snap[1] * 0.2f;
t->flag |= T_NO_CONSTRAINT;
}
int BoneRoll(TransInfo *t, short mval[2])
{
TransData *td = t->data;
int i;
char str[50];
float final;
final = t->values[0];
snapGrid(t, &final);
if (hasNumInput(&t->num)) {
char c[20];
applyNumInput(&t->num, &final);
outputNumInput(&(t->num), c);
sprintf(str, "Roll: %s", &c[0]);
final *= (float)(M_PI / 180.0);
}
else {
sprintf(str, "Roll: %.2f", 180.0*final/M_PI);
}
/* set roll values */
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
*(td->val) = td->ival - final;
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** BAKE TIME ******************* */
void initBakeTime(TransInfo *t)
{
t->transform = BakeTime;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 1.0f;
t->snap[2] = t->snap[1] * 0.1f;
}
int BakeTime(TransInfo *t, short mval[2])
{
TransData *td = t->data;
float time;
int i;
char str[50];
float fac = 0.1f;
if(t->mouse.precision) {
/* calculate ratio for shiftkey pos, and for total, and blend these for precision */
time= (float)(t->center2d[0] - t->mouse.precision_mval[0]) * fac;
time+= 0.1f*((float)(t->center2d[0]*fac - mval[0]) -time);
}
else {
time = (float)(t->center2d[0] - mval[0])*fac;
}
snapGrid(t, &time);
applyNumInput(&t->num, &time);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[20];
outputNumInput(&(t->num), c);
if (time >= 0.0f)
sprintf(str, "Time: +%s %s", c, t->proptext);
else
sprintf(str, "Time: %s %s", c, t->proptext);
}
else {
/* default header print */
if (time >= 0.0f)
sprintf(str, "Time: +%.3f %s", time, t->proptext);
else
sprintf(str, "Time: %.3f %s", time, t->proptext);
}
for(i = 0 ; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (td->val) {
*td->val = td->ival + time * td->factor;
if (td->ext->size && *td->val < *td->ext->size) *td->val = *td->ext->size;
if (td->ext->quat && *td->val > *td->ext->quat) *td->val = *td->ext->quat;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** MIRROR *************************** */
void initMirror(TransInfo *t)
{
t->transform = Mirror;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
t->flag |= T_NULL_ONE;
if (!t->obedit) {
t->flag |= T_NO_ZERO;
}
}
int Mirror(TransInfo *t, short mval[2])
{
TransData *td;
float size[3], mat[3][3];
int i;
char str[200];
/*
* OPTIMISATION:
* This still recalcs transformation on mouse move
* while it should only recalc on constraint change
* */
/* if an axis has been selected */
if (t->con.mode & CON_APPLY) {
size[0] = size[1] = size[2] = -1;
size_to_mat3( mat,size);
if (t->con.applySize) {
t->con.applySize(t, NULL, mat);
}
sprintf(str, "Mirror%s", t->con.text);
for(i = 0, td=t->data; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
ElementResize(t, td, mat);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
}
else
{
size[0] = size[1] = size[2] = 1;
size_to_mat3( mat,size);
for(i = 0, td=t->data; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
ElementResize(t, td, mat);
}
recalcData(t);
if(t->flag & T_2D_EDIT)
ED_area_headerprint(t->sa, "Select a mirror axis (X, Y)");
else
ED_area_headerprint(t->sa, "Select a mirror axis (X, Y, Z)");
}
return 1;
}
/* ************************** ALIGN *************************** */
void initAlign(TransInfo *t)
{
t->flag |= T_NO_CONSTRAINT;
t->transform = Align;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
}
int Align(TransInfo *t, short mval[2])
{
TransData *td = t->data;
float center[3];
int i;
/* saving original center */
VECCOPY(center, t->center);
for(i = 0 ; i < t->total; i++, td++)
{
float mat[3][3], invmat[3][3];
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
/* around local centers */
if (t->flag & (T_OBJECT|T_POSE)) {
VECCOPY(t->center, td->center);
}
else {
if(t->settings->selectmode & SCE_SELECT_FACE) {
VECCOPY(t->center, td->center);
}
}
invert_m3_m3(invmat, td->axismtx);
mul_m3_m3m3(mat, t->spacemtx, invmat);
ElementRotation(t, td, mat, t->around);
}
/* restoring original center */
VECCOPY(t->center, center);
recalcData(t);
ED_area_headerprint(t->sa, "Align");
return 1;
}
/* ************************** ANIM EDITORS - TRANSFORM TOOLS *************************** */
/* ---------------- Special Helpers for Various Settings ------------- */
/* This function returns the snapping 'mode' for Animation Editors only
* We cannot use the standard snapping due to NLA-strip scaling complexities.
