This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/compositor/operations/COM_DilateErodeOperation.cc
Manuel Castilla 9d7cb5c4a1 Compositor: Full frame filter nodes
Adds full frame implementation to Anti-Aliasing, Defocus, Denoise,
Despeckle, Dilate/Erode, Directional Blur, Filter, Inpaint and
Vector Blur nodes. The other nodes in "Filter" sub-menu are
submitted separately.

Part of T88150.

Reviewed By: jbakker

Differential Revision: https://developer.blender.org/D12219
2021-09-04 17:05:58 +02:00

922 lines
30 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright 2011, Blender Foundation.
*/
#include "COM_DilateErodeOperation.h"
#include "BLI_math.h"
#include "COM_OpenCLDevice.h"
#include "MEM_guardedalloc.h"
namespace blender::compositor {
/* DilateErode Distance Threshold */
DilateErodeThresholdOperation::DilateErodeThresholdOperation()
{
this->addInputSocket(DataType::Value);
this->addOutputSocket(DataType::Value);
this->flags.complex = true;
this->m_inputProgram = nullptr;
this->m_inset = 0.0f;
this->m__switch = 0.5f;
this->m_distance = 0.0f;
}
void DilateErodeThresholdOperation::init_data()
{
if (this->m_distance < 0.0f) {
this->m_scope = -this->m_distance + this->m_inset;
}
else {
if (this->m_inset * 2 > this->m_distance) {
this->m_scope = MAX2(this->m_inset * 2 - this->m_distance, this->m_distance);
}
else {
this->m_scope = this->m_distance;
}
}
if (this->m_scope < 3) {
this->m_scope = 3;
}
}
void DilateErodeThresholdOperation::initExecution()
{
this->m_inputProgram = this->getInputSocketReader(0);
}
void *DilateErodeThresholdOperation::initializeTileData(rcti * /*rect*/)
{
void *buffer = this->m_inputProgram->initializeTileData(nullptr);
return buffer;
}
void DilateErodeThresholdOperation::executePixel(float output[4], int x, int y, void *data)
{
float inputValue[4];
const float sw = this->m__switch;
const float distance = this->m_distance;
float pixelvalue;
const float rd = this->m_scope * this->m_scope;
const float inset = this->m_inset;
float mindist = rd * 2;
MemoryBuffer *inputBuffer = (MemoryBuffer *)data;
float *buffer = inputBuffer->getBuffer();
const rcti &input_rect = inputBuffer->get_rect();
const int minx = MAX2(x - this->m_scope, input_rect.xmin);
const int miny = MAX2(y - this->m_scope, input_rect.ymin);
const int maxx = MIN2(x + this->m_scope, input_rect.xmax);
const int maxy = MIN2(y + this->m_scope, input_rect.ymax);
const int bufferWidth = inputBuffer->getWidth();
int offset;
inputBuffer->read(inputValue, x, y);
if (inputValue[0] > sw) {
for (int yi = miny; yi < maxy; yi++) {
const float dy = yi - y;
offset = ((yi - input_rect.ymin) * bufferWidth + (minx - input_rect.xmin));
for (int xi = minx; xi < maxx; xi++) {
if (buffer[offset] < sw) {
const float dx = xi - x;
const float dis = dx * dx + dy * dy;
mindist = MIN2(mindist, dis);
}
offset++;
}
}
pixelvalue = -sqrtf(mindist);
}
else {
for (int yi = miny; yi < maxy; yi++) {
const float dy = yi - y;
offset = ((yi - input_rect.ymin) * bufferWidth + (minx - input_rect.xmin));
for (int xi = minx; xi < maxx; xi++) {
if (buffer[offset] > sw) {
const float dx = xi - x;
const float dis = dx * dx + dy * dy;
mindist = MIN2(mindist, dis);
}
offset++;
}
}
pixelvalue = sqrtf(mindist);
