This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/compositor/operations/COM_MathBaseOperation.cc
Manuel Castilla 8f4730e66f Compositor: Full frame convert nodes
Adds full frame implementation to all nodes in "Converter" sub-menu
except "ID Mask" which is implemented separately.
No functional changes.

Part of T88150.

Reviewed By: jbakker

Differential Revision: https://developer.blender.org/D12095
2021-08-23 16:36:08 +02:00

1077 lines
32 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright 2011, Blender Foundation.
*/
#include "COM_MathBaseOperation.h"
#include "BLI_math.h"
namespace blender::compositor {
MathBaseOperation::MathBaseOperation()
{
/* TODO(manzanilla): after removing tiled implementation, template this class to only add needed
* number of inputs. */
this->addInputSocket(DataType::Value);
this->addInputSocket(DataType::Value);
this->addInputSocket(DataType::Value);
this->addOutputSocket(DataType::Value);
this->m_inputValue1Operation = nullptr;
this->m_inputValue2Operation = nullptr;
this->m_inputValue3Operation = nullptr;
this->m_useClamp = false;
this->flags.can_be_constant = true;
}
void MathBaseOperation::initExecution()
{
this->m_inputValue1Operation = this->getInputSocketReader(0);
this->m_inputValue2Operation = this->getInputSocketReader(1);
this->m_inputValue3Operation = this->getInputSocketReader(2);
}
void MathBaseOperation::deinitExecution()
{
this->m_inputValue1Operation = nullptr;
this->m_inputValue2Operation = nullptr;
this->m_inputValue3Operation = nullptr;
}
void MathBaseOperation::determineResolution(unsigned int resolution[2],
unsigned int preferredResolution[2])
{
NodeOperationInput *socket;
unsigned int tempPreferredResolution[2] = {0, 0};
unsigned int tempResolution[2];
socket = this->getInputSocket(0);
socket->determineResolution(tempResolution, tempPreferredResolution);
if ((tempResolution[0] != 0) && (tempResolution[1] != 0)) {
this->setResolutionInputSocketIndex(0);
}
else {
this->setResolutionInputSocketIndex(1);
}
NodeOperation::determineResolution(resolution, preferredResolution);
}
void MathBaseOperation::clampIfNeeded(float *color)
{
if (this->m_useClamp) {
CLAMP(color[0], 0.0f, 1.0f);
}
}
void MathBaseOperation::update_memory_buffer_partial(MemoryBuffer *output,
const rcti &area,
Span<MemoryBuffer *> inputs)
{
BuffersIterator<float> it = output->iterate_with(inputs, area);
update_memory_buffer_partial(it);
}
void MathAddOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
output[0] = inputValue1[0] + inputValue2[0];
clampIfNeeded(output);
}
void MathSubtractOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
output[0] = inputValue1[0] - inputValue2[0];
clampIfNeeded(output);
}
void MathMultiplyOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
output[0] = inputValue1[0] * inputValue2[0];
clampIfNeeded(output);
}
void MathDivideOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
if (inputValue2[0] == 0) { /* We don't want to divide by zero. */
output[0] = 0.0;
}
else {
output[0] = inputValue1[0] / inputValue2[0];
}
clampIfNeeded(output);
}
void MathDivideOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
const float divisor = *it.in(1);
*it.out = clamp_when_enabled((divisor == 0) ? 0 : *it.in(0) / divisor);
}
}
void MathSineOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
output[0] = sin(inputValue1[0]);
clampIfNeeded(output);
}
void MathSineOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = sin(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathCosineOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
output[0] = cos(inputValue1[0]);
clampIfNeeded(output);
}
void MathCosineOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = cos(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathTangentOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
output[0] = tan(inputValue1[0]);
clampIfNeeded(output);
}
void MathTangentOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = tan(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathHyperbolicSineOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
output[0] = sinh(inputValue1[0]);
clampIfNeeded(output);
}
void MathHyperbolicSineOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = sinh(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathHyperbolicCosineOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
output[0] = cosh(inputValue1[0]);
clampIfNeeded(output);
}
void MathHyperbolicCosineOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = cosh(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathHyperbolicTangentOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
output[0] = tanh(inputValue1[0]);
clampIfNeeded(output);
}
void MathHyperbolicTangentOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = tanh(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathArcSineOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
if (inputValue1[0] <= 1 && inputValue1[0] >= -1) {
output[0] = asin(inputValue1[0]);
}
else {
output[0] = 0.0;
}
clampIfNeeded(output);
}
void MathArcSineOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
float value1 = *it.in(0);
*it.out = clamp_when_enabled((value1 <= 1 && value1 >= -1) ? asin(value1) : 0.0f);
}
}
void MathArcCosineOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
if (inputValue1[0] <= 1 && inputValue1[0] >= -1) {
output[0] = acos(inputValue1[0]);
}
else {
output[0] = 0.0;
}
clampIfNeeded(output);
}
void MathArcCosineOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
float value1 = *it.in(0);
*it.out = clamp_when_enabled((value1 <= 1 && value1 >= -1) ? acos(value1) : 0.0f);
}
}
void MathArcTangentOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
output[0] = atan(inputValue1[0]);
clampIfNeeded(output);
}
void MathArcTangentOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = atan(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathPowerOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
if (inputValue1[0] >= 0) {
output[0] = pow(inputValue1[0], inputValue2[0]);
}
else {
float y_mod_1 = fmod(inputValue2[0], 1);
/* if input value is not nearly an integer, fall back to zero, nicer than straight rounding */
if (y_mod_1 > 0.999f || y_mod_1 < 0.001f) {
output[0] = pow(inputValue1[0], floorf(inputValue2[0] + 0.5f));
}
else {
output[0] = 0.0;
}
}
clampIfNeeded(output);
}
void MathPowerOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
const float value1 = *it.in(0);
const float value2 = *it.in(1);
if (value1 >= 0) {
*it.out = pow(value1, value2);
}
else {
const float y_mod_1 = fmod(value2, 1);
/* If input value is not nearly an integer, fall back to zero, nicer than straight rounding.
