1150 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1150 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | |
|  */
 | |
| 
 | |
| /** \file
 | |
|  * \ingroup mathutils
 | |
|  *
 | |
|  * This file defines the 'noise' module, a general purpose module to access
 | |
|  * blenders noise functions.
 | |
|  */
 | |
| 
 | |
| /************************/
 | |
| /* Blender Noise Module */
 | |
| /************************/
 | |
| 
 | |
| #include <Python.h>
 | |
| 
 | |
| #include "BLI_math.h"
 | |
| #include "BLI_noise.h"
 | |
| #include "BLI_utildefines.h"
 | |
| 
 | |
| #include "DNA_texture_types.h"
 | |
| 
 | |
| #include "../generic/py_capi_utils.h"
 | |
| 
 | |
| #include "mathutils.h"
 | |
| #include "mathutils_noise.h"
 | |
| 
 | |
| /*-----------------------------------------*/
 | |
| /* 'mersenne twister' random number generator */
 | |
| 
 | |
| /*
 | |
|  * A C-program for MT19937, with initialization improved 2002/2/10.
 | |
|  * Coded by Takuji Nishimura and Makoto Matsumoto.
 | |
|  * This is a faster version by taking Shawn Cokus's optimization,
 | |
|  * Matthe Bellew's simplification, Isaku Wada's real version.
 | |
|  *
 | |
|  * Before using, initialize the state by using init_genrand(seed)
 | |
|  * or init_by_array(init_key, key_length).
 | |
|  *
 | |
|  * Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *
 | |
|  *   1. Redistributions of source code must retain the above copyright
 | |
|  *      notice, this list of conditions and the following disclaimer.
 | |
|  *
 | |
|  *   2. Redistributions in binary form must reproduce the above copyright
 | |
|  *      notice, this list of conditions and the following disclaimer in the
 | |
|  *      documentation and/or other materials provided with the distribution.
 | |
|  *
 | |
|  *   3. The names of its contributors may not be used to endorse or promote
 | |
|  *      products derived from this software without specific prior written
 | |
|  *      permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
|  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
|  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
|  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 | |
|  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 | |
|  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 | |
|  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 | |
|  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 | |
|  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 | |
|  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 | |
|  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  * Any feedback is very welcome.
 | |
|  * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
 | |
|  * email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
 | |
|  */
 | |
| 
 | |
| /* Period parameters */
 | |
| #define N 624
 | |
| #define M 397
 | |
| #define MATRIX_A 0x9908b0dfUL /* constant vector a */
 | |
| #define UMASK 0x80000000UL    /* most significant w-r bits */
 | |
| #define LMASK 0x7fffffffUL    /* least significant r bits */
 | |
| #define MIXBITS(u, v) (((u)&UMASK) | ((v)&LMASK))
 | |
| #define TWIST(u, v) ((MIXBITS(u, v) >> 1) ^ ((v)&1UL ? MATRIX_A : 0UL))
 | |
| 
 | |
| static ulong state[N]; /* the array for the state vector  */
 | |
| static int left = 1;
 | |
| static int initf = 0;
 | |
| static ulong *next;
 | |
| static float state_offset_vector[3 * 3];
 | |
| 
 | |
| /* initializes state[N] with a seed */
 | |
| static void init_genrand(ulong s)
 | |
| {
 | |
|   int j;
 | |
|   state[0] = s & 0xffffffffUL;
 | |
|   for (j = 1; j < N; j++) {
 | |
|     state[j] = (1812433253UL * (state[j - 1] ^ (state[j - 1] >> 30)) + j);
 | |
|     /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
 | |
|     /* In the previous versions, MSBs of the seed affect   */
 | |
|     /* only MSBs of the array state[].                        */
 | |
|     /* 2002/01/09 modified by Makoto Matsumoto             */
 | |
|     state[j] &= 0xffffffffUL; /* for >32 bit machines */
 | |
|   }
 | |
|   left = 1;
 | |
|   initf = 1;
 | |
| 
 | |
|   /* update vector offset */
 | |
|   {
 | |
|     const ulong *state_offset = &state[N - ARRAY_SIZE(state_offset_vector)];
 | |
|     const float range = 32; /* range in both pos/neg direction */
 | |
|     for (j = 0; j < ARRAY_SIZE(state_offset_vector); j++, state_offset++) {
 | |
|       /* overflow is fine here */
 | |
|       state_offset_vector[j] = (float)(int)(*state_offset) * (1.0f / ((float)INT_MAX / range));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void next_state(void)
 | |
| {
 | |
|   ulong *p = state;
 | |
|   int j;
 | |
| 
 | |
|   /* if init_genrand() has not been called, */
 | |
|   /* a default initial seed is used         */
 | |
|   if (initf == 0) {
 | |
|     init_genrand(5489UL);
 | |
|   }
 | |
| 
 | |
|   left = N;
 | |
|   next = state;
 | |
| 
 | |
|   for (j = N - M + 1; --j; p++) {
 | |
|     *p = p[M] ^ TWIST(p[0], p[1]);
 | |
|   }
 | |
| 
 | |
|   for (j = M; --j; p++) {
 | |
|     *p = p[M - N] ^ TWIST(p[0], p[1]);
 | |
|   }
 | |
| 
 | |
|   *p = p[M - N] ^ TWIST(p[0], state[0]);
 | |
| }
 | |
| 
 | |
| /*------------------------------------------------------------*/
 | |
| 
 | |
| static void setRndSeed(int seed)
 | |
| {
 | |
|   if (seed == 0) {
 | |
|     init_genrand(time(NULL));
 | |
|   }
 | |
|   else {
 | |
|     init_genrand(seed);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* float number in range [0, 1) using the mersenne twister rng */
 | |
| static float frand(void)
 | |
| {
 | |
|   ulong y;
 | |
| 
 | |
|   if (--left == 0) {
 | |
|     next_state();
 | |
|   }
 | |
|   y = *next++;
 | |
| 
 | |
|   /* Tempering */
 | |
|   y ^= (y >> 11);
 | |
|   y ^= (y << 7) & 0x9d2c5680UL;
 | |
|   y ^= (y << 15) & 0xefc60000UL;
 | |
|   y ^= (y >> 18);
 | |
| 
 | |
|   return (float)y / 4294967296.0f;
 | |
| }
 | |