}
if (distance > 0.0f) {
const float delta = distance - pixelvalue;
if (delta >= 0.0f) {
if (delta >= inset) {
output[0] = 1.0f;
}
else {
output[0] = delta / inset;
}
}
else {
output[0] = 0.0f;
}
}
else {
const float delta = -distance + pixelvalue;
if (delta < 0.0f) {
if (delta < -inset) {
output[0] = 1.0f;
}
else {
output[0] = (-delta) / inset;
}
}
else {
output[0] = 0.0f;
}
}
}
void DilateErodeThresholdOperation::deinitExecution()
{
this->m_inputProgram = nullptr;
}
bool DilateErodeThresholdOperation::determineDependingAreaOfInterest(
rcti *input, ReadBufferOperation *readOperation, rcti *output)
{
rcti newInput;
newInput.xmax = input->xmax + this->m_scope;
newInput.xmin = input->xmin - this->m_scope;
newInput.ymax = input->ymax + this->m_scope;
newInput.ymin = input->ymin - this->m_scope;
return NodeOperation::determineDependingAreaOfInterest(&newInput, readOperation, output);
}
void DilateErodeThresholdOperation::get_area_of_interest(const int input_idx,
const rcti &output_area,
rcti &r_input_area)
{
BLI_assert(input_idx == 0);
UNUSED_VARS_NDEBUG(input_idx);
r_input_area.xmin = output_area.xmin - m_scope;
r_input_area.xmax = output_area.xmax + m_scope;
r_input_area.ymin = output_area.ymin - m_scope;
r_input_area.ymax = output_area.ymax + m_scope;
}
struct DilateErodeThresholdOperation::PixelData {
int x;
int y;
int xmin;
int xmax;
int ymin;
int ymax;
const float *elem;
float distance;
int elem_stride;
int row_stride;
/** Switch. */
float sw;
};
template<template<typename> typename TCompare>
static float get_min_distance(DilateErodeThresholdOperation::PixelData &p)
{
/* TODO(manzanilla): bad performance, generate a table with relative offsets on operation
* initialization to loop from less to greater distance and break as soon as #compare is
* true. */
const TCompare compare;
float min_dist = p.distance;
const float *row = p.elem + ((intptr_t)p.ymin - p.y) * p.row_stride +
((intptr_t)p.xmin - p.x) * p.elem_stride;
for (int yi = p.ymin; yi < p.ymax; yi++) {
const float dy = yi - p.y;
const float dist_y = dy * dy;
const float *elem = row;
for (int xi = p.xmin; xi < p.xmax; xi++) {
if (compare(*elem, p.sw)) {
const float dx = xi - p.x;
const float dist = dx * dx + dist_y;
min_dist = MIN2(min_dist, dist);
}
elem += p.elem_stride;
}
row += p.row_stride;
}
return min_dist;
}
void DilateErodeThresholdOperation::update_memory_buffer_partial(MemoryBuffer *output,
const rcti &area,
Span<MemoryBuffer *> inputs)
{
const MemoryBuffer *input = inputs[0];
const rcti &input_rect = input->get_rect();
const float rd = m_scope * m_scope;
const float inset = m_inset;
PixelData p;
p.sw = m__switch;
p.distance = rd * 2;
p.elem_stride = input->elem_stride;
p.row_stride = input->row_stride;
for (BuffersIterator<float> it = output->iterate_with(inputs, area); !it.is_end(); ++it) {
p.x = it.x;
p.y = it.y;
p.xmin = MAX2(p.x - m_scope, input_rect.xmin);
p.ymin = MAX2(p.y - m_scope, input_rect.ymin);
p.xmax = MIN2(p.x + m_scope, input_rect.xmax);
p.ymax = MIN2(p.y + m_scope, input_rect.ymax);
p.elem = it.in(0);
float pixel_value;
if (*p.elem > p.sw) {
pixel_value = -sqrtf(get_min_distance<std::less>(p));
}
else {
pixel_value = sqrtf(get_min_distance<std::greater>(p));