*/
// XXX these modifier checks should be keymappable
static short getAnimEdit_SnapMode(TransInfo *t)
{
short autosnap= SACTSNAP_OFF;
/* currently, some of these are only for the action editor */
if (t->spacetype == SPACE_ACTION) {
SpaceAction *saction= (SpaceAction *)t->sa->spacedata.first;
if (saction)
autosnap= saction->autosnap;
}
else if (t->spacetype == SPACE_IPO) {
SpaceIpo *sipo= (SpaceIpo *)t->sa->spacedata.first;
if (sipo)
autosnap= sipo->autosnap;
}
else if (t->spacetype == SPACE_NLA) {
SpaceNla *snla= (SpaceNla *)t->sa->spacedata.first;
if (snla)
autosnap= snla->autosnap;
}
else {
// TRANSFORM_FIX_ME This needs to use proper defines for t->modifiers
// // FIXME: this still toggles the modes...
// if (ctrl)
// autosnap= SACTSNAP_STEP;
// else if (shift)
// autosnap= SACTSNAP_FRAME;
// else if (alt)
// autosnap= SACTSNAP_MARKER;
// else
autosnap= SACTSNAP_OFF;
}
return autosnap;
}
/* This function is used for testing if an Animation Editor is displaying
* its data in frames or seconds (and the data needing to be edited as such).
* Returns 1 if in seconds, 0 if in frames
*/
static short getAnimEdit_DrawTime(TransInfo *t)
{
short drawtime;
/* currently, some of these are only for the action editor */
if (t->spacetype == SPACE_ACTION) {
SpaceAction *saction= (SpaceAction *)t->sa->spacedata.first;
drawtime = (saction->flag & SACTION_DRAWTIME)? 1 : 0;
}
else if (t->spacetype == SPACE_NLA) {
SpaceNla *snla= (SpaceNla *)t->sa->spacedata.first;
drawtime = (snla->flag & SNLA_DRAWTIME)? 1 : 0;
}
else {
drawtime = 0;
}
return drawtime;
}
/* This function is used by Animation Editor specific transform functions to do
* the Snap Keyframe to Nearest Frame/Marker
*/
static void doAnimEdit_SnapFrame(TransInfo *t, TransData *td, AnimData *adt, short autosnap)
{
/* snap key to nearest frame? */
if (autosnap == SACTSNAP_FRAME) {
const Scene *scene= t->scene;
const short doTime= getAnimEdit_DrawTime(t);
const double secf= FPS;
double val;
/* convert frame to nla-action time (if needed) */
if (adt)
val= BKE_nla_tweakedit_remap(adt, *(td->val), NLATIME_CONVERT_MAP);
else
val= *(td->val);
/* do the snapping to nearest frame/second */
if (doTime)
val= (float)( floor((val/secf) + 0.5f) * secf );
else
val= (float)( floor(val+0.5f) );
/* convert frame out of nla-action time */
if (adt)
*(td->val)= BKE_nla_tweakedit_remap(adt, val, NLATIME_CONVERT_UNMAP);
else
*(td->val)= val;
}
/* snap key to nearest marker? */
else if (autosnap == SACTSNAP_MARKER) {
float val;
/* convert frame to nla-action time (if needed) */
if (adt)
val= BKE_nla_tweakedit_remap(adt, *(td->val), NLATIME_CONVERT_MAP);
else
val= *(td->val);
/* snap to nearest marker */
// TODO: need some more careful checks for where data comes from
val= (float)ED_markers_find_nearest_marker_time(&t->scene->markers, val);
/* convert frame out of nla-action time */
if (adt)
*(td->val)= BKE_nla_tweakedit_remap(adt, val, NLATIME_CONVERT_UNMAP);
else
*(td->val)= val;
}
}
/* ----------------- Translation ----------------------- */