| 
 | |
| /*------------------------------------------------------------*/
 | |
| /* Utility Functions */
 | |
| /*------------------------------------------------------------*/
 | |
| 
 | |
| #define BPY_NOISE_BASIS_ENUM_DOC \
 | |
|   "   :arg noise_basis: Enumerator in ['BLENDER', 'PERLIN_ORIGINAL', 'PERLIN_NEW', " \
 | |
|   "'VORONOI_F1', 'VORONOI_F2', " \
 | |
|   "'VORONOI_F3', 'VORONOI_F4', 'VORONOI_F2F1', 'VORONOI_CRACKLE', " \
 | |
|   "'CELLNOISE'].\n" \
 | |
|   "   :type noise_basis: string\n"
 | |
| 
 | |
| #define BPY_NOISE_METRIC_ENUM_DOC \
 | |
|   "   :arg distance_metric: Enumerator in ['DISTANCE', 'DISTANCE_SQUARED', 'MANHATTAN', " \
 | |
|   "'CHEBYCHEV', " \
 | |
|   "'MINKOVSKY', 'MINKOVSKY_HALF', 'MINKOVSKY_FOUR'].\n" \
 | |
|   "   :type distance_metric: string\n"
 | |
| 
 | |
| /* Noise basis enum */
 | |
| #define DEFAULT_NOISE_TYPE TEX_STDPERLIN
 | |
| 
 | |
| static PyC_FlagSet bpy_noise_types[] = {
 | |
|     {TEX_BLENDER, "BLENDER"},
 | |
|     {TEX_STDPERLIN, "PERLIN_ORIGINAL"},
 | |
|     {TEX_NEWPERLIN, "PERLIN_NEW"},
 | |
|     {TEX_VORONOI_F1, "VORONOI_F1"},
 | |
|     {TEX_VORONOI_F2, "VORONOI_F2"},
 | |
|     {TEX_VORONOI_F3, "VORONOI_F3"},
 | |
|     {TEX_VORONOI_F4, "VORONOI_F4"},
 | |
|     {TEX_VORONOI_F2F1, "VORONOI_F2F1"},
 | |
|     {TEX_VORONOI_CRACKLE, "VORONOI_CRACKLE"},
 | |
|     {TEX_CELLNOISE, "CELLNOISE"},
 | |
|     {0, NULL},
 | |
| };
 | |
| 
 | |
| /* Metric basis enum */
 | |
| #define DEFAULT_METRIC_TYPE TEX_DISTANCE
 | |
| 
 | |
| static PyC_FlagSet bpy_noise_metrics[] = {
 | |
|     {TEX_DISTANCE, "DISTANCE"},
 | |
|     {TEX_DISTANCE_SQUARED, "DISTANCE_SQUARED"},
 | |
|     {TEX_MANHATTAN, "MANHATTAN"},
 | |
|     {TEX_CHEBYCHEV, "CHEBYCHEV"},
 | |
|     {TEX_MINKOVSKY, "MINKOVSKY"},
 | |
|     {TEX_MINKOVSKY_HALF, "MINKOVSKY_HALF"},
 | |
|     {TEX_MINKOVSKY_FOUR, "MINKOVSKY_FOUR"},
 | |
|     {0, NULL},
 | |
| };
 | |
| 
 | |
| /* Fills an array of length size with random numbers in the range (-1, 1)*/
 | |
| static void rand_vn(float *array_tar, const int size)
 | |
| {
 | |
|   float *array_pt = array_tar + (size - 1);
 | |
|   int i = size;
 | |
|   while (i--) {
 | |
|     *(array_pt--) = 2.0f * frand() - 1.0f;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Fills an array of length 3 with noise values */
 | |
| static void noise_vector(float x, float y, float z, int nb, float v[3])
 | |
| {
 | |
|   /* Simply evaluate noise at 3 different positions */
 | |
|   const float *ofs = state_offset_vector;
 | |
|   for (int j = 0; j < 3; j++) {
 | |
|     v[j] = (2.0f * BLI_noise_generic_noise(1.0f, x + ofs[0], y + ofs[1], z + ofs[2], false, nb) -
 | |
|             1.0f);
 | |
|     ofs += 3;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Returns a turbulence value for a given position (x, y, z) */
 | |
| static float turb(
 | |
|     float x, float y, float z, int oct, int hard, int nb, float ampscale, float freqscale)
 | |
| {
 | |
|   float amp, out, t;
 | |
|   int i;
 | |
|   amp = 1.0f;
 | |
|   out = (float)(2.0f * BLI_noise_generic_noise(1.0f, x, y, z, false, nb) - 1.0f);
 | |
|   if (hard) {
 | |
|     out = fabsf(out);
 | |
|   }
 | |
|   for (i = 1; i < oct; i++) {
 | |
|     amp *= ampscale;
 | |
|     x *= freqscale;
 | |
|     y *= freqscale;
 | |
|     z *= freqscale;
 | |
|     t = (float)(amp * (2.0f * BLI_noise_generic_noise(1.0f, x, y, z, false, nb) - 1.0f));
 | |
|     if (hard) {
 | |
|       t = fabsf(t);
 | |
|     }
 | |
|     out += t;
 | |
|   }
 | |
|   return out;
 | |
| }
 | |
| 
 | |
| /* Fills an array of length 3 with the turbulence vector for a given
 | |
|  * position (x, y, z) */
 | |
| static void vTurb(float x,
 | |
|                   float y,
 | |
|                   float z,
 | |
|                   int oct,
 | |
|                   int hard,
 | |
|                   int nb,
 | |
|                   float ampscale,
 | |
|                   float freqscale,
 | |
|                   float v[3])
 | |
| {
 | |
|   float amp, t[3];
 | |
|   int i;
 | |
|   amp = 1.0f;
 | |
|   noise_vector(x, y, z, nb, v);
 | |
|   if (hard) {
 | |
|     v[0] = fabsf(v[0]);
 | |
|     v[1] = fabsf(v[1]);
 | |
|     v[2] = fabsf(v[2]);
 | |
|   }
 | |
|   for (i = 1; i < oct; i++) {
 | |
|     amp *= ampscale;
 | |
|     x *= freqscale;
 | |
|     y *= freqscale;
 | |
|     z *= freqscale;
 | |
|     noise_vector(x, y, z, nb, t);
 | |
|     if (hard) {
 | |
|       t[0] = fabsf(t[0]);
 | |
|       t[1] = fabsf(t[1]);
 | |
|       t[2] = fabsf(t[2]);
 | |
|     }
 | |
|     v[0] += amp * t[0];
 | |
|     v[1] += amp * t[1];
 | |
|     v[2] += amp * t[2];
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*-------------------------DOC STRINGS ---------------------------*/
 | |
| PyDoc_STRVAR(M_Noise_doc, "The Blender noise module");
 | |
| 
 | |
| /*------------------------------------------------------------*/
 | |
| /* Python Functions */
 | |
| /*------------------------------------------------------------*/
 | |
| 
 | |
| PyDoc_STRVAR(M_Noise_random_doc,
 | |
|              ".. function:: random()\n"
 | |
|              "\n"
 | |
|              "   Returns a random number in the range [0, 1).\n"
 | |
|              "\n"
 | |
|              "   :return: The random number.\n"
 | |
|              "   :rtype: float\n");
 | |
| static PyObject *M_Noise_random(PyObject *UNUSED(self))
 | |
| {
 | |
|   return PyFloat_FromDouble(frand());
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Noise_random_unit_vector_doc,
 | |
|              ".. function:: random_unit_vector(size=3)\n"
 | |
|              "\n"
 | |
|              "   Returns a unit vector with random entries.\n"
 | |
|              "\n"
 | |
|              "   :arg size: The size of the vector to be produced, in the range [2, 4].\n"
 | |
|              "   :type size: int\n"
 | |
|              "   :return: The random unit vector.\n"
 | |