}
if (m_distance > 0.0f) {
const float delta = m_distance - pixel_value;
if (delta >= 0.0f) {
*it.out = delta >= inset ? 1.0f : delta / inset;
}
else {
*it.out = 0.0f;
}
}
else {
const float delta = -m_distance + pixel_value;
if (delta < 0.0f) {
*it.out = delta < -inset ? 1.0f : (-delta) / inset;
}
else {
*it.out = 0.0f;
}
}
}
}
/* Dilate Distance. */
DilateDistanceOperation::DilateDistanceOperation()
{
this->addInputSocket(DataType::Value);
this->addOutputSocket(DataType::Value);
this->m_inputProgram = nullptr;
this->m_distance = 0.0f;
flags.complex = true;
flags.open_cl = true;
}
void DilateDistanceOperation::init_data()
{
this->m_scope = this->m_distance;
if (this->m_scope < 3) {
this->m_scope = 3;
}
}
void DilateDistanceOperation::initExecution()
{
this->m_inputProgram = this->getInputSocketReader(0);
}
void *DilateDistanceOperation::initializeTileData(rcti * /*rect*/)
{
void *buffer = this->m_inputProgram->initializeTileData(nullptr);
return buffer;
}
void DilateDistanceOperation::executePixel(float output[4], int x, int y, void *data)
{
const float distance = this->m_distance;
const float mindist = distance * distance;
MemoryBuffer *inputBuffer = (MemoryBuffer *)data;
float *buffer = inputBuffer->getBuffer();
const rcti &input_rect = inputBuffer->get_rect();
const int minx = MAX2(x - this->m_scope, input_rect.xmin);
const int miny = MAX2(y - this->m_scope, input_rect.ymin);
const int maxx = MIN2(x + this->m_scope, input_rect.xmax);
const int maxy = MIN2(y + this->m_scope, input_rect.ymax);
const int bufferWidth = inputBuffer->getWidth();
int offset;
float value = 0.0f;
for (int yi = miny; yi < maxy; yi++) {
const float dy = yi - y;
offset = ((yi - input_rect.ymin) * bufferWidth + (minx - input_rect.xmin));
for (int xi = minx; xi < maxx; xi++) {
const float dx = xi - x;
const float dis = dx * dx + dy * dy;
if (dis <= mindist) {
value = MAX2(buffer[offset], value);
}
offset++;
}
}
output[0] = value;
}
void DilateDistanceOperation::deinitExecution()
{
this->m_inputProgram = nullptr;
}
bool DilateDistanceOperation::determineDependingAreaOfInterest(rcti *input,
ReadBufferOperation *readOperation,
rcti *output)
{
rcti newInput;
newInput.xmax = input->xmax + this->m_scope;
newInput.xmin = input->xmin - this->m_scope;
newInput.ymax = input->ymax + this->m_scope;
newInput.ymin = input->ymin - this->m_scope;
return NodeOperation::determineDependingAreaOfInterest(&newInput, readOperation, output);
}
void DilateDistanceOperation::executeOpenCL(OpenCLDevice *device,
MemoryBuffer *outputMemoryBuffer,
cl_mem clOutputBuffer,
MemoryBuffer **inputMemoryBuffers,
std::list<cl_mem> *clMemToCleanUp,
std::list<cl_kernel> * /*clKernelsToCleanUp*/)
{
cl_kernel dilateKernel = device->COM_clCreateKernel("dilateKernel", nullptr);
cl_int distanceSquared = this->m_distance * this->m_distance;
cl_int scope = this->m_scope;
device->COM_clAttachMemoryBufferToKernelParameter(
dilateKernel, 0, 2, clMemToCleanUp, inputMemoryBuffers, this->m_inputProgram);
device->COM_clAttachOutputMemoryBufferToKernelParameter(dilateKernel, 1, clOutputBuffer);
device->COM_clAttachMemoryBufferOffsetToKernelParameter(dilateKernel, 3, outputMemoryBuffer);
clSetKernelArg(dilateKernel, 4, sizeof(cl_int), &scope);