void initTimeTranslate(TransInfo *t)
{
t->mode = TFM_TIME_TRANSLATE;
t->transform = TimeTranslate;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
/* num-input has max of (n-1) */
t->idx_max = 0;
t->num.flag = 0;
t->num.idx_max = t->idx_max;
/* initialise snap like for everything else */
t->snap[0] = 0.0f;
t->snap[1] = t->snap[2] = 1.0f;
}
static void headerTimeTranslate(TransInfo *t, char *str)
{
char tvec[60];
/* if numeric input is active, use results from that, otherwise apply snapping to result */
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec);
}
else {
const Scene *scene = t->scene;
const short autosnap= getAnimEdit_SnapMode(t);
const short doTime = getAnimEdit_DrawTime(t);
const double secf= FPS;
float val = t->values[0];
/* apply snapping + frame->seconds conversions */
if (autosnap == SACTSNAP_STEP) {
if (doTime)
val= floor(val/secf + 0.5f);
else
val= floor(val + 0.5f);
}
else {
if (doTime)
val= val / secf;
}
sprintf(&tvec[0], "%.4f", val);
}
sprintf(str, "DeltaX: %s", &tvec[0]);
}
static void applyTimeTranslate(TransInfo *t, float sval)
{
TransData *td = t->data;
Scene *scene = t->scene;
int i;
const short doTime= getAnimEdit_DrawTime(t);
const double secf= FPS;
const short autosnap= getAnimEdit_SnapMode(t);
float deltax, val;
/* it doesn't matter whether we apply to t->data or t->data2d, but t->data2d is more convenient */
for (i = 0 ; i < t->total; i++, td++) {
/* it is assumed that td->extra is a pointer to the AnimData,
* whose active action is where this keyframe comes from
* (this is only valid when not in NLA)
*/
AnimData *adt= (t->spacetype != SPACE_NLA) ? td->extra : NULL;
/* check if any need to apply nla-mapping */
if (adt) {
deltax = t->values[0];
if (autosnap == SACTSNAP_STEP) {
if (doTime)
deltax= (float)( floor((deltax/secf) + 0.5f) * secf );
else
deltax= (float)( floor(deltax + 0.5f) );
}
val = BKE_nla_tweakedit_remap(adt, td->ival, NLATIME_CONVERT_MAP);
val += deltax;
*(td->val) = BKE_nla_tweakedit_remap(adt, val, NLATIME_CONVERT_UNMAP);
}
else {
deltax = val = t->values[0];
if (autosnap == SACTSNAP_STEP) {
if (doTime)
val= (float)( floor((deltax/secf) + 0.5f) * secf );
else
val= (float)( floor(val + 0.5f) );
}
*(td->val) = td->ival + val;
}
/* apply nearest snapping */
doAnimEdit_SnapFrame(t, td, adt, autosnap);
}
}
int TimeTranslate(TransInfo *t, short mval[2])
{
View2D *v2d = (View2D *)t->view;
float cval[2], sval[2];
char str[200];
/* calculate translation amount from mouse movement - in 'time-grid space' */
UI_view2d_region_to_view(v2d, mval[0], mval[0], &cval[0], &cval[1]);
UI_view2d_region_to_view(v2d, t->imval[0], t->imval[0], &sval[0], &sval[1]);
/* we only need to calculate effect for time (applyTimeTranslate only needs that) */
t->values[0] = cval[0] - sval[0];
/* handle numeric-input stuff */
t->vec[0] = t->values[0];
applyNumInput(&t->num, &t->vec[0]);
t->values[0] = t->vec[0];
headerTimeTranslate(t, str);
applyTimeTranslate(t, sval[0]);