|              "   :rtype: :class:`mathutils.Vector`\n");
 | |
| static PyObject *M_Noise_random_unit_vector(PyObject *UNUSED(self), PyObject *args, PyObject *kw)
 | |
| {
 | |
|   static const char *kwlist[] = {"size", NULL};
 | |
|   float vec[4] = {0.0f, 0.0f, 0.0f, 0.0f};
 | |
|   float norm = 2.0f;
 | |
|   int size = 3;
 | |
| 
 | |
|   if (!PyArg_ParseTupleAndKeywords(args, kw, "|$i:random_unit_vector", (char **)kwlist, &size)) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (size > 4 || size < 2) {
 | |
|     PyErr_SetString(PyExc_ValueError, "Vector(): invalid size");
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   while (norm == 0.0f || norm > 1.0f) {
 | |
|     rand_vn(vec, size);
 | |
|     norm = normalize_vn(vec, size);
 | |
|   }
 | |
| 
 | |
|   return Vector_CreatePyObject(vec, size, NULL);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Noise_random_vector_doc,
 | |
|              ".. function:: random_vector(size=3)\n"
 | |
|              "\n"
 | |
|              "   Returns a vector with random entries in the range (-1, 1).\n"
 | |
|              "\n"
 | |
|              "   :arg size: The size of the vector to be produced.\n"
 | |
|              "   :type size: int\n"
 | |
|              "   :return: The random vector.\n"
 | |
|              "   :rtype: :class:`mathutils.Vector`\n");
 | |
| static PyObject *M_Noise_random_vector(PyObject *UNUSED(self), PyObject *args, PyObject *kw)
 | |
| {
 | |
|   static const char *kwlist[] = {"size", NULL};
 | |
|   float *vec = NULL;
 | |
|   int size = 3;
 | |
| 
 | |
|   if (!PyArg_ParseTupleAndKeywords(args, kw, "|$i:random_vector", (char **)kwlist, &size)) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (size < 2) {
 | |
|     PyErr_SetString(PyExc_ValueError, "Vector(): invalid size");
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   vec = PyMem_New(float, size);
 | |
| 
 | |
|   rand_vn(vec, size);
 | |
| 
 | |
|   return Vector_CreatePyObject_alloc(vec, size, NULL);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Noise_seed_set_doc,
 | |
|              ".. function:: seed_set(seed)\n"
 | |
|              "\n"
 | |
|              "   Sets the random seed used for random_unit_vector, and random.\n"
 | |
|              "\n"
 | |
|              "   :arg seed: Seed used for the random generator.\n"
 | |
|              "      When seed is zero, the current time will be used instead.\n"
 | |
|              "   :type seed: int\n");
 | |
| static PyObject *M_Noise_seed_set(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
|   int s;
 | |
|   if (!PyArg_ParseTuple(args, "i:seed_set", &s)) {
 | |
|     return NULL;
 | |
|   }
 | |
|   setRndSeed(s);
 | |
|   Py_RETURN_NONE;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Noise_noise_doc,
 | |
|              ".. function:: noise(position, noise_basis='PERLIN_ORIGINAL')\n"
 | |
|              "\n"
 | |
|              "   Returns noise value from the noise basis at the position specified.\n"
 | |
|              "\n"
 | |
|              "   :arg position: The position to evaluate the selected noise function.\n"
 | |
|              "   :type position: :class:`mathutils.Vector`\n" BPY_NOISE_BASIS_ENUM_DOC
 | |
|              "   :return: The noise value.\n"
 | |
|              "   :rtype: float\n");
 | |
| static PyObject *M_Noise_noise(PyObject *UNUSED(self), PyObject *args, PyObject *kw)
 | |
| {
 | |
|   static const char *kwlist[] = {"", "noise_basis", NULL};
 | |
|   PyObject *value;
 | |
|   float vec[3];
 | |
|   const char *noise_basis_str = NULL;
 | |
|   int noise_basis_enum = DEFAULT_NOISE_TYPE;
 | |
| 
 | |
|   if (!PyArg_ParseTupleAndKeywords(
 | |
|           args, kw, "O|$s:noise", (char **)kwlist, &value, &noise_basis_str)) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (!noise_basis_str) {
 | |
|     /* pass through */
 | |
|   }
 | |
|   else if (PyC_FlagSet_ValueFromID(bpy_noise_types, noise_basis_str, &noise_basis_enum, "noise") ==
 | |
|            -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (mathutils_array_parse(vec, 3, 3, value, "noise: invalid 'position' arg") == -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   return PyFloat_FromDouble(
 | |
|       (2.0f * BLI_noise_generic_noise(1.0f, vec[0], vec[1], vec[2], false, noise_basis_enum) -
 | |
|        1.0f));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Noise_noise_vector_doc,
 | |
|              ".. function:: noise_vector(position, noise_basis='PERLIN_ORIGINAL')\n"
 | |
|              "\n"
 | |
|              "   Returns the noise vector from the noise basis at the specified position.\n"
 | |
|              "\n"
 | |
|              "   :arg position: The position to evaluate the selected noise function.\n"
 | |
|              "   :type position: :class:`mathutils.Vector`\n" BPY_NOISE_BASIS_ENUM_DOC
 | |
|              "   :return: The noise vector.\n"
 | |
|              "   :rtype: :class:`mathutils.Vector`\n");
 | |
| static PyObject *M_Noise_noise_vector(PyObject *UNUSED(self), PyObject *args, PyObject *kw)
 | |
| {
 | |
|   static const char *kwlist[] = {"", "noise_basis", NULL};
 | |
|   PyObject *value;
 | |
|   float vec[3], r_vec[3];
 | |
|   const char *noise_basis_str = NULL;
 | |
|   int noise_basis_enum = DEFAULT_NOISE_TYPE;
 | |
| 
 | |
|   if (!PyArg_ParseTupleAndKeywords(
 | |
|           args, kw, "O|$s:noise_vector", (char **)kwlist, &value, &noise_basis_str)) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (!noise_basis_str) {
 | |
|     /* pass through */
 | |
|   }
 | |
|   else if (PyC_FlagSet_ValueFromID(
 | |
|                bpy_noise_types, noise_basis_str, &noise_basis_enum, "noise_vector") == -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (mathutils_array_parse(vec, 3, 3, value, "noise_vector: invalid 'position' arg") == -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   noise_vector(vec[0], vec[1], vec[2], noise_basis_enum, r_vec);