*/
if (y_mod_1 > 0.999f || y_mod_1 < 0.001f) {
*it.out = pow(value1, floorf(value2 + 0.5f));
}
else {
*it.out = 0.0f;
}
}
clamp_when_enabled(it.out);
}
}
void MathLogarithmOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
if (inputValue1[0] > 0 && inputValue2[0] > 0) {
output[0] = log(inputValue1[0]) / log(inputValue2[0]);
}
else {
output[0] = 0.0;
}
clampIfNeeded(output);
}
void MathLogarithmOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
const float value1 = *it.in(0);
const float value2 = *it.in(1);
if (value1 > 0 && value2 > 0) {
*it.out = log(value1) / log(value2);
}
else {
*it.out = 0.0;
}
clamp_when_enabled(it.out);
}
}
void MathMinimumOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
output[0] = MIN2(inputValue1[0], inputValue2[0]);
clampIfNeeded(output);
}
void MathMinimumOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = MIN2(*it.in(0), *it.in(1));
clamp_when_enabled(it.out);
}
}
void MathMaximumOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
output[0] = MAX2(inputValue1[0], inputValue2[0]);
clampIfNeeded(output);
}
void MathMaximumOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = MAX2(*it.in(0), *it.in(1));
clamp_when_enabled(it.out);
}
}
void MathRoundOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
output[0] = round(inputValue1[0]);
clampIfNeeded(output);
}
void MathRoundOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = round(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathLessThanOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
output[0] = inputValue1[0] < inputValue2[0] ? 1.0f : 0.0f;
clampIfNeeded(output);
}
void MathGreaterThanOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
output[0] = inputValue1[0] > inputValue2[0] ? 1.0f : 0.0f;
clampIfNeeded(output);
}
void MathModuloOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
if (inputValue2[0] == 0) {
output[0] = 0.0;
}
else {
output[0] = fmod(inputValue1[0], inputValue2[0]);
}
clampIfNeeded(output);
}
void MathModuloOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
const float value2 = *it.in(1);
*it.out = (value2 == 0) ? 0 : fmod(*it.in(0), value2);
clamp_when_enabled(it.out);
}
}
void MathAbsoluteOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
output[0] = fabs(inputValue1[0]);
clampIfNeeded(output);
}
void MathAbsoluteOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = fabs(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathRadiansOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
output[0] = DEG2RADF(inputValue1[0]);
clampIfNeeded(output);
}
void MathRadiansOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = DEG2RADF(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathDegreesOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
output[0] = RAD2DEGF(inputValue1[0]);
clampIfNeeded(output);
}
void MathDegreesOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = RAD2DEGF(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathArcTan2Operation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
output[0] = atan2(inputValue1[0], inputValue2[0]);
clampIfNeeded(output);
}
void MathArcTan2Operation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = atan2(*it.in(0), *it.in(1));
clamp_when_enabled(it.out);
}
}
void MathFloorOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
output[0] = floor(inputValue1[0]);
clampIfNeeded(output);
}
void MathFloorOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = floor(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathCeilOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
output[0] = ceil(inputValue1[0]);
clampIfNeeded(output);
}
void MathCeilOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = ceil(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathFractOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
output[0] = inputValue1[0] - floor(inputValue1[0]);
clampIfNeeded(output);
}
void MathFractOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
const float value = *it.in(0);
*it.out = clamp_when_enabled(value - floor(value));
}
}
void MathSqrtOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
if (inputValue1[0] > 0) {
output[0] = sqrt(inputValue1[0]);
}
else {
output[0] = 0.0f;
}
clampIfNeeded(output);
}
void MathSqrtOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
const float value = *it.in(0);
*it.out = clamp_when_enabled(value > 0 ? sqrt(value) : 0.0f);
}
}
void MathInverseSqrtOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
if (inputValue1[0] > 0) {
output[0] = 1.0f / sqrt(inputValue1[0]);
}
else {
