This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/editors/transform/transform_constraints.c
Sebastian Parborg 482806c816 VSE: Implement the bounding box (xform) tool in the seq preview window
Make the "xform" tool/gizmo available for strip transformations in the
sequencer preview window.

Because of the amount of hacks needed to make the gizmo work nicely with
multiple strips at the same time, it was decided to only show the
translate gizmo when multiple strips are selected.

This is because the transforms with multiple strips would appear buggy
because of our lack of shearing support in the transform system.
There is also currently no way to properly sync the gizmo drawing with
the transform when using multiple strips.

Reviewed By: Richard Antalik, Campbell Barton

Differential Revision: http://developer.blender.org/D12729
2021-10-08 12:14:45 +02:00

1215 lines
34 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*/
/** \file
* \ingroup edtransform
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "DNA_screen_types.h"
#include "DNA_space_types.h"
#include "DNA_view3d_types.h"
#include "GPU_immediate.h"
#include "GPU_matrix.h"
#include "GPU_state.h"
#include "BLI_math.h"
#include "BLI_rect.h"
#include "BLI_string.h"
#include "BLI_utildefines.h"
#include "BKE_context.h"
#include "ED_view3d.h"
#include "BLT_translation.h"
#include "UI_resources.h"
#include "transform.h"
#include "transform_orientations.h"
#include "transform_snap.h"
/* Own include. */
#include "transform_constraints.h"
static void drawObjectConstraint(TransInfo *t);
/* -------------------------------------------------------------------- */
/** \name Internal Utilities
* \{ */
static void projection_matrix_calc(const TransInfo *t, float r_pmtx[3][3])
{
unit_m3(r_pmtx);
if (!(t->con.mode & CON_AXIS0)) {
zero_v3(r_pmtx[0]);
}
if (!(t->con.mode & CON_AXIS1)) {
zero_v3(r_pmtx[1]);
}
if (!(t->con.mode & CON_AXIS2)) {
zero_v3(r_pmtx[2]);
}
float mat[3][3];
mul_m3_m3m3(mat, r_pmtx, t->spacemtx_inv);
mul_m3_m3m3(r_pmtx, t->spacemtx, mat);
}
static void view_vector_calc(const TransInfo *t, const float focus[3], float r_vec[3])
{
if (t->persp != RV3D_ORTHO) {
sub_v3_v3v3(r_vec, t->viewinv[3], focus);
}
else {
copy_v3_v3(r_vec, t->viewinv[2]);
}
normalize_v3(r_vec);
}
/* ************************** CONSTRAINTS ************************* */
#define CONSTRAIN_EPSILON 0.0001f
static void constraint_plane_calc(const TransInfo *t, float r_plane[4])
{
const float *constraint_vector[2];
int n = 0;
for (int i = 0; i < 3; i++) {
if (t->con.mode & (CON_AXIS0 << i)) {
constraint_vector[n++] = t->spacemtx[i];
if (n == 2) {
break;
}
}
}
BLI_assert(n == 2);
cross_v3_v3v3(r_plane, constraint_vector[0], constraint_vector[1]);
normalize_v3(r_plane);
r_plane[3] = -dot_v3v3(r_plane, t->center_global);
}
void constraintNumInput(TransInfo *t, float vec[3])
{
int mode = t->con.mode;
if (mode & CON_APPLY) {
float nval = (t->flag & T_NULL_ONE) ? 1.0f : 0.0f;
const int dims = getConstraintSpaceDimension(t);
if (dims == 2) {
int axis = mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2);
if (axis == (CON_AXIS0 | CON_AXIS1)) {
/* vec[0] = vec[0]; */ /* same */
/* vec[1] = vec[1]; */ /* same */
vec[2] = nval;
}
else if (axis == (CON_AXIS1 | CON_AXIS2)) {
vec[2] = vec[1];
vec[1] = vec[0];
vec[0] = nval;
}
else if (axis == (CON_AXIS0 | CON_AXIS2)) {
/* vec[0] = vec[0]; */ /* same */
vec[2] = vec[1];
vec[1] = nval;
}
}
else if (dims == 1) {
if (mode & CON_AXIS0) {
/* vec[0] = vec[0]; */ /* same */
vec[1] = nval;
vec[2] = nval;
}
else if (mode & CON_AXIS1) {
vec[1] = vec[0];
vec[0] = nval;
vec[2] = nval;
}
else if (mode & CON_AXIS2) {
vec[2] = vec[0];
vec[0] = nval;
vec[1] = nval;
}
}
}
}
static void viewAxisCorrectCenter(const TransInfo *t, float t_con_center[3])
{
if (t->spacetype == SPACE_VIEW3D) {
// View3D *v3d = t->area->spacedata.first;
const float min_dist = 1.0f; /* v3d->clip_start; */
float dir[3];
float l;
sub_v3_v3v3(dir, t_con_center, t->viewinv[3]);
if (dot_v3v3(dir, t->viewinv[2]) < 0.0f) {
negate_v3(dir);
}
project_v3_v3v3(dir, dir, t->viewinv[2]);
l = len_v3(dir);
if (l < min_dist) {
float diff[3];
normalize_v3_v3_length(diff, t->viewinv[2], min_dist - l);
sub_v3_v3(t_con_center, diff);
}
}
}
/**
* Axis calculation taking the view into account, correcting view-aligned axis.