 | |
| 
 | |
|   return Vector_CreatePyObject(r_vec, 3, NULL);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Noise_turbulence_doc,
 | |
|              ".. function:: turbulence(position, octaves, hard, noise_basis='PERLIN_ORIGINAL', "
 | |
|              "amplitude_scale=0.5, frequency_scale=2.0)\n"
 | |
|              "\n"
 | |
|              "   Returns the turbulence value from the noise basis at the specified position.\n"
 | |
|              "\n"
 | |
|              "   :arg position: The position to evaluate the selected noise function.\n"
 | |
|              "   :type position: :class:`mathutils.Vector`\n"
 | |
|              "   :arg octaves: The number of different noise frequencies used.\n"
 | |
|              "   :type octaves: int\n"
 | |
|              "   :arg hard: Specifies whether returned turbulence is hard (sharp transitions) or "
 | |
|              "soft (smooth transitions).\n"
 | |
|              "   :type hard: boolean\n" BPY_NOISE_BASIS_ENUM_DOC
 | |
|              "   :arg amplitude_scale: The amplitude scaling factor.\n"
 | |
|              "   :type amplitude_scale: float\n"
 | |
|              "   :arg frequency_scale: The frequency scaling factor\n"
 | |
|              "   :type frequency_scale: float\n"
 | |
|              "   :return: The turbulence value.\n"
 | |
|              "   :rtype: float\n");
 | |
| static PyObject *M_Noise_turbulence(PyObject *UNUSED(self), PyObject *args, PyObject *kw)
 | |
| {
 | |
|   static const char *kwlist[] = {
 | |
|       "", "", "", "noise_basis", "amplitude_scale", "frequency_scale", NULL};
 | |
|   PyObject *value;
 | |
|   float vec[3];
 | |
|   const char *noise_basis_str = NULL;
 | |
|   int oct, hd, noise_basis_enum = DEFAULT_NOISE_TYPE;
 | |
|   float as = 0.5f, fs = 2.0f;
 | |
| 
 | |
|   if (!PyArg_ParseTupleAndKeywords(args,
 | |
|                                    kw,
 | |
|                                    "Oii|$sff:turbulence",
 | |
|                                    (char **)kwlist,
 | |
|                                    &value,
 | |
|                                    &oct,
 | |
|                                    &hd,
 | |
|                                    &noise_basis_str,
 | |
|                                    &as,
 | |
|                                    &fs)) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (!noise_basis_str) {
 | |
|     /* pass through */
 | |
|   }
 | |
|   else if (PyC_FlagSet_ValueFromID(
 | |
|                bpy_noise_types, noise_basis_str, &noise_basis_enum, "turbulence") == -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (mathutils_array_parse(vec, 3, 3, value, "turbulence: invalid 'position' arg") == -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   return PyFloat_FromDouble(turb(vec[0], vec[1], vec[2], oct, hd, noise_basis_enum, as, fs));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Noise_turbulence_vector_doc,
 | |
|              ".. function:: turbulence_vector(position, octaves, hard, "
 | |
|              "noise_basis='PERLIN_ORIGINAL', amplitude_scale=0.5, frequency_scale=2.0)\n"
 | |
|              "\n"
 | |
|              "   Returns the turbulence vector from the noise basis at the specified position.\n"
 | |
|              "\n"
 | |
|              "   :arg position: The position to evaluate the selected noise function.\n"
 | |
|              "   :type position: :class:`mathutils.Vector`\n"
 | |
|              "   :arg octaves: The number of different noise frequencies used.\n"
 | |
|              "   :type octaves: int\n"
 | |
|              "   :arg hard: Specifies whether returned turbulence is hard (sharp transitions) or "
 | |
|              "soft (smooth transitions).\n"
 | |
|              "   :type hard: :boolean\n" BPY_NOISE_BASIS_ENUM_DOC
 | |
|              "   :arg amplitude_scale: The amplitude scaling factor.\n"
 | |
|              "   :type amplitude_scale: float\n"
 | |
|              "   :arg frequency_scale: The frequency scaling factor\n"
 | |
|              "   :type frequency_scale: float\n"
 | |
|              "   :return: The turbulence vector.\n"
 | |
|              "   :rtype: :class:`mathutils.Vector`\n");
 | |
| static PyObject *M_Noise_turbulence_vector(PyObject *UNUSED(self), PyObject *args, PyObject *kw)
 | |
| {
 | |
|   static const char *kwlist[] = {
 | |
|       "", "", "", "noise_basis", "amplitude_scale", "frequency_scale", NULL};
 | |
|   PyObject *value;
 | |
|   float vec[3], r_vec[3];
 | |
|   const char *noise_basis_str = NULL;
 | |
|   int oct, hd, noise_basis_enum = DEFAULT_NOISE_TYPE;
 | |
|   float as = 0.5f, fs = 2.0f;
 | |
| 
 | |
|   if (!PyArg_ParseTupleAndKeywords(args,
 | |
|                                    kw,
 | |
|                                    "Oii|$sff:turbulence_vector",
 | |
|                                    (char **)kwlist,
 | |
|                                    &value,
 | |
|                                    &oct,
 | |
|                                    &hd,
 | |
|                                    &noise_basis_str,
 | |
|                                    &as,
 | |
|                                    &fs)) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (!noise_basis_str) {
 | |
|     /* pass through */
 | |
|   }
 | |
|   else if (PyC_FlagSet_ValueFromID(
 | |
|                bpy_noise_types, noise_basis_str, &noise_basis_enum, "turbulence_vector") == -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (mathutils_array_parse(vec, 3, 3, value, "turbulence_vector: invalid 'position' arg") == -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   vTurb(vec[0], vec[1], vec[2], oct, hd, noise_basis_enum, as, fs, r_vec);
 | |
| 
 | |
|   return Vector_CreatePyObject(r_vec, 3, NULL);
 | |
| }
 | |
| 
 | |
| /* F. Kenton Musgrave's fractal functions */
 | |
| PyDoc_STRVAR(
 | |
|     M_Noise_fractal_doc,
 | |