clSetKernelArg(dilateKernel, 5, sizeof(cl_int), &distanceSquared);
device->COM_clAttachSizeToKernelParameter(dilateKernel, 6, this);
device->COM_clEnqueueRange(dilateKernel, outputMemoryBuffer, 7, this);
}
void DilateDistanceOperation::get_area_of_interest(const int input_idx,
const rcti &output_area,
rcti &r_input_area)
{
BLI_assert(input_idx == 0);
UNUSED_VARS_NDEBUG(input_idx);
r_input_area.xmin = output_area.xmin - m_scope;
r_input_area.xmax = output_area.xmax + m_scope;
r_input_area.ymin = output_area.ymin - m_scope;
r_input_area.ymax = output_area.ymax + m_scope;
}
struct DilateDistanceOperation::PixelData {
int x;
int y;
int xmin;
int xmax;
int ymin;
int ymax;
const float *elem;
float min_distance;
int scope;
int elem_stride;
int row_stride;
const rcti &input_rect;
PixelData(MemoryBuffer *input, const int distance, const int scope)
: min_distance(distance * distance),
scope(scope),
elem_stride(input->elem_stride),
row_stride(input->row_stride),
input_rect(input->get_rect())
{
}
void update(BuffersIterator<float> &it)
{
x = it.x;
y = it.y;
xmin = MAX2(x - scope, input_rect.xmin);
ymin = MAX2(y - scope, input_rect.ymin);
xmax = MIN2(x + scope, input_rect.xmax);
ymax = MIN2(y + scope, input_rect.ymax);
elem = it.in(0);
}
};
template<template<typename> typename TCompare>
static float get_distance_value(DilateDistanceOperation::PixelData &p, const float start_value)
{
/* TODO(manzanilla): bad performance, only loop elements within minimum distance removing
* coordinates and conditional if `dist <= min_dist`. May need to generate a table of offsets. */
const TCompare compare;
const float min_dist = p.min_distance;
float value = start_value;
const float *row = p.elem + ((intptr_t)p.ymin - p.y) * p.row_stride +
((intptr_t)p.xmin - p.x) * p.elem_stride;
for (int yi = p.ymin; yi < p.ymax; yi++) {
const float dy = yi - p.y;
const float dist_y = dy * dy;
const float *elem = row;
for (int xi = p.xmin; xi < p.xmax; xi++) {
const float dx = xi - p.x;
const float dist = dx * dx + dist_y;
if (dist <= min_dist) {
value = compare(*elem, value) ? *elem : value;
}
elem += p.elem_stride;
}
row += p.row_stride;
}
return value;
}
void DilateDistanceOperation::update_memory_buffer_partial(MemoryBuffer *output,
const rcti &area,
Span<MemoryBuffer *> inputs)
{
PixelData p(inputs[0], m_distance, m_scope);
for (BuffersIterator<float> it = output->iterate_with(inputs, area); !it.is_end(); ++it) {
p.update(it);
*it.out = get_distance_value<std::greater>(p, 0.0f);
}
}
/* Erode Distance */
ErodeDistanceOperation::ErodeDistanceOperation() : DilateDistanceOperation()
{
/* pass */
}
void ErodeDistanceOperation::executePixel(float output[4], int x, int y, void *data)
{
const float distance = this->m_distance;
const float mindist = distance * distance;
MemoryBuffer *inputBuffer = (MemoryBuffer *)data;
float *buffer = inputBuffer->getBuffer();
const rcti &input_rect = inputBuffer->get_rect();
const int minx = MAX2(x - this->m_scope, input_rect.xmin);
const int miny = MAX2(y - this->m_scope, input_rect.ymin);
const int maxx = MIN2(x + this->m_scope, input_rect.xmax);
const int maxy = MIN2(y + this->m_scope, input_rect.ymax);
const int bufferWidth = inputBuffer->getWidth();