*/
static void axisProjection(const TransInfo *t,
const float axis[3],
const float in[3],
float out[3])
{
float norm[3], vec[3], factor, angle;
float t_con_center[3];
if (is_zero_v3(in)) {
return;
}
copy_v3_v3(t_con_center, t->center_global);
/* checks for center being too close to the view center */
viewAxisCorrectCenter(t, t_con_center);
angle = fabsf(angle_v3v3(axis, t->viewinv[2]));
if (angle > (float)M_PI_2) {
angle = (float)M_PI - angle;
}
/* For when view is parallel to constraint... will cause NaNs otherwise
* So we take vertical motion in 3D space and apply it to the
* constraint axis. Nice for camera grab + MMB */
if (angle < DEG2RADF(5.0f)) {
project_v3_v3v3(vec, in, t->viewinv[1]);
factor = dot_v3v3(t->viewinv[1], vec) * 2.0f;
/* Since camera distance is quite relative, use quadratic relationship.
* holding shift can compensate. */
if (factor < 0.0f) {
factor *= -factor;
}
else {
factor *= factor;
}
/* -factor makes move down going backwards */
normalize_v3_v3_length(out, axis, -factor);
}
else {
float v[3];
float norm_center[3];
float plane[3];
view_vector_calc(t, t_con_center, norm_center);
cross_v3_v3v3(plane, norm_center, axis);
project_v3_v3v3(vec, in, plane);
sub_v3_v3v3(vec, in, vec);
add_v3_v3v3(v, vec, t_con_center);
view_vector_calc(t, v, norm);
/* give arbitrary large value if projection is impossible */
factor = dot_v3v3(axis, norm);
if (1.0f - fabsf(factor) < 0.0002f) {
copy_v3_v3(out, axis);
if (factor > 0) {
mul_v3_fl(out, 1000000000.0f);
}
else {
mul_v3_fl(out, -1000000000.0f);
}
}
else {
/* Use ray-ray intersection instead of line-line because this gave
* precision issues adding small values to large numbers. */
float mul;
if (isect_ray_ray_v3(t_con_center, axis, v, norm, &mul, NULL)) {
mul_v3_v3fl(out, axis, mul);
}
else {
/* In practice this should never fail. */
BLI_assert(0);
}
/* possible some values become nan when
* viewpoint and object are both zero */
if (!isfinite(out[0])) {
out[0] = 0.0f;
}
if (!isfinite(out[1])) {
out[1] = 0.0f;
}
if (!isfinite(out[2])) {
out[2] = 0.0f;
}
}
}
}
/**
* Snap to the intersection between the edge direction and the constraint plane.
*/
static void constraint_snap_plane_to_edge(const TransInfo *t, const float plane[4], float r_out[3])
{
float lambda;
const float *edge_snap_point = t->tsnap.snapPoint;
const float *edge_dir = t->tsnap.snapNormal;
bool is_aligned = fabsf(dot_v3v3(edge_dir, plane)) < CONSTRAIN_EPSILON;
if (!is_aligned && isect_ray_plane_v3(edge_snap_point, edge_dir, plane, &lambda, false)) {
madd_v3_v3v3fl(r_out, edge_snap_point, edge_dir, lambda);
sub_v3_v3(r_out, t->tsnap.snapTarget);
}
}
/**
* Snap to the nearest point between the snap point and the line that
* intersects the face plane with the constraint plane.
*/
static void UNUSED_FUNCTION(constraint_snap_plane_to_face(const TransInfo *t,
const float plane[4],
float r_out[3]))
{
float face_plane[4], isect_orig[3], isect_dir[3];
const float *face_snap_point = t->tsnap.snapPoint;
const float *face_normal = t->tsnap.snapNormal;
plane_from_point_normal_v3(face_plane, face_snap_point, face_normal);
bool is_aligned = fabsf(dot_v3v3(plane, face_plane)) > (1.0f - CONSTRAIN_EPSILON);
if (!is_aligned && isect_plane_plane_v3(plane, face_plane, isect_orig, isect_dir)) {
closest_to_ray_v3(r_out, face_snap_point, isect_orig, isect_dir);
sub_v3_v3(r_out, t->tsnap.snapTarget);
}
}
/**
* Snap to the nearest point on the axis to the edge/line element.