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ----------------- Time Slide ----------------------- */
void initTimeSlide(TransInfo *t)
{
/* this tool is only really available in the Action Editor... */
if (t->spacetype == SPACE_ACTION) {
SpaceAction *saction= (SpaceAction *)t->sa->spacedata.first;
/* set flag for drawing stuff */
saction->flag |= SACTION_MOVING;
}
t->mode = TFM_TIME_SLIDE;
t->transform = TimeSlide;
t->flag |= T_FREE_CUSTOMDATA;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
/* num-input has max of (n-1) */
t->idx_max = 0;
t->num.flag = 0;
t->num.idx_max = t->idx_max;
/* initialise snap like for everything else */
t->snap[0] = 0.0f;
t->snap[1] = t->snap[2] = 1.0f;
}
static void headerTimeSlide(TransInfo *t, float sval, char *str)
{
char tvec[60];
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec);
}
else {
float minx= *((float *)(t->customData));
float maxx= *((float *)(t->customData) + 1);
float cval= t->values[0];
float val;
val= 2.0f*(cval-sval) / (maxx-minx);
CLAMP(val, -1.0f, 1.0f);
sprintf(&tvec[0], "%.4f", val);
}
sprintf(str, "TimeSlide: %s", &tvec[0]);
}
static void applyTimeSlide(TransInfo *t, float sval)
{
TransData *td = t->data;
int i;
float minx= *((float *)(t->customData));
float maxx= *((float *)(t->customData) + 1);
/* set value for drawing black line */
if (t->spacetype == SPACE_ACTION) {
SpaceAction *saction= (SpaceAction *)t->sa->spacedata.first;
float cvalf = t->values[0];
saction->timeslide= cvalf;
}
/* it doesn't matter whether we apply to t->data or t->data2d, but t->data2d is more convenient */
for (i = 0 ; i < t->total; i++, td++) {
/* it is assumed that td->extra is a pointer to the AnimData,
* whose active action is where this keyframe comes from
* (this is only valid when not in NLA)
*/
AnimData *adt= (t->spacetype != SPACE_NLA) ? td->extra : NULL;
float cval = t->values[0];
/* apply NLA-mapping to necessary values */
if (adt)
cval= BKE_nla_tweakedit_remap(adt, cval, NLATIME_CONVERT_UNMAP);
/* only apply to data if in range */
if ((sval > minx) && (sval < maxx)) {
float cvalc= CLAMPIS(cval, minx, maxx);
float timefac;
/* left half? */
if (td->ival < sval) {
timefac= (sval - td->ival) / (sval - minx);
*(td->val)= cvalc - timefac * (cvalc - minx);
}
else {
timefac= (td->ival - sval) / (maxx - sval);
*(td->val)= cvalc + timefac * (maxx - cvalc);
}
}
}
}
int TimeSlide(TransInfo *t, short mval[2])
{
View2D *v2d = (View2D *)t->view;
float cval[2], sval[2];
float minx= *((float *)(t->customData));
float maxx= *((float *)(t->customData) + 1);
char str[200];
/* calculate mouse co-ordinates */
UI_view2d_region_to_view(v2d, mval[0], mval[0], &cval[0], &cval[1]);
UI_view2d_region_to_view(v2d, t->imval[0], t->imval[0], &sval[0], &sval[1]);
/* t->values[0] stores cval[0], which is the current mouse-pointer location (in frames) */
t->values[0] = cval[0];
/* handle numeric-input stuff */
t->vec[0] = 2.0f*(cval[0]-sval[0]) / (maxx-minx);
applyNumInput(&t->num, &t->vec[0]);
t->values[0] = (maxx-minx) * t->vec[0] / 2.0 + sval[0];
headerTimeSlide(t, sval[0], str);