|     ".. function:: fractal(position, H, lacunarity, octaves, noise_basis='PERLIN_ORIGINAL')\n"
 | |
|     "\n"
 | |
|     "   Returns the fractal Brownian motion (fBm) noise value from the noise basis at the "
 | |
|     "specified position.\n"
 | |
|     "\n"
 | |
|     "   :arg position: The position to evaluate the selected noise function.\n"
 | |
|     "   :type position: :class:`mathutils.Vector`\n"
 | |
|     "   :arg H: The fractal increment factor.\n"
 | |
|     "   :type H: float\n"
 | |
|     "   :arg lacunarity: The gap between successive frequencies.\n"
 | |
|     "   :type lacunarity: float\n"
 | |
|     "   :arg octaves: The number of different noise frequencies used.\n"
 | |
|     "   :type octaves: int\n" BPY_NOISE_BASIS_ENUM_DOC
 | |
|     "   :return: The fractal Brownian motion noise value.\n"
 | |
|     "   :rtype: float\n");
 | |
| static PyObject *M_Noise_fractal(PyObject *UNUSED(self), PyObject *args, PyObject *kw)
 | |
| {
 | |
|   static const char *kwlist[] = {"", "", "", "", "noise_basis", NULL};
 | |
|   PyObject *value;
 | |
|   float vec[3];
 | |
|   const char *noise_basis_str = NULL;
 | |
|   float H, lac, oct;
 | |
|   int noise_basis_enum = DEFAULT_NOISE_TYPE;
 | |
| 
 | |
|   if (!PyArg_ParseTupleAndKeywords(args,
 | |
|                                    kw,
 | |
|                                    "Offf|$s:fractal",
 | |
|                                    (char **)kwlist,
 | |
|                                    &value,
 | |
|                                    &H,
 | |
|                                    &lac,
 | |
|                                    &oct,
 | |
|                                    &noise_basis_str)) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (!noise_basis_str) {
 | |
|     /* pass through */
 | |
|   }
 | |
|   else if (PyC_FlagSet_ValueFromID(
 | |
|                bpy_noise_types, noise_basis_str, &noise_basis_enum, "fractal") == -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (mathutils_array_parse(vec, 3, 3, value, "fractal: invalid 'position' arg") == -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   return PyFloat_FromDouble(
 | |
|       BLI_noise_mg_fbm(vec[0], vec[1], vec[2], H, lac, oct, noise_basis_enum));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(
 | |
|     M_Noise_multi_fractal_doc,
 | |
|     ".. function:: multi_fractal(position, H, lacunarity, octaves, "
 | |
|     "noise_basis='PERLIN_ORIGINAL')\n"
 | |
|     "\n"
 | |
|     "   Returns multifractal noise value from the noise basis at the specified position.\n"
 | |
|     "\n"
 | |
|     "   :arg position: The position to evaluate the selected noise function.\n"
 | |
|     "   :type position: :class:`mathutils.Vector`\n"
 | |
|     "   :arg H: The fractal increment factor.\n"
 | |
|     "   :type H: float\n"
 | |
|     "   :arg lacunarity: The gap between successive frequencies.\n"
 | |
|     "   :type lacunarity: float\n"
 | |
|     "   :arg octaves: The number of different noise frequencies used.\n"
 | |
|     "   :type octaves: int\n" BPY_NOISE_BASIS_ENUM_DOC
 | |
|     "   :return: The multifractal noise value.\n"
 | |
|     "   :rtype: float\n");
 | |
| static PyObject *M_Noise_multi_fractal(PyObject *UNUSED(self), PyObject *args, PyObject *kw)
 | |
| {
 | |
|   static const char *kwlist[] = {"", "", "", "", "noise_basis", NULL};
 | |
|   PyObject *value;
 | |
|   float vec[3];
 | |
|   const char *noise_basis_str = NULL;
 | |
|   float H, lac, oct;
 | |
|   int noise_basis_enum = DEFAULT_NOISE_TYPE;
 | |
| 
 | |
|   if (!PyArg_ParseTupleAndKeywords(args,
 | |
|                                    kw,
 | |
|                                    "Offf|$s:multi_fractal",
 | |
|                                    (char **)kwlist,
 | |
|                                    &value,
 | |
|                                    &H,
 | |
|                                    &lac,
 | |
|                                    &oct,
 | |
|                                    &noise_basis_str)) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (!noise_basis_str) {
 | |
|     /* pass through */
 | |
|   }
 | |
|   else if (PyC_FlagSet_ValueFromID(
 | |
|                bpy_noise_types, noise_basis_str, &noise_basis_enum, "multi_fractal") == -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (mathutils_array_parse(vec, 3, 3, value, "multi_fractal: invalid 'position' arg") == -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   return PyFloat_FromDouble(
 | |
|       BLI_noise_mg_multi_fractal(vec[0], vec[1], vec[2], H, lac, oct, noise_basis_enum));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Noise_variable_lacunarity_doc,
 | |
|              ".. function:: variable_lacunarity(position, distortion, "
 | |
|              "noise_type1='PERLIN_ORIGINAL', noise_type2='PERLIN_ORIGINAL')\n"
 | |
|              "\n"
 | |
|              "   Returns variable lacunarity noise value, a distorted variety of noise, from "
 | |
|              "noise type 1 distorted by noise type 2 at the specified position.\n"
 | |
|              "\n"
 | |
|              "   :arg position: The position to evaluate the selected noise function.\n"
 | |
|              "   :type position: :class:`mathutils.Vector`\n"
 | |
|              "   :arg distortion: The amount of distortion.\n"
 | |
|              "   :type distortion: float\n"
 | |
|              "   :arg noise_type1: Enumerator in ['BLENDER', 'PERLIN_ORIGINAL', 'PERLIN_NEW', "
 | |
|              "'VORONOI_F1', 'VORONOI_F2', "
 | |
|              "'VORONOI_F3', 'VORONOI_F4', 'VORONOI_F2F1', 'VORONOI_CRACKLE', "
 | |
|              "'CELLNOISE'].\n"
 | |
|              "   :type noise_type1: string\n"
 | |
|              "   :arg noise_type2: Enumerator in ['BLENDER', 'PERLIN_ORIGINAL', 'PERLIN_NEW', "
 | |
|              "'VORONOI_F1', 'VORONOI_F2', "
 | |
|              "'VORONOI_F3', 'VORONOI_F4', 'VORONOI_F2F1', 'VORONOI_CRACKLE', "