int offset;
float value = 1.0f;
for (int yi = miny; yi < maxy; yi++) {
const float dy = yi - y;
offset = ((yi - input_rect.ymin) * bufferWidth + (minx - input_rect.xmin));
for (int xi = minx; xi < maxx; xi++) {
const float dx = xi - x;
const float dis = dx * dx + dy * dy;
if (dis <= mindist) {
value = MIN2(buffer[offset], value);
}
offset++;
}
}
output[0] = value;
}
void ErodeDistanceOperation::executeOpenCL(OpenCLDevice *device,
MemoryBuffer *outputMemoryBuffer,
cl_mem clOutputBuffer,
MemoryBuffer **inputMemoryBuffers,
std::list<cl_mem> *clMemToCleanUp,
std::list<cl_kernel> * /*clKernelsToCleanUp*/)
{
cl_kernel erodeKernel = device->COM_clCreateKernel("erodeKernel", nullptr);
cl_int distanceSquared = this->m_distance * this->m_distance;
cl_int scope = this->m_scope;
device->COM_clAttachMemoryBufferToKernelParameter(
erodeKernel, 0, 2, clMemToCleanUp, inputMemoryBuffers, this->m_inputProgram);
device->COM_clAttachOutputMemoryBufferToKernelParameter(erodeKernel, 1, clOutputBuffer);
device->COM_clAttachMemoryBufferOffsetToKernelParameter(erodeKernel, 3, outputMemoryBuffer);
clSetKernelArg(erodeKernel, 4, sizeof(cl_int), &scope);
clSetKernelArg(erodeKernel, 5, sizeof(cl_int), &distanceSquared);
device->COM_clAttachSizeToKernelParameter(erodeKernel, 6, this);
device->COM_clEnqueueRange(erodeKernel, outputMemoryBuffer, 7, this);
}
void ErodeDistanceOperation::update_memory_buffer_partial(MemoryBuffer *output,
const rcti &area,
Span<MemoryBuffer *> inputs)
{
PixelData p(inputs[0], m_distance, m_scope);
for (BuffersIterator<float> it = output->iterate_with(inputs, area); !it.is_end(); ++it) {
p.update(it);
*it.out = get_distance_value<std::less>(p, 1.0f);
}
}
/* Dilate step */
DilateStepOperation::DilateStepOperation()
{
this->addInputSocket(DataType::Value);
this->addOutputSocket(DataType::Value);
this->flags.complex = true;
this->m_inputProgram = nullptr;
}
void DilateStepOperation::initExecution()
{
this->m_inputProgram = this->getInputSocketReader(0);
}
/* Small helper to pass data from initializeTileData to executePixel. */
struct tile_info {
rcti rect;
int width;
float *buffer;
};
static tile_info *create_cache(int xmin, int xmax, int ymin, int ymax)
{
tile_info *result = (tile_info *)MEM_mallocN(sizeof(tile_info), "dilate erode tile");
result->rect.xmin = xmin;
result->rect.xmax = xmax;
result->rect.ymin = ymin;
result->rect.ymax = ymax;
result->width = xmax - xmin;
result->buffer = (float *)MEM_callocN(sizeof(float) * (ymax - ymin) * result->width,
"dilate erode cache");
return result;
}
void *DilateStepOperation::initializeTileData(rcti *rect)
{
MemoryBuffer *tile = (MemoryBuffer *)this->m_inputProgram->initializeTileData(nullptr);
int x, y, i;
int width = tile->getWidth();
int height = tile->getHeight();
float *buffer = tile->getBuffer();
int half_window = this->m_iterations;
int window = half_window * 2 + 1;
int xmin = MAX2(0, rect->xmin - half_window);
int ymin = MAX2(0, rect->ymin - half_window);
int xmax = MIN2(width, rect->xmax + half_window);
int ymax = MIN2(height, rect->ymax + half_window);
int bwidth = rect->xmax - rect->xmin;
int bheight = rect->ymax - rect->ymin;
/* NOTE: Cache buffer has original tile-size width, but new height.