*/
void transform_constraint_snap_axis_to_edge(const TransInfo *t,
const float axis[3],
float r_out[3])
{
float lambda;
const float *edge_snap_point = t->tsnap.snapPoint;
const float *edge_dir = t->tsnap.snapNormal;
bool is_aligned = fabsf(dot_v3v3(axis, edge_dir)) > (1.0f - CONSTRAIN_EPSILON);
if (!is_aligned &&
isect_ray_ray_v3(t->tsnap.snapTarget, axis, edge_snap_point, edge_dir, &lambda, NULL)) {
mul_v3_v3fl(r_out, axis, lambda);
}
}
/**
* Snap to the intersection of the axis and the plane defined by the face.
*/
void transform_constraint_snap_axis_to_face(const TransInfo *t,
const float axis[3],
float r_out[3])
{
float lambda;
float face_plane[4];
const float *face_snap_point = t->tsnap.snapPoint;
const float *face_normal = t->tsnap.snapNormal;
plane_from_point_normal_v3(face_plane, face_snap_point, face_normal);
bool is_aligned = fabsf(dot_v3v3(axis, face_plane)) < CONSTRAIN_EPSILON;
if (!is_aligned && isect_ray_plane_v3(t->tsnap.snapTarget, axis, face_plane, &lambda, false)) {
mul_v3_v3fl(r_out, axis, lambda);
}
}
/**
* Return true if the 2x axis are both aligned when projected into the view.
* In this case, we can't usefully project the cursor onto the plane.
*/
static bool isPlaneProjectionViewAligned(const TransInfo *t, const float plane[4])
{
const float eps = 0.001f;
float view_to_plane[3];
view_vector_calc(t, t->center_global, view_to_plane);
float factor = dot_v3v3(plane, view_to_plane);
return fabsf(factor) < eps;
}
static void planeProjection(const TransInfo *t, const float in[3], float out[3])
{
float vec[3], factor, norm[3];
add_v3_v3v3(vec, in, t->center_global);
view_vector_calc(t, vec, norm);
sub_v3_v3v3(vec, out, in);
factor = dot_v3v3(vec, norm);
if (factor == 0.0f) {
return; /* prevent divide by zero */
}
factor = dot_v3v3(vec, vec) / factor;
copy_v3_v3(vec, norm);
mul_v3_fl(vec, factor);
add_v3_v3v3(out, in, vec);
}
/**
* Generic callback for constant spatial constraints applied to linear motion
*
* The `in` vector in projected into the constrained space and then further
* projected along the view vector.
* (in perspective mode, the view vector is relative to the position on screen)
*/
static void applyAxisConstraintVec(const TransInfo *t,
const TransDataContainer *UNUSED(tc),
const TransData *td,
const float in[3],
float out[3])
{
copy_v3_v3(out, in);
if (!td && t->con.mode & CON_APPLY) {
bool is_snap_to_point = false, is_snap_to_edge = false, is_snap_to_face = false;
mul_m3_v3(t->con.pmtx, out);
if (activeSnap(t)) {
if (validSnap(t)) {
is_snap_to_edge = (t->tsnap.snapElem & SCE_SNAP_MODE_EDGE) != 0;
is_snap_to_face = (t->tsnap.snapElem & SCE_SNAP_MODE_FACE) != 0;
is_snap_to_point = !is_snap_to_edge && !is_snap_to_face;
}
else if (t->tsnap.snapElem & SCE_SNAP_MODE_GRID) {
is_snap_to_point = true;
}
}
/* With snap points, a projection is alright, no adjustments needed. */
if (!is_snap_to_point || is_snap_to_edge || is_snap_to_face) {
const int dims = getConstraintSpaceDimension(t);
if (dims == 2) {
if (!is_zero_v3(out)) {
float plane[4];
constraint_plane_calc(t, plane);
if (is_snap_to_edge) {
constraint_snap_plane_to_edge(t, plane, out);
}
else if (is_snap_to_face) {
/* Disabled, as it has not proven to be really useful. (See T82386). */
// constraint_snap_plane_to_face(t, plane, out);
}
else {
/* View alignment correction. */
if (!isPlaneProjectionViewAligned(t, plane)) {
planeProjection(t, in, out);
}
}
}
}
else if (dims == 1) {
float c[3];
if (t->con.mode & CON_AXIS0) {
copy_v3_v3(c, t->spacemtx[0]);
}
else if (t->con.mode & CON_AXIS1) {
copy_v3_v3(c, t->spacemtx[1]);
}
else {
BLI_assert(t->con.mode & CON_AXIS2);
copy_v3_v3(c, t->spacemtx[2]);
}
if (is_snap_to_edge) {
transform_constraint_snap_axis_to_edge(t, c, out);
}
else if (is_snap_to_face) {
transform_constraint_snap_axis_to_face(t, c, out);
}
else {
/* View alignment correction. */
axisProjection(t, c, in, out);
}
}
}
}
}
/**
* Generic callback for object based spatial constraints applied to linear motion
*
* At first, the following is applied without orientation
* The IN vector in projected into the constrained space and then further
* projected along the view vector.