output[0] = 0.0f;
}
clampIfNeeded(output);
}
void MathInverseSqrtOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
const float value = *it.in(0);
*it.out = clamp_when_enabled(value > 0 ? 1.0f / sqrt(value) : 0.0f);
}
}
void MathSignOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
output[0] = compatible_signf(inputValue1[0]);
clampIfNeeded(output);
}
void MathSignOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = compatible_signf(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathExponentOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
output[0] = expf(inputValue1[0]);
clampIfNeeded(output);
}
void MathExponentOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = expf(*it.in(0));
clamp_when_enabled(it.out);
}
}
void MathTruncOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
output[0] = (inputValue1[0] >= 0.0f) ? floor(inputValue1[0]) : ceil(inputValue1[0]);
clampIfNeeded(output);
}
void MathTruncOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
const float value = *it.in(0);
*it.out = (value >= 0.0f) ? floor(value) : ceil(value);
clamp_when_enabled(it.out);
}
}
void MathSnapOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
if (inputValue1[0] == 0 || inputValue2[0] == 0) { /* We don't want to divide by zero. */
output[0] = 0.0f;
}
else {
output[0] = floorf(inputValue1[0] / inputValue2[0]) * inputValue2[0];
}
clampIfNeeded(output);
}
void MathSnapOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
const float value1 = *it.in(0);
const float value2 = *it.in(1);
if (value1 == 0 || value2 == 0) { /* Avoid dividing by zero. */
*it.out = 0.0f;
}
else {
*it.out = floorf(value1 / value2) * value2;
}
clamp_when_enabled(it.out);
}
}
void MathWrapOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
float inputValue3[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
this->m_inputValue3Operation->readSampled(inputValue3, x, y, sampler);
output[0] = wrapf(inputValue1[0], inputValue2[0], inputValue3[0]);
clampIfNeeded(output);
}
void MathWrapOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = wrapf(*it.in(0), *it.in(1), *it.in(2));
clamp_when_enabled(it.out);
}
}
void MathPingpongOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
output[0] = pingpongf(inputValue1[0], inputValue2[0]);
clampIfNeeded(output);
}
void MathPingpongOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = pingpongf(*it.in(0), *it.in(1));
clamp_when_enabled(it.out);
}
}
void MathCompareOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
float inputValue3[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
this->m_inputValue3Operation->readSampled(inputValue3, x, y, sampler);
output[0] = (fabsf(inputValue1[0] - inputValue2[0]) <= MAX2(inputValue3[0], 1e-5f)) ? 1.0f :
0.0f;
clampIfNeeded(output);
}
void MathCompareOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = (fabsf(*it.in(0) - *it.in(1)) <= MAX2(*it.in(2), 1e-5f)) ? 1.0f : 0.0f;
clamp_when_enabled(it.out);
}
}
void MathMultiplyAddOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
float inputValue3[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
this->m_inputValue3Operation->readSampled(inputValue3, x, y, sampler);
output[0] = inputValue1[0] * inputValue2[0] + inputValue3[0];
clampIfNeeded(output);
}
void MathMultiplyAddOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = it.in(0)[0] * it.in(1)[0] + it.in(2)[0];
clamp_when_enabled(it.out);
}
}
void MathSmoothMinOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
float inputValue3[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
this->m_inputValue3Operation->readSampled(inputValue3, x, y, sampler);
output[0] = smoothminf(inputValue1[0], inputValue2[0], inputValue3[0]);
clampIfNeeded(output);
}
void MathSmoothMinOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = smoothminf(*it.in(0), *it.in(1), *it.in(2));
clamp_when_enabled(it.out);
}
}
void MathSmoothMaxOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue1[4];
float inputValue2[4];
float inputValue3[4];
this->m_inputValue1Operation->readSampled(inputValue1, x, y, sampler);
this->m_inputValue2Operation->readSampled(inputValue2, x, y, sampler);
this->m_inputValue3Operation->readSampled(inputValue3, x, y, sampler);
output[0] = -smoothminf(-inputValue1[0], -inputValue2[0], inputValue3[0]);
clampIfNeeded(output);
}
void MathSmoothMaxOperation::update_memory_buffer_partial(BuffersIterator<float> &it)
{
for (; !it.is_end(); ++it) {
*it.out = -smoothminf(-it.in(0)[0], -it.in(1)[0], it.in(2)[0]);
clamp_when_enabled(it.out);
}
}
} // namespace blender::compositor