 | |
|              "'CELLNOISE'].\n"
 | |
|              "   :type noise_type2: string\n"
 | |
|              "   :return: The variable lacunarity noise value.\n"
 | |
|              "   :rtype: float\n");
 | |
| static PyObject *M_Noise_variable_lacunarity(PyObject *UNUSED(self), PyObject *args, PyObject *kw)
 | |
| {
 | |
|   static const char *kwlist[] = {"", "", "noise_type1", "noise_type2", NULL};
 | |
|   PyObject *value;
 | |
|   float vec[3];
 | |
|   const char *noise_type1_str = NULL, *noise_type2_str = NULL;
 | |
|   float d;
 | |
|   int noise_type1_enum = DEFAULT_NOISE_TYPE, noise_type2_enum = DEFAULT_NOISE_TYPE;
 | |
| 
 | |
|   if (!PyArg_ParseTupleAndKeywords(args,
 | |
|                                    kw,
 | |
|                                    "Of|$ss:variable_lacunarity",
 | |
|                                    (char **)kwlist,
 | |
|                                    &value,
 | |
|                                    &d,
 | |
|                                    &noise_type1_str,
 | |
|                                    &noise_type2_str)) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (!noise_type1_str) {
 | |
|     /* pass through */
 | |
|   }
 | |
|   else if (PyC_FlagSet_ValueFromID(
 | |
|                bpy_noise_types, noise_type1_str, &noise_type1_enum, "variable_lacunarity") == -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (!noise_type2_str) {
 | |
|     /* pass through */
 | |
|   }
 | |
|   else if (PyC_FlagSet_ValueFromID(
 | |
|                bpy_noise_types, noise_type2_str, &noise_type2_enum, "variable_lacunarity") == -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (mathutils_array_parse(vec, 3, 3, value, "variable_lacunarity: invalid 'position' arg") ==
 | |
|       -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   return PyFloat_FromDouble(BLI_noise_mg_variable_lacunarity(
 | |
|       vec[0], vec[1], vec[2], d, noise_type1_enum, noise_type2_enum));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(
 | |
|     M_Noise_hetero_terrain_doc,
 | |
|     ".. function:: hetero_terrain(position, H, lacunarity, octaves, offset, "
 | |
|     "noise_basis='PERLIN_ORIGINAL')\n"
 | |
|     "\n"
 | |
|     "   Returns the heterogeneous terrain value from the noise basis at the specified position.\n"
 | |
|     "\n"
 | |
|     "   :arg position: The position to evaluate the selected noise function.\n"
 | |
|     "   :type position: :class:`mathutils.Vector`\n"
 | |
|     "   :arg H: The fractal dimension of the roughest areas.\n"
 | |
|     "   :type H: float\n"
 | |
|     "   :arg lacunarity: The gap between successive frequencies.\n"
 | |
|     "   :type lacunarity: float\n"
 | |
|     "   :arg octaves: The number of different noise frequencies used.\n"
 | |
|     "   :type octaves: int\n"
 | |
|     "   :arg offset: The height of the terrain above 'sea level'.\n"
 | |
|     "   :type offset: float\n" BPY_NOISE_BASIS_ENUM_DOC
 | |
|     "   :return: The heterogeneous terrain value.\n"
 | |
|     "   :rtype: float\n");
 | |
| static PyObject *M_Noise_hetero_terrain(PyObject *UNUSED(self), PyObject *args, PyObject *kw)
 | |
| {
 | |
|   static const char *kwlist[] = {"", "", "", "", "", "noise_basis", NULL};
 | |
|   PyObject *value;
 | |
|   float vec[3];
 | |
|   const char *noise_basis_str = NULL;
 | |
|   float H, lac, oct, ofs;
 | |
|   int noise_basis_enum = DEFAULT_NOISE_TYPE;
 | |
| 
 | |
|   if (!PyArg_ParseTupleAndKeywords(args,
 | |
|                                    kw,
 | |
|                                    "Offff|$s:hetero_terrain",
 | |
|                                    (char **)kwlist,
 | |
|                                    &value,
 | |
|                                    &H,
 | |
|                                    &lac,
 | |
|                                    &oct,
 | |
|                                    &ofs,
 | |
|                                    &noise_basis_str)) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (!noise_basis_str) {
 | |
|     /* pass through */
 | |
|   }
 | |
|   else if (PyC_FlagSet_ValueFromID(
 | |
|                bpy_noise_types, noise_basis_str, &noise_basis_enum, "hetero_terrain") == -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (mathutils_array_parse(vec, 3, 3, value, "hetero_terrain: invalid 'position' arg") == -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   return PyFloat_FromDouble(
 | |
|       BLI_noise_mg_hetero_terrain(vec[0], vec[1], vec[2], H, lac, oct, ofs, noise_basis_enum));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(
 | |
|     M_Noise_hybrid_multi_fractal_doc,
 | |
|     ".. function:: hybrid_multi_fractal(position, H, lacunarity, octaves, offset, gain, "
 | |
|     "noise_basis='PERLIN_ORIGINAL')\n"
 | |
|     "\n"
 | |
|     "   Returns hybrid multifractal value from the noise basis at the specified position.\n"
 | |
|     "\n"
 | |
|     "   :arg position: The position to evaluate the selected noise function.\n"
 | |
|     "   :type position: :class:`mathutils.Vector`\n"
 | |
|     "   :arg H: The fractal dimension of the roughest areas.\n"
 | |
|     "   :type H: float\n"
 | |
|     "   :arg lacunarity: The gap between successive frequencies.\n"
 | |
|     "   :type lacunarity: float\n"
 | |
|     "   :arg octaves: The number of different noise frequencies used.\n"
 | |
|     "   :type octaves: int\n"
 | |
|     "   :arg offset: The height of the terrain above 'sea level'.\n"
 | |
|     "   :type offset: float\n"
 | |
|     "   :arg gain: Scaling applied to the values.\n"
 | |
|     "   :type gain: float\n" BPY_NOISE_BASIS_ENUM_DOC
 | |
|     "   :return: The hybrid multifractal value.\n"
 | |
|     "   :rtype: float\n");
 | |
| static PyObject *M_Noise_hybrid_multi_fractal(PyObject *UNUSED(self), PyObject *args, PyObject *kw)
 | |
| {
 | |
|   static const char *kwlist[] = {"", "", "", "", "", "", "noise_basis", NULL};