* (in perspective mode, the view vector is relative to the position on screen).
*
* Further down, that vector is mapped to each data's space.
*/
static void applyObjectConstraintVec(const TransInfo *t,
const TransDataContainer *tc,
const TransData *td,
const float in[3],
float out[3])
{
if (!td) {
applyAxisConstraintVec(t, tc, td, in, out);
}
else {
/* Specific TransData's space. */
copy_v3_v3(out, in);
if (t->con.mode & CON_APPLY) {
mul_m3_v3(t->spacemtx_inv, out);
mul_m3_v3(td->axismtx, out);
if (t->flag & T_EDIT) {
mul_m3_v3(tc->mat3_unit, out);
}
}
}
}
/**
* Generic callback for constant spatial constraints applied to resize motion.
*/
static void applyAxisConstraintSize(const TransInfo *t,
const TransDataContainer *UNUSED(tc),
const TransData *td,
float r_smat[3][3])
{
if (!td && t->con.mode & CON_APPLY) {
float tmat[3][3];
if (!(t->con.mode & CON_AXIS0)) {
r_smat[0][0] = 1.0f;
}
if (!(t->con.mode & CON_AXIS1)) {
r_smat[1][1] = 1.0f;
}
if (!(t->con.mode & CON_AXIS2)) {
r_smat[2][2] = 1.0f;
}
mul_m3_m3m3(tmat, r_smat, t->spacemtx_inv);
mul_m3_m3m3(r_smat, t->spacemtx, tmat);
}
}
/**
* Callback for object based spatial constraints applied to resize motion.
*/
static void applyObjectConstraintSize(const TransInfo *t,
const TransDataContainer *tc,
const TransData *td,
float r_smat[3][3])
{
if (td && t->con.mode & CON_APPLY) {
float tmat[3][3];
float imat[3][3];
invert_m3_m3(imat, td->axismtx);
if (!(t->con.mode & CON_AXIS0)) {
r_smat[0][0] = 1.0f;
}
if (!(t->con.mode & CON_AXIS1)) {
r_smat[1][1] = 1.0f;
}
if (!(t->con.mode & CON_AXIS2)) {
r_smat[2][2] = 1.0f;
}
mul_m3_m3m3(tmat, r_smat, imat);
if (t->flag & T_EDIT) {
mul_m3_m3m3(r_smat, tc->mat3_unit, r_smat);
}
mul_m3_m3m3(r_smat, td->axismtx, tmat);
}
}
static void constraints_rotation_impl(const TransInfo *t,
const float axismtx[3][3],
float r_axis[3],
float *r_angle)
{
BLI_assert(t->con.mode & CON_APPLY);
int mode = t->con.mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2);
switch (mode) {
case CON_AXIS0:
case (CON_AXIS1 | CON_AXIS2):
copy_v3_v3(r_axis, axismtx[0]);
break;
case CON_AXIS1:
case (CON_AXIS0 | CON_AXIS2):
copy_v3_v3(r_axis, axismtx[1]);
break;
case CON_AXIS2:
case (CON_AXIS0 | CON_AXIS1):
copy_v3_v3(r_axis, axismtx[2]);
break;
}
/* don't flip axis if asked to or if num input */
if (r_angle &&
!((mode & CON_NOFLIP) || hasNumInput(&t->num) || (t->flag & T_INPUT_IS_VALUES_FINAL))) {
float view_vector[3];
view_vector_calc(t, t->center_global, view_vector);
if (dot_v3v3(r_axis, view_vector) > 0.0f) {
*r_angle = -(*r_angle);
}
}
}
/**
* Generic callback for constant spatial constraints applied to rotations
*
* The rotation axis is copied into `vec`.
*
* In the case of single axis constraints, the rotation axis is directly the one constrained to.
* For planar constraints (2 axis), the rotation axis is the normal of the plane.
*
* The following only applies when #CON_NOFLIP is not set.
* The vector is then modified to always point away from the screen (in global space)
* This insures that the rotation is always logically following the mouse.
* (ie: not doing counterclockwise rotations when the mouse moves clockwise).