* We have to calculate the additional rows in the first pass,
* to have valid data available for the second pass. */
tile_info *result = create_cache(rect->xmin, rect->xmax, ymin, ymax);
float *rectf = result->buffer;
/* temp holds maxima for every step in the algorithm, buf holds a
* single row or column of input values, padded with FLT_MAX's to
* simplify the logic. */
float *temp = (float *)MEM_mallocN(sizeof(float) * (2 * window - 1), "dilate erode temp");
float *buf = (float *)MEM_mallocN(sizeof(float) * (MAX2(bwidth, bheight) + 5 * half_window),
"dilate erode buf");
/* The following is based on the van Herk/Gil-Werman algorithm for morphology operations.
* first pass, horizontal dilate/erode. */
for (y = ymin; y < ymax; y++) {
for (x = 0; x < bwidth + 5 * half_window; x++) {
buf[x] = -FLT_MAX;
}
for (x = xmin; x < xmax; x++) {
buf[x - rect->xmin + window - 1] = buffer[(y * width + x)];
}
for (i = 0; i < (bwidth + 3 * half_window) / window; i++) {
int start = (i + 1) * window - 1;
temp[window - 1] = buf[start];
for (x = 1; x < window; x++) {
temp[window - 1 - x] = MAX2(temp[window - x], buf[start - x]);
temp[window - 1 + x] = MAX2(temp[window + x - 2], buf[start + x]);
}
start = half_window + (i - 1) * window + 1;
for (x = -MIN2(0, start); x < window - MAX2(0, start + window - bwidth); x++) {
rectf[bwidth * (y - ymin) + (start + x)] = MAX2(temp[x], temp[x + window - 1]);
}
}
}
/* Second pass, vertical dilate/erode. */
for (x = 0; x < bwidth; x++) {
for (y = 0; y < bheight + 5 * half_window; y++) {
buf[y] = -FLT_MAX;
}
for (y = ymin; y < ymax; y++) {
buf[y - rect->ymin + window - 1] = rectf[(y - ymin) * bwidth + x];
}
for (i = 0; i < (bheight + 3 * half_window) / window; i++) {
int start = (i + 1) * window - 1;
temp[window - 1] = buf[start];
for (y = 1; y < window; y++) {
temp[window - 1 - y] = MAX2(temp[window - y], buf[start - y]);
temp[window - 1 + y] = MAX2(temp[window + y - 2], buf[start + y]);
}
start = half_window + (i - 1) * window + 1;
for (y = -MIN2(0, start); y < window - MAX2(0, start + window - bheight); y++) {
rectf[bwidth * (y + start + (rect->ymin - ymin)) + x] = MAX2(temp[y],
temp[y + window - 1]);
}
}
}
MEM_freeN(temp);
MEM_freeN(buf);
return result;
}
void DilateStepOperation::executePixel(float output[4], int x, int y, void *data)
{
tile_info *tile = (tile_info *)data;
int nx = x - tile->rect.xmin;
int ny = y - tile->rect.ymin;
output[0] = tile->buffer[tile->width * ny + nx];
}
void DilateStepOperation::deinitExecution()
{
this->m_inputProgram = nullptr;
}
void DilateStepOperation::deinitializeTileData(rcti * /*rect*/, void *data)
{
tile_info *tile = (tile_info *)data;
MEM_freeN(tile->buffer);
MEM_freeN(tile);
}
bool DilateStepOperation::determineDependingAreaOfInterest(rcti *input,
ReadBufferOperation *readOperation,
rcti *output)
{
rcti newInput;
int it = this->m_iterations;
newInput.xmax = input->xmax + it;
newInput.xmin = input->xmin - it;
newInput.ymax = input->ymax + it;
newInput.ymin = input->ymin - it;
return NodeOperation::determineDependingAreaOfInterest(&newInput, readOperation, output);
}
void DilateStepOperation::get_area_of_interest(const int input_idx,
const rcti &output_area,
rcti &r_input_area)
{
BLI_assert(input_idx == 0);
UNUSED_VARS_NDEBUG(input_idx);
r_input_area.xmin = output_area.xmin - m_iterations;
r_input_area.xmax = output_area.xmax + m_iterations;
r_input_area.ymin = output_area.ymin - m_iterations;
r_input_area.ymax = output_area.ymax + m_iterations;
}
template<typename TCompareSelector>
static void step_update_memory_buffer(MemoryBuffer *output,
const MemoryBuffer *input,
const rcti &area,
const int num_iterations,
const float compare_min_value)
{
TCompareSelector selector;
const int width = output->getWidth();
const int height = output->getHeight();
const int half_window = num_iterations;
const int window = half_window * 2 + 1;
const int xmin = MAX2(0, area.xmin - half_window);
const int ymin = MAX2(0, area.ymin - half_window);
const int xmax = MIN2(width, area.xmax + half_window);
const int ymax = MIN2(height, area.ymax + half_window);
const int bwidth = area.xmax - area.xmin;
const int bheight = area.ymax - area.ymin;
/* NOTE: #result has area width, but new height.