applyTimeSlide(t, sval[0]);
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ----------------- Scaling ----------------------- */
void initTimeScale(TransInfo *t)
{
t->mode = TFM_TIME_SCALE;
t->transform = TimeScale;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
t->helpline = HLP_SPRING; /* set manually because we don't use a predefined input */
t->flag |= T_NULL_ONE;
t->num.flag |= NUM_NULL_ONE;
/* num-input has max of (n-1) */
t->idx_max = 0;
t->num.flag = 0;
t->num.idx_max = t->idx_max;
/* initialise snap like for everything else */
t->snap[0] = 0.0f;
t->snap[1] = t->snap[2] = 1.0f;
}
static void headerTimeScale(TransInfo *t, char *str) {
char tvec[60];
if (hasNumInput(&t->num))
outputNumInput(&(t->num), tvec);
else
sprintf(&tvec[0], "%.4f", t->values[0]);
sprintf(str, "ScaleX: %s", &tvec[0]);
}
static void applyTimeScale(TransInfo *t) {
Scene *scene = t->scene;
TransData *td = t->data;
int i;
const short autosnap= getAnimEdit_SnapMode(t);
const short doTime= getAnimEdit_DrawTime(t);
const double secf= FPS;
for (i = 0 ; i < t->total; i++, td++) {
/* it is assumed that td->extra is a pointer to the AnimData,
* whose active action is where this keyframe comes from
* (this is only valid when not in NLA)
*/
AnimData *adt= (t->spacetype != SPACE_NLA) ? td->extra : NULL;
float startx= CFRA;
float fac= t->values[0];
if (autosnap == SACTSNAP_STEP) {
if (doTime)
fac= (float)( floor(fac/secf + 0.5f) * secf );
else
fac= (float)( floor(fac + 0.5f) );
}
/* check if any need to apply nla-mapping */
if (adt)
startx= BKE_nla_tweakedit_remap(adt, startx, NLATIME_CONVERT_UNMAP);
/* now, calculate the new value */
*(td->val) = td->ival - startx;
*(td->val) *= fac;
*(td->val) += startx;
/* apply nearest snapping */
doAnimEdit_SnapFrame(t, td, adt, autosnap);
}
}
int TimeScale(TransInfo *t, short mval[2])
{
float cval, sval;
float deltax, startx;
float width= 0.0f;
char str[200];
sval= t->imval[0];
cval= mval[0];
/* calculate scaling factor */
startx= sval-(width/2+(t->ar->winx)/2);
deltax= cval-(width/2+(t->ar->winx)/2);
t->values[0] = deltax / startx;
/* handle numeric-input stuff */
t->vec[0] = t->values[0];
applyNumInput(&t->num, &t->vec[0]);
t->values[0] = t->vec[0];
headerTimeScale(t, str);
applyTimeScale(t);
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************************ */
void BIF_TransformSetUndo(char *str)
{
// TRANSFORM_FIX_ME
//Trans.undostr= str;
}
void NDofTransform()
{
#if 0 // TRANSFORM_FIX_ME
float fval[7];
float maxval = 50.0f; // also serves as threshold
int axis = -1;
int mode = 0;
int i;
getndof(fval);
for(i = 0; i < 6; i++)
{
float val = fabs(fval[i]);
if (val > maxval)
{
axis = i;
maxval = val;
}
}
switch(axis)
{
case -1:
/* No proper axis found */
break;
case 0:
case 1:
case 2:
mode = TFM_TRANSLATION;
break;
case 4:
mode = TFM_ROTATION;
break;
case 3:
case 5:
mode = TFM_TRACKBALL;
break;
default:
printf("ndof: what we are doing here ?");
}
if (mode != 0)
{
initTransform(mode, CTX_NDOF);
Transform();
}
#endif
}