*/
static void applyAxisConstraintRot(const TransInfo *t,
const TransDataContainer *UNUSED(tc),
const TransData *td,
float r_axis[3],
float *r_angle)
{
if (!td && t->con.mode & CON_APPLY) {
constraints_rotation_impl(t, t->spacemtx, r_axis, r_angle);
}
}
/**
* Callback for object based spatial constraints applied to rotations
*
* The rotation axis is copied into `vec`.
*
* In the case of single axis constraints, the rotation axis is directly the one constrained to.
* For planar constraints (2 axis), the rotation axis is the normal of the plane.
*
* The following only applies when #CON_NOFLIP is not set.
* The vector is then modified to always point away from the screen (in global space)
* This insures that the rotation is always logically following the mouse.
* (ie: not doing counterclockwise rotations when the mouse moves clockwise).
*/
static void applyObjectConstraintRot(const TransInfo *t,
const TransDataContainer *tc,
const TransData *td,
float r_axis[3],
float *r_angle)
{
if (t->con.mode & CON_APPLY) {
float tmp_axismtx[3][3];
const float(*axismtx)[3];
/* on setup call, use first object */
if (td == NULL) {
BLI_assert(tc == NULL);
tc = TRANS_DATA_CONTAINER_FIRST_OK(t);
td = tc->data;
}
if (t->flag & T_EDIT) {
mul_m3_m3m3(tmp_axismtx, tc->mat3_unit, td->axismtx);
axismtx = tmp_axismtx;
}
else {
axismtx = td->axismtx;
}
constraints_rotation_impl(t, axismtx, r_axis, r_angle);
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Internal Setup Calls
* \{ */
void setConstraint(TransInfo *t, int mode, const char text[])
{
BLI_strncpy(t->con.text + 1, text, sizeof(t->con.text) - 1);
t->con.mode = mode;
projection_matrix_calc(t, t->con.pmtx);
startConstraint(t);
t->con.drawExtra = NULL;
t->con.applyVec = applyAxisConstraintVec;
t->con.applySize = applyAxisConstraintSize;
t->con.applyRot = applyAxisConstraintRot;
t->redraw = TREDRAW_HARD;
}
/* applies individual td->axismtx constraints */
void setAxisMatrixConstraint(TransInfo *t, int mode, const char text[])
{
BLI_strncpy(t->con.text + 1, text, sizeof(t->con.text) - 1);
t->con.mode = mode;
projection_matrix_calc(t, t->con.pmtx);
startConstraint(t);
t->con.drawExtra = drawObjectConstraint;
t->con.applyVec = applyObjectConstraintVec;
t->con.applySize = applyObjectConstraintSize;
t->con.applyRot = applyObjectConstraintRot;
t->redraw = TREDRAW_HARD;
}
void setLocalConstraint(TransInfo *t, int mode, const char text[])
{
if ((t->flag & T_EDIT) || t->data_len_all == 1) {
/* Although in edit-mode each object has its local space, use the
* orientation of the active object. */
setConstraint(t, mode, text);
}
else {
setAxisMatrixConstraint(t, mode, text);
}
}
/**
* Set the constraint according to the user defined orientation
*
* `ftext` is a format string passed to #BLI_snprintf. It will add the name of
* the orientation where %s is (logically).
*/
void setUserConstraint(TransInfo *t, int mode, const char ftext[])
{
char text[256];
short orientation = t->orient[t->orient_curr].type;
if (orientation == V3D_ORIENT_CUSTOM_MATRIX) {
/* Use the real value of the "orient_type". */
orientation = t->orient[0].type;
}
const char *spacename = transform_orientations_spacename_get(t, orientation);
BLI_snprintf(text, sizeof(text), ftext, spacename);
switch (orientation) {
case V3D_ORIENT_LOCAL:
setLocalConstraint(t, mode, text);
break;
case V3D_ORIENT_NORMAL:
if (checkUseAxisMatrix(t)) {
setAxisMatrixConstraint(t, mode, text);
break;
}
ATTR_FALLTHROUGH;
case V3D_ORIENT_GLOBAL:
case V3D_ORIENT_VIEW:
case V3D_ORIENT_CURSOR:
case V3D_ORIENT_GIMBAL:
case V3D_ORIENT_CUSTOM_MATRIX:
case V3D_ORIENT_CUSTOM:
default: {
setConstraint(t, mode, text);
break;
}
}