* We have to calculate the additional rows in the first pass,
* to have valid data available for the second pass. */
rcti result_area;
BLI_rcti_init(&result_area, area.xmin, area.xmax, ymin, ymax);
MemoryBuffer result(DataType::Value, result_area);
/* #temp holds maxima for every step in the algorithm, #buf holds a
* single row or column of input values, padded with #limit values to
* simplify the logic. */
float *temp = (float *)MEM_mallocN(sizeof(float) * (2 * window - 1), "dilate erode temp");
float *buf = (float *)MEM_mallocN(sizeof(float) * (MAX2(bwidth, bheight) + 5 * half_window),
"dilate erode buf");
/* The following is based on the van Herk/Gil-Werman algorithm for morphology operations. */
/* First pass, horizontal dilate/erode. */
for (int y = ymin; y < ymax; y++) {
for (int x = 0; x < bwidth + 5 * half_window; x++) {
buf[x] = compare_min_value;
}
for (int x = xmin; x < xmax; x++) {
buf[x - area.xmin + window - 1] = input->get_value(x, y, 0);
}
for (int i = 0; i < (bwidth + 3 * half_window) / window; i++) {
int start = (i + 1) * window - 1;
temp[window - 1] = buf[start];
for (int x = 1; x < window; x++) {
temp[window - 1 - x] = selector(temp[window - x], buf[start - x]);
temp[window - 1 + x] = selector(temp[window + x - 2], buf[start + x]);
}
start = half_window + (i - 1) * window + 1;
for (int x = -MIN2(0, start); x < window - MAX2(0, start + window - bwidth); x++) {
result.get_value(start + x + area.xmin, y, 0) = selector(temp[x], temp[x + window - 1]);
}
}
}
/* Second pass, vertical dilate/erode. */
for (int x = 0; x < bwidth; x++) {
for (int y = 0; y < bheight + 5 * half_window; y++) {
buf[y] = compare_min_value;
}
for (int y = ymin; y < ymax; y++) {
buf[y - area.ymin + window - 1] = result.get_value(x + area.xmin, y, 0);
}
for (int i = 0; i < (bheight + 3 * half_window) / window; i++) {
int start = (i + 1) * window - 1;
temp[window - 1] = buf[start];
for (int y = 1; y < window; y++) {
temp[window - 1 - y] = selector(temp[window - y], buf[start - y]);
temp[window - 1 + y] = selector(temp[window + y - 2], buf[start + y]);
}
start = half_window + (i - 1) * window + 1;
for (int y = -MIN2(0, start); y < window - MAX2(0, start + window - bheight); y++) {
result.get_value(x, y + start + area.ymin, 0) = selector(temp[y], temp[y + window - 1]);
}
}
}
MEM_freeN(temp);
MEM_freeN(buf);
output->copy_from(&result, area);
}
struct Max2Selector {
float operator()(float f1, float f2) const
{
return MAX2(f1, f2);
}
};
void DilateStepOperation::update_memory_buffer_partial(MemoryBuffer *output,
const rcti &area,
Span<MemoryBuffer *> inputs)
{
step_update_memory_buffer<Max2Selector>(output, inputs[0], area, m_iterations, -FLT_MAX);
}
/* Erode step */
ErodeStepOperation::ErodeStepOperation() : DilateStepOperation()
{
/* pass */
}
void *ErodeStepOperation::initializeTileData(rcti *rect)
{
MemoryBuffer *tile = (MemoryBuffer *)this->m_inputProgram->initializeTileData(nullptr);
int x, y, i;
int width = tile->getWidth();
int height = tile->getHeight();
float *buffer = tile->getBuffer();
int half_window = this->m_iterations;
int window = half_window * 2 + 1;
int xmin = MAX2(0, rect->xmin - half_window);
int ymin = MAX2(0, rect->ymin - half_window);
int xmax = MIN2(width, rect->xmax + half_window);
int ymax = MIN2(height, rect->ymax + half_window);
int bwidth = rect->xmax - rect->xmin;
int bheight = rect->ymax - rect->ymin;
/* NOTE: Cache buffer has original tile-size width, but new height.