 | |
|   PyObject *value;
 | |
|   float vec[3];
 | |
|   const char *noise_basis_str = NULL;
 | |
|   float H, lac, oct, ofs, gn;
 | |
|   int noise_basis_enum = DEFAULT_NOISE_TYPE;
 | |
| 
 | |
|   if (!PyArg_ParseTupleAndKeywords(args,
 | |
|                                    kw,
 | |
|                                    "Offfff|$s:hybrid_multi_fractal",
 | |
|                                    (char **)kwlist,
 | |
|                                    &value,
 | |
|                                    &H,
 | |
|                                    &lac,
 | |
|                                    &oct,
 | |
|                                    &ofs,
 | |
|                                    &gn,
 | |
|                                    &noise_basis_str)) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (!noise_basis_str) {
 | |
|     /* pass through */
 | |
|   }
 | |
|   else if (PyC_FlagSet_ValueFromID(
 | |
|                bpy_noise_types, noise_basis_str, &noise_basis_enum, "hybrid_multi_fractal") ==
 | |
|            -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (mathutils_array_parse(vec, 3, 3, value, "hybrid_multi_fractal: invalid 'position' arg") ==
 | |
|       -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   return PyFloat_FromDouble(BLI_noise_mg_hybrid_multi_fractal(
 | |
|       vec[0], vec[1], vec[2], H, lac, oct, ofs, gn, noise_basis_enum));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(
 | |
|     M_Noise_ridged_multi_fractal_doc,
 | |
|     ".. function:: ridged_multi_fractal(position, H, lacunarity, octaves, offset, gain, "
 | |
|     "noise_basis='PERLIN_ORIGINAL')\n"
 | |
|     "\n"
 | |
|     "   Returns ridged multifractal value from the noise basis at the specified position.\n"
 | |
|     "\n"
 | |
|     "   :arg position: The position to evaluate the selected noise function.\n"
 | |
|     "   :type position: :class:`mathutils.Vector`\n"
 | |
|     "   :arg H: The fractal dimension of the roughest areas.\n"
 | |
|     "   :type H: float\n"
 | |
|     "   :arg lacunarity: The gap between successive frequencies.\n"
 | |
|     "   :type lacunarity: float\n"
 | |
|     "   :arg octaves: The number of different noise frequencies used.\n"
 | |
|     "   :type octaves: int\n"
 | |
|     "   :arg offset: The height of the terrain above 'sea level'.\n"
 | |
|     "   :type offset: float\n"
 | |
|     "   :arg gain: Scaling applied to the values.\n"
 | |
|     "   :type gain: float\n" BPY_NOISE_BASIS_ENUM_DOC
 | |
|     "   :return: The ridged multifractal value.\n"
 | |
|     "   :rtype: float\n");
 | |
| static PyObject *M_Noise_ridged_multi_fractal(PyObject *UNUSED(self), PyObject *args, PyObject *kw)
 | |
| {
 | |
|   static const char *kwlist[] = {"", "", "", "", "", "", "noise_basis", NULL};
 | |
|   PyObject *value;
 | |
|   float vec[3];
 | |
|   const char *noise_basis_str = NULL;
 | |
|   float H, lac, oct, ofs, gn;
 | |
|   int noise_basis_enum = DEFAULT_NOISE_TYPE;
 | |
| 
 | |
|   if (!PyArg_ParseTupleAndKeywords(args,
 | |
|                                    kw,
 | |
|                                    "Offfff|$s:ridged_multi_fractal",
 | |
|                                    (char **)kwlist,
 | |
|                                    &value,
 | |
|                                    &H,
 | |
|                                    &lac,
 | |
|                                    &oct,
 | |
|                                    &ofs,
 | |
|                                    &gn,
 | |
|                                    &noise_basis_str)) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (!noise_basis_str) {
 | |
|     /* pass through */
 | |
|   }
 | |
|   else if (PyC_FlagSet_ValueFromID(
 | |
|                bpy_noise_types, noise_basis_str, &noise_basis_enum, "ridged_multi_fractal") ==
 | |
|            -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (mathutils_array_parse(vec, 3, 3, value, "ridged_multi_fractal: invalid 'position' arg") ==
 | |
|       -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   return PyFloat_FromDouble(BLI_noise_mg_ridged_multi_fractal(
 | |
|       vec[0], vec[1], vec[2], H, lac, oct, ofs, gn, noise_basis_enum));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Noise_voronoi_doc,
 | |
|              ".. function:: voronoi(position, distance_metric='DISTANCE', exponent=2.5)\n"
 | |
|              "\n"
 | |
|              "   Returns a list of distances to the four closest features and their locations.\n"
 | |
|              "\n"
 | |
|              "   :arg position: The position to evaluate the selected noise function.\n"
 | |
|              "   :type position: :class:`mathutils.Vector`\n" BPY_NOISE_METRIC_ENUM_DOC
 | |
|              "   :arg exponent: The exponent for Minkowski distance metric.\n"
 | |
|              "   :type exponent: float\n"
 | |
|              "   :return: A list of distances to the four closest features and their locations.\n"
 | |
|              "   :rtype: list of four floats, list of four :class:`mathutils.Vector` types\n");
 | |
| static PyObject *M_Noise_voronoi(PyObject *UNUSED(self), PyObject *args, PyObject *kw)
 | |
| {
 | |
|   static const char *kwlist[] = {"", "distance_metric", "exponent", NULL};
 | |
|   PyObject *value;
 | |
|   PyObject *list;
 | |
|   PyObject *ret;
 | |
|   float vec[3];
 | |
|   const char *metric_str = NULL;
 | |
|   float da[4], pa[12];
 | |
|   int metric_enum = DEFAULT_METRIC_TYPE;
 | |
|   float me = 2.5f; /* default minkowski exponent */
 | |
| 
 | |
|   int i;
 | |
| 
 | |
|   if (!PyArg_ParseTupleAndKeywords(
 | |
|           args, kw, "O|$sf:voronoi", (char **)kwlist, &value, &metric_str, &me)) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (!metric_str) {
 | |
|     /* pass through */
 | |
|   }
 | |