t->con.mode |= CON_USER;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Drawing Constraints
* \{ */
void drawConstraint(TransInfo *t)
{
TransCon *tc = &(t->con);
if (!ELEM(t->spacetype, SPACE_VIEW3D, SPACE_IMAGE, SPACE_NODE, SPACE_SEQ)) {
return;
}
if (!(tc->mode & CON_APPLY)) {
return;
}
if (t->flag & T_NO_CONSTRAINT) {
return;
}
if (tc->drawExtra) {
tc->drawExtra(t);
}
else {
if (tc->mode & CON_SELECT) {
float vec[3];
convertViewVec(t, vec, (t->mval[0] - t->con.imval[0]), (t->mval[1] - t->con.imval[1]));
add_v3_v3(vec, t->center_global);
drawLine(t, t->center_global, t->spacemtx[0], 'X', 0);
drawLine(t, t->center_global, t->spacemtx[1], 'Y', 0);
drawLine(t, t->center_global, t->spacemtx[2], 'Z', 0);
eGPUDepthTest depth_test_enabled = GPU_depth_test_get();
if (depth_test_enabled) {
GPU_depth_test(GPU_DEPTH_NONE);
}
const uint shdr_pos = GPU_vertformat_attr_add(
immVertexFormat(), "pos", GPU_COMP_F32, 3, GPU_FETCH_FLOAT);
immBindBuiltinProgram(GPU_SHADER_3D_LINE_DASHED_UNIFORM_COLOR);
float viewport_size[4];
GPU_viewport_size_get_f(viewport_size);
immUniform2f("viewport_size", viewport_size[2], viewport_size[3]);
immUniform1i("colors_len", 0); /* "simple" mode */
immUniformColor4f(1.0f, 1.0f, 1.0f, 1.0f);
immUniform1f("dash_width", 2.0f);
immUniform1f("dash_factor", 0.5f);
immBegin(GPU_PRIM_LINES, 2);
immVertex3fv(shdr_pos, t->center_global);
immVertex3fv(shdr_pos, vec);
immEnd();
immUnbindProgram();
if (depth_test_enabled) {
GPU_depth_test(GPU_DEPTH_LESS_EQUAL);
}
}
if (tc->mode & CON_AXIS0) {
drawLine(t, t->center_global, t->spacemtx[0], 'X', DRAWLIGHT);
}
if (tc->mode & CON_AXIS1) {
drawLine(t, t->center_global, t->spacemtx[1], 'Y', DRAWLIGHT);
}
if (tc->mode & CON_AXIS2) {
drawLine(t, t->center_global, t->spacemtx[2], 'Z', DRAWLIGHT);
}
}
}
/* called from drawview.c, as an extra per-window draw option */
void drawPropCircle(const struct bContext *C, TransInfo *t)
{
if (t->flag & T_PROP_EDIT) {
RegionView3D *rv3d = CTX_wm_region_view3d(C);
float tmat[4][4], imat[4][4];
if (t->spacetype == SPACE_VIEW3D && rv3d != NULL) {
copy_m4_m4(tmat, rv3d->viewmat);
invert_m4_m4(imat, tmat);
}
else {
unit_m4(tmat);
unit_m4(imat);
}
GPU_matrix_push();
if (t->spacetype == SPACE_VIEW3D) {
/* pass */
}
else if (t->spacetype == SPACE_IMAGE) {
GPU_matrix_scale_2f(1.0f / t->aspect[0], 1.0f / t->aspect[1]);
}
else if (ELEM(t->spacetype, SPACE_GRAPH, SPACE_ACTION)) {
/* only scale y */
rcti *mask = &t->region->v2d.mask;
rctf *datamask = &t->region->v2d.cur;
float xsize = BLI_rctf_size_x(datamask);
float ysize = BLI_rctf_size_y(datamask);
float xmask = BLI_rcti_size_x(mask);
float ymask = BLI_rcti_size_y(mask);
GPU_matrix_scale_2f(1.0f, (ysize / xsize) * (xmask / ymask));
}
eGPUDepthTest depth_test_enabled = GPU_depth_test_get();
if (depth_test_enabled) {
GPU_depth_test(GPU_DEPTH_NONE);
}
uint pos = GPU_vertformat_attr_add(immVertexFormat(), "pos", GPU_COMP_F32, 3, GPU_FETCH_FLOAT);
immBindBuiltinProgram(GPU_SHADER_3D_POLYLINE_UNIFORM_COLOR);
float viewport[4];
GPU_viewport_size_get_f(viewport);
GPU_blend(GPU_BLEND_ALPHA);
immUniform2fv("viewportSize", &viewport[2]);
immUniform1f("lineWidth", 3.0f * U.pixelsize);
immUniformThemeColorShadeAlpha(TH_GRID, -20, 255);
imm_drawcircball(t->center_global, t->prop_size, imat, pos);
immUniform1f("lineWidth", 1.0f * U.pixelsize);
immUniformThemeColorShadeAlpha(TH_GRID, 20, 255);
imm_drawcircball(t->center_global, t->prop_size, imat, pos);
immUnbindProgram();
if (depth_test_enabled) {
GPU_depth_test(GPU_DEPTH_LESS_EQUAL);
}
GPU_matrix_pop();
}
}
static void drawObjectConstraint(TransInfo *t)
{
/* Draw the first one lighter because that's the one who controls the others.