* We have to calculate the additional rows in the first pass,
* to have valid data available for the second pass. */
tile_info *result = create_cache(rect->xmin, rect->xmax, ymin, ymax);
float *rectf = result->buffer;
/* temp holds maxima for every step in the algorithm, buf holds a
* single row or column of input values, padded with FLT_MAX's to
* simplify the logic. */
float *temp = (float *)MEM_mallocN(sizeof(float) * (2 * window - 1), "dilate erode temp");
float *buf = (float *)MEM_mallocN(sizeof(float) * (MAX2(bwidth, bheight) + 5 * half_window),
"dilate erode buf");
/* The following is based on the van Herk/Gil-Werman algorithm for morphology operations.
* first pass, horizontal dilate/erode */
for (y = ymin; y < ymax; y++) {
for (x = 0; x < bwidth + 5 * half_window; x++) {
buf[x] = FLT_MAX;
}
for (x = xmin; x < xmax; x++) {
buf[x - rect->xmin + window - 1] = buffer[(y * width + x)];
}
for (i = 0; i < (bwidth + 3 * half_window) / window; i++) {
int start = (i + 1) * window - 1;
temp[window - 1] = buf[start];
for (x = 1; x < window; x++) {
temp[window - 1 - x] = MIN2(temp[window - x], buf[start - x]);
temp[window - 1 + x] = MIN2(temp[window + x - 2], buf[start + x]);
}
start = half_window + (i - 1) * window + 1;
for (x = -MIN2(0, start); x < window - MAX2(0, start + window - bwidth); x++) {
rectf[bwidth * (y - ymin) + (start + x)] = MIN2(temp[x], temp[x + window - 1]);
}
}
}
/* Second pass, vertical dilate/erode. */
for (x = 0; x < bwidth; x++) {
for (y = 0; y < bheight + 5 * half_window; y++) {
buf[y] = FLT_MAX;
}
for (y = ymin; y < ymax; y++) {
buf[y - rect->ymin + window - 1] = rectf[(y - ymin) * bwidth + x];
}
for (i = 0; i < (bheight + 3 * half_window) / window; i++) {
int start = (i + 1) * window - 1;
temp[window - 1] = buf[start];
for (y = 1; y < window; y++) {
temp[window - 1 - y] = MIN2(temp[window - y], buf[start - y]);
temp[window - 1 + y] = MIN2(temp[window + y - 2], buf[start + y]);
}
start = half_window + (i - 1) * window + 1;
for (y = -MIN2(0, start); y < window - MAX2(0, start + window - bheight); y++) {
rectf[bwidth * (y + start + (rect->ymin - ymin)) + x] = MIN2(temp[y],
temp[y + window - 1]);
}
}
}
MEM_freeN(temp);
MEM_freeN(buf);
return result;
}
struct Min2Selector {
float operator()(float f1, float f2) const
{
return MIN2(f1, f2);
}
};
void ErodeStepOperation::update_memory_buffer_partial(MemoryBuffer *output,
const rcti &area,
Span<MemoryBuffer *> inputs)
{
step_update_memory_buffer<Min2Selector>(output, inputs[0], area, m_iterations, FLT_MAX);
}
} // namespace blender::compositor