|   else if (PyC_FlagSet_ValueFromID(bpy_noise_metrics, metric_str, &metric_enum, "voronoi") == -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (mathutils_array_parse(vec, 3, 3, value, "voronoi: invalid 'position' arg") == -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   list = PyList_New(4);
 | |
| 
 | |
|   BLI_noise_voronoi(vec[0], vec[1], vec[2], da, pa, me, metric_enum);
 | |
| 
 | |
|   for (i = 0; i < 4; i++) {
 | |
|     PyObject *v = Vector_CreatePyObject(pa + 3 * i, 3, NULL);
 | |
|     PyList_SET_ITEM(list, i, v);
 | |
|   }
 | |
| 
 | |
|   ret = Py_BuildValue("[[ffff]O]", da[0], da[1], da[2], da[3], list);
 | |
|   Py_DECREF(list);
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Noise_cell_doc,
 | |
|              ".. function:: cell(position)\n"
 | |
|              "\n"
 | |
|              "   Returns cell noise value at the specified position.\n"
 | |
|              "\n"
 | |
|              "   :arg position: The position to evaluate the selected noise function.\n"
 | |
|              "   :type position: :class:`mathutils.Vector`\n"
 | |
|              "   :return: The cell noise value.\n"
 | |
|              "   :rtype: float\n");
 | |
| static PyObject *M_Noise_cell(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
|   PyObject *value;
 | |
|   float vec[3];
 | |
| 
 | |
|   if (!PyArg_ParseTuple(args, "O:cell", &value)) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (mathutils_array_parse(vec, 3, 3, value, "cell: invalid 'position' arg") == -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   return PyFloat_FromDouble(BLI_noise_cell(vec[0], vec[1], vec[2]));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(M_Noise_cell_vector_doc,
 | |
|              ".. function:: cell_vector(position)\n"
 | |
|              "\n"
 | |
|              "   Returns cell noise vector at the specified position.\n"
 | |
|              "\n"
 | |
|              "   :arg position: The position to evaluate the selected noise function.\n"
 | |
|              "   :type position: :class:`mathutils.Vector`\n"
 | |
|              "   :return: The cell noise vector.\n"
 | |
|              "   :rtype: :class:`mathutils.Vector`\n");
 | |
| static PyObject *M_Noise_cell_vector(PyObject *UNUSED(self), PyObject *args)
 | |
| {
 | |
|   PyObject *value;
 | |
|   float vec[3], r_vec[3];
 | |
| 
 | |
|   if (!PyArg_ParseTuple(args, "O:cell_vector", &value)) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (mathutils_array_parse(vec, 3, 3, value, "cell_vector: invalid 'position' arg") == -1) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   BLI_noise_cell_v3(vec[0], vec[1], vec[2], r_vec);
 | |
|   return Vector_CreatePyObject(r_vec, 3, NULL);
 | |
| }
 | |
| 
 | |
| static PyMethodDef M_Noise_methods[] = {
 | |
|     {"seed_set", (PyCFunction)M_Noise_seed_set, METH_VARARGS, M_Noise_seed_set_doc},
 | |
|     {"random", (PyCFunction)M_Noise_random, METH_NOARGS, M_Noise_random_doc},
 | |
|     {"random_unit_vector",
 | |
|      (PyCFunction)M_Noise_random_unit_vector,
 | |
|      METH_VARARGS | METH_KEYWORDS,
 | |
|      M_Noise_random_unit_vector_doc},
 | |
|     {"random_vector",
 | |
|      (PyCFunction)M_Noise_random_vector,
 | |
|      METH_VARARGS | METH_KEYWORDS,
 | |
|      M_Noise_random_vector_doc},
 | |
|     {"noise", (PyCFunction)M_Noise_noise, METH_VARARGS | METH_KEYWORDS, M_Noise_noise_doc},
 | |
|     {"noise_vector",
 | |
|      (PyCFunction)M_Noise_noise_vector,
 | |
|      METH_VARARGS | METH_KEYWORDS,
 | |
|      M_Noise_noise_vector_doc},
 | |
|     {"turbulence",
 | |
|      (PyCFunction)M_Noise_turbulence,
 | |
|      METH_VARARGS | METH_KEYWORDS,
 | |
|      M_Noise_turbulence_doc},
 | |
|     {"turbulence_vector",
 | |
|      (PyCFunction)M_Noise_turbulence_vector,
 | |
|      METH_VARARGS | METH_KEYWORDS,
 | |
|      M_Noise_turbulence_vector_doc},
 | |
|     {"fractal", (PyCFunction)M_Noise_fractal, METH_VARARGS | METH_KEYWORDS, M_Noise_fractal_doc},
 | |
|     {"multi_fractal",
 | |
|      (PyCFunction)M_Noise_multi_fractal,
 | |
|      METH_VARARGS | METH_KEYWORDS,
 | |
|      M_Noise_multi_fractal_doc},
 | |
|     {"variable_lacunarity",
 | |
|      (PyCFunction)M_Noise_variable_lacunarity,
 | |
|      METH_VARARGS | METH_KEYWORDS,
 | |
|      M_Noise_variable_lacunarity_doc},
 | |
|     {"hetero_terrain",
 | |
|      (PyCFunction)M_Noise_hetero_terrain,
 | |
|      METH_VARARGS | METH_KEYWORDS,
 | |
|      M_Noise_hetero_terrain_doc},
 | |
|     {"hybrid_multi_fractal",
 | |
|      (PyCFunction)M_Noise_hybrid_multi_fractal,
 | |
|      METH_VARARGS | METH_KEYWORDS,
 | |
|      M_Noise_hybrid_multi_fractal_doc},
 | |
|     {"ridged_multi_fractal",
 | |
|      (PyCFunction)M_Noise_ridged_multi_fractal,
 | |
|      METH_VARARGS | METH_KEYWORDS,
 | |
|      M_Noise_ridged_multi_fractal_doc},
 | |
|     {"voronoi", (PyCFunction)M_Noise_voronoi, METH_VARARGS | METH_KEYWORDS, M_Noise_voronoi_doc},
 | |
|     {"cell", (PyCFunction)M_Noise_cell, METH_VARARGS, M_Noise_cell_doc},
 | |
|     {"cell_vector", (PyCFunction)M_Noise_cell_vector, METH_VARARGS, M_Noise_cell_vector_doc},
 | |
|     {NULL, NULL, 0, NULL},
 | |
| };
 | |
| 
 | |
| static struct PyModuleDef M_Noise_module_def = {
 | |
|     PyModuleDef_HEAD_INIT,
 | |
|     "mathutils.noise", /* m_name */
 | |
|     M_Noise_doc,       /* m_doc */
 | |
|     0,                 /* m_size */
 | |
|     M_Noise_methods,   /* m_methods */
 | |
|     NULL,              /* m_reload */
 | |
|     NULL,              /* m_traverse */
 | |
|     NULL,              /* m_clear */
 | |
|     NULL,              /* m_free */
 | |
| };
 | |
| 
 | |
| /*----------------------------MODULE INIT-------------------------*/
 | |
| PyMODINIT_FUNC PyInit_mathutils_noise(void)
 | |
| {
 | |
|   PyObject *submodule = PyModule_Create(&M_Noise_module_def);
 | |
| 
 | |
|   /* use current time as seed for random number generator by default */
 | |
|   setRndSeed(0);
 | |
| 
 | |
|   return submodule;
 | |
| }
 |