* Meaning the transformation is projected on that one and just copied on the others
* constraint space.
* In a nutshell, the object with light axis is controlled by the user and the others follow.
* Without drawing the first light, users have little clue what they are doing.
*/
short options = DRAWLIGHT;
float tmp_axismtx[3][3];
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (int i = 0; i < tc->data_len; i++, td++) {
float co[3];
float(*axismtx)[3];
if (t->flag & T_PROP_EDIT) {
/* we're sorted, so skip the rest */
if (td->factor == 0.0f) {
break;
}
}
if (t->options & CTX_GPENCIL_STROKES) {
/* only draw a constraint line for one point, otherwise we can't see anything */
if ((options & DRAWLIGHT) == 0) {
break;
}
}
if (t->options & CTX_SEQUENCER_IMAGE) {
/* Because we construct an "L" shape to deform the sequence, we should skip
* all points except the first vertex. Otherwise we will draw the same axis constraint line
* 3 times for each strip.
*/
if (i % 3 != 0) {
continue;
}
}
if (t->flag & T_EDIT) {
mul_v3_m4v3(co, tc->mat, td->center);
mul_m3_m3m3(tmp_axismtx, tc->mat3_unit, td->axismtx);
axismtx = tmp_axismtx;
}
else if (t->options & CTX_POSE_BONE) {
mul_v3_m4v3(co, tc->mat, td->center);
axismtx = td->axismtx;
}
else {
copy_v3_v3(co, td->center);
axismtx = td->axismtx;
}
if (t->con.mode & CON_AXIS0) {
drawLine(t, co, axismtx[0], 'X', options);
}
if (t->con.mode & CON_AXIS1) {
drawLine(t, co, axismtx[1], 'Y', options);
}
if (t->con.mode & CON_AXIS2) {
drawLine(t, co, axismtx[2], 'Z', options);
}
options &= ~DRAWLIGHT;
}
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Start / Stop Constraints
* \{ */
void startConstraint(TransInfo *t)
{
t->con.mode |= CON_APPLY;
*t->con.text = ' ';
t->num.idx_max = min_ii(getConstraintSpaceDimension(t) - 1, t->idx_max);
}
void stopConstraint(TransInfo *t)
{
if (t->orient_curr != O_DEFAULT) {
transform_orientations_current_set(t, O_DEFAULT);
}
t->con.mode &= ~(CON_APPLY | CON_SELECT);
*t->con.text = '\0';
t->num.idx_max = t->idx_max;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Middle Mouse Button Select
* \{ */
void initSelectConstraint(TransInfo *t)
{
if (t->orient_curr == O_DEFAULT) {
transform_orientations_current_set(t, O_SCENE);
}
setUserConstraint(t, CON_APPLY | CON_SELECT, "%s");
}
void selectConstraint(TransInfo *t)
{
if (t->con.mode & CON_SELECT) {
setNearestAxis(t);
startConstraint(t);
}
}
void postSelectConstraint(TransInfo *t)
{
if (!(t->con.mode & CON_SELECT)) {
return;
}
t->con.mode &= ~CON_AXIS0;
t->con.mode &= ~CON_AXIS1;
t->con.mode &= ~CON_AXIS2;
t->con.mode &= ~CON_SELECT;
setNearestAxis(t);
startConstraint(t);
t->redraw = TREDRAW_HARD;
}
static void setNearestAxis2d(TransInfo *t)
{
/* no correction needed... just use whichever one is lower */
if (abs(t->mval[0] - t->con.imval[0]) < abs(t->mval[1] - t->con.imval[1])) {
t->con.mode |= CON_AXIS1;
BLI_strncpy(t->con.text, TIP_(" along Y axis"), sizeof(t->con.text));
}
else {
t->con.mode |= CON_AXIS0;
BLI_strncpy(t->con.text, TIP_(" along X axis"), sizeof(t->con.text));
}
}
static void setNearestAxis3d(TransInfo *t)
{
float zfac;
float mvec[3], proj[3];
float len[3];
int i;
/* calculate mouse movement */
mvec[0] = (float)(t->mval[0] - t->con.imval[0]);
mvec[1] = (float)(t->mval[1] - t->con.imval[1]);
mvec[2] = 0.0f;
/* We need to correct axis length for the current zoom-level of view,
* this to prevent projected values to be clipped behind the camera
* and to overflow the short integers.
* The formula used is a bit stupid, just a simplification of the subtraction
* of two 2D points 30 pixels apart (that's the last factor in the formula) after
* projecting them with ED_view3d_win_to_delta and then get the length of that vector.
*/
zfac = mul_project_m4_v3_zfac(t->persmat, t->center_global);
zfac = len_v3(t->persinv[0]) * 2.0f / t->region->winx * zfac * 30.0f;
for (i = 0; i < 3; i++) {
float axis[3], axis_2d[2];
copy_v3_v3(axis, t->spacemtx[i]);
mul_v3_fl(axis, zfac);
/* now we can project to get window coordinate */
add_v3_v3(axis, t->center_global);
projectFloatView(t, axis, axis_2d);
sub_v2_v2v2(axis, axis_2d, t->center2d);
axis[2] = 0.0f;
if (normalize_v3(axis) > 1e-3f) {
project_v3_v3v3(proj, mvec, axis);
sub_v3_v3v3(axis, mvec, proj);
len[i] = normalize_v3(axis);
}
else {
len[i] = 1e10f;
}
}
if (len[0] <= len[1] && len[0] <= len[2]) {
if (t->modifiers & MOD_CONSTRAINT_SELECT_PLANE) {
t->con.mode |= (CON_AXIS1 | CON_AXIS2);
BLI_snprintf(t->con.text, sizeof(t->con.text), TIP_(" locking %s X axis"), t->spacename);
}
else {
t->con.mode |= CON_AXIS0;
BLI_snprintf(t->con.text, sizeof(t->con.text), TIP_(" along %s X axis"), t->spacename);
}
}
else if (len[1] <= len[0] && len[1] <= len[2]) {
if (t->modifiers & MOD_CONSTRAINT_SELECT_PLANE) {
t->con.mode |= (CON_AXIS0 | CON_AXIS2);
BLI_snprintf(t->con.text, sizeof(t->con.text), TIP_(" locking %s Y axis"), t->spacename);
}
else {
t->con.mode |= CON_AXIS1;
BLI_snprintf(t->con.text, sizeof(t->con.text), TIP_(" along %s Y axis"), t->spacename);
}
}
else if (len[2] <= len[1] && len[2] <= len[0]) {
if (t->modifiers & MOD_CONSTRAINT_SELECT_PLANE) {
t->con.mode |= (CON_AXIS0 | CON_AXIS1);
BLI_snprintf(t->con.text, sizeof(t->con.text), TIP_(" locking %s Z axis"), t->spacename);
}
else {
t->con.mode |= CON_AXIS2;
BLI_snprintf(t->con.text, sizeof(t->con.text), TIP_(" along %s Z axis"), t->spacename);
}
}
}
void setNearestAxis(TransInfo *t)
{
/* clear any prior constraint flags */
t->con.mode &= ~CON_AXIS0;
t->con.mode &= ~CON_AXIS1;
t->con.mode &= ~CON_AXIS2;
/* constraint setting - depends on spacetype */
if (t->spacetype == SPACE_VIEW3D) {
/* 3d-view */
setNearestAxis3d(t);
}
else {
/* assume that this means a 2D-Editor */
setNearestAxis2d(t);
}
projection_matrix_calc(t, t->con.pmtx);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Helper Functions
* \{ */
int constraintModeToIndex(const TransInfo *t)
{
if ((t->con.mode & CON_APPLY) == 0) {
return -1;
}
switch (t->con.mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2)) {
case (CON_AXIS0):
case (CON_AXIS1 | CON_AXIS2):
return 0;
case (CON_AXIS1):
case (CON_AXIS0 | CON_AXIS2):
return 1;
case (CON_AXIS2):
case (CON_AXIS0 | CON_AXIS1):
return 2;
default:
return -1;
}
}
bool isLockConstraint(const TransInfo *t)
{
int mode = t->con.mode;
if ((mode & (CON_AXIS0 | CON_AXIS1)) == (CON_AXIS0 | CON_AXIS1)) {
return true;
}
if ((mode & (CON_AXIS1 | CON_AXIS2)) == (CON_AXIS1 | CON_AXIS2)) {
return true;
}
if ((mode & (CON_AXIS0 | CON_AXIS2)) == (CON_AXIS0 | CON_AXIS2)) {
return true;
}
return false;
}
/**
* Returns the dimension of the constraint space.
*
* For that reason, the flags always needs to be set to properly evaluate here,
* even if they aren't actually used in the callback function.
* (Which could happen for weird constraints not yet designed. Along a path for example.)
*/
int getConstraintSpaceDimension(const TransInfo *t)
{
int n = 0;
if (t->con.mode & CON_AXIS0) {
n++;
}
if (t->con.mode & CON_AXIS1) {
n++;
}
if (t->con.mode & CON_AXIS2) {
n++;
}
return n;
/* Someone willing to do it cryptically could do the following instead:
*
* `return t->con & (CON_AXIS0|CON_AXIS1|CON_AXIS2);`
*
* Based on the assumptions that the axis flags are one after the other and start at 1
*/
}
/